JPH03105169A - Absorption freezer - Google Patents

Absorption freezer

Info

Publication number
JPH03105169A
JPH03105169A JP24000389A JP24000389A JPH03105169A JP H03105169 A JPH03105169 A JP H03105169A JP 24000389 A JP24000389 A JP 24000389A JP 24000389 A JP24000389 A JP 24000389A JP H03105169 A JPH03105169 A JP H03105169A
Authority
JP
Japan
Prior art keywords
heat exchanger
solution
temperature
concentrated solution
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24000389A
Other languages
Japanese (ja)
Inventor
Takeshi Nakao
剛 中尾
Michihiko Aizawa
相沢 道彦
Toshiaki Yoshii
吉井 俊朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24000389A priority Critical patent/JPH03105169A/en
Publication of JPH03105169A publication Critical patent/JPH03105169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To decrease an absorbing temperature, provide a low concentration of solution and improve a cycle efficiency by a method wherein a heat exchanger is arranged in the midway part of a concentrated solution flow passage from a regenerator to an absorbing device, the concentrated solution is cooled with air in the heat exchanger and then the concen trated solution is dispersed into the absorbing device. CONSTITUTION:Diluted solution that passes through an absorbing device 2 is increased at its pressure by a circulating pump 7 and fed into a regenerator 9. At the regenerator 9, the diluted liquid is heated, condensed at an external heat application 10 and then the solution returns as a concentrated solution. In this case, since a temperature of the concentrated solution at an outlet port of a heat exchanger 8 is not completely decreased down to a satura tion temperature of the solution within the absorbing device 2, so that the concentrated solution evaporates at a moment when the concentrated solution is dispersed into the absorbing device 2 and a heat loss may occur. However, the concentrated solution of which temperature level is decreased by a certain degree with the heat exchanger 8 shows a further decreased temperature through a heat exchanger 6 arranged at a second stage of a dispersion pump 11. As this temperature is decreased down to a saturation temperature of solution within the absorbing device 2, no evaporation just after its dispersion may occur,resulting in that no heat loss occurs. As the temperature is further decreased to make an subcooled state, in turn absorbing capability will be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収冷凍機に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an absorption refrigerator.

〔従来の技術〕[Conventional technology]

従来の吸収冷凍機においては、再生器からの高温濃溶液
と、吸収器からの低温希溶液とを熱交換器により熱交換
することにより、高温濃溶液は、ある程度温度を下げた
濃溶液として吸収器に散布されていた. 一方、低温希溶液は,ある程度温度を上げた希溶液とし
て再生器に送り込まれていた.この方式は、従来より広
く公知の技術であり、たとえず、冷凍空調技術VOL.
31  &365(昭和55年7月号)、また、冷凍空
調技術VOL.31Nα367(昭和55年9月号)な
どに論じられている。
In conventional absorption refrigerators, a heat exchanger exchanges heat between a high-temperature concentrated solution from a regenerator and a low-temperature dilute solution from an absorber, so that the high-temperature concentrated solution is absorbed as a concentrated solution whose temperature has been lowered to a certain degree. It was sprayed on the vessel. On the other hand, the low-temperature dilute solution was sent to the regenerator as a dilute solution whose temperature had been raised to a certain degree. This method is a widely known technology, for example, in Refrigeration and Air Conditioning Technology Vol.
31 &365 (July 1980 issue), and Refrigeration and Air Conditioning Technology VOL. 31Nα367 (September 1980 issue), etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では,再生器からの濃溶液は、吸収器から
の希溶液と熱交換され冷却され吸収器に敗布されている
が、この方法では、吸収器散布時の濃溶液温度は、吸収
器圧力,濃度に相当する飽和温度まで,下げることがで
きない。この場合,溶液は、吸収器内に散布された瞬間
、急激な蒸発を呈するために、熱損失を生ずるという問
題があった。
In the above conventional technology, the concentrated solution from the regenerator is heat exchanged with the dilute solution from the absorber, cooled, and then sent to the absorber. The temperature cannot be lowered to the saturation temperature corresponding to the vessel pressure and concentration. In this case, the solution undergoes rapid evaporation the moment it is sprayed into the absorber, resulting in heat loss.

それでも、従来技術で,前記吸収器散布時の溶液温度を
,飽和温度に極力近づけようとすると、熱交換器が非常
に大形になってしまう.さらに熱交換器が大形化するこ
とにより、再生器,吸収器間の溶液循かん系の圧力損失
が大きくなるため、循かん系のつまり,溶液循かんボン
プの大形化等の問題を含んでいた. 本発明の目的は、吸収器散布溶液の温度を吸収器内飽和
温度,もしくは、飽和温度以下まで下げ,吸収器散布時
の熱損失をなくすことにより、吸収器における放熱量を
少なくして吸収温度・を下げ,溶液濃度をうずくし、ひ
いてはサイクル効率を向上させる吸収冷凍機を提供する
ことにある。
However, in the conventional technology, if an attempt is made to bring the solution temperature during absorption in the absorber as close as possible to the saturation temperature, the heat exchanger becomes extremely large. Furthermore, as the heat exchanger becomes larger, the pressure loss in the solution circulation system between the regenerator and the absorber increases, which causes problems such as clogging of the circulation system and enlargement of the solution circulation pump. It was. The purpose of the present invention is to lower the temperature of the absorber spray solution to the saturation temperature within the absorber or below the saturation temperature and eliminate heat loss during absorber spraying, thereby reducing the amount of heat dissipated in the absorber and lowering the absorption temperature.・An object of the present invention is to provide an absorption refrigerator that lowers the temperature of the solution, lowers the concentration of the solution, and improves the cycle efficiency.

さらに、空冷式吸収冷凍機において、吸収器散布溶液を
空気により冷却する空冷熱交換器をコンパクトに効率よ
く配置する吸収冷凍機を提供することにある。
Another object of the present invention is to provide an air-cooled absorption refrigerator in which an air-cooled heat exchanger for cooling the absorber spray solution with air is arranged compactly and efficiently.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達或するために,空気,または,凝縮器およ
び吸収器を通る冷却水によって、吸収器散布前段で散布
溶液を吸収器内飽和温度以下に冷却した後、吸収器へ散
布するようにしたものである。
In order to achieve the above purpose, the spray solution is cooled down to below the saturation temperature in the absorber before spraying on the absorber using air or cooling water passing through the condenser and absorber, and then sprayed on the absorber. This is what I did.

さらに、空冷式吸収冷凍機において、前記溶液冷却のた
めの空冷熱交換器の管外空気側伝熱フィンと空冷凝縮器
の管外空気側伝熱フィンと一体にし、前記空冷熱交換器
と空冷凝縮器を隣接設置するようにしたものである。
Furthermore, in the air-cooled absorption refrigerator, the heat transfer fins on the outside air side of the air-cooled heat exchanger for solution cooling are integrated with the heat transfer fins on the outside air side of the air-cooled condenser, and the air-cooled heat exchanger and the air-cooled The condenser is installed adjacent to the condenser.

〔作用〕[Effect]

一般的に吸収冷凍機の吸収器内溶液の飽和温度は.40
〜45℃程度である。それに対して、本発明で溶液冷却
に利用している空気,冷水,冷却水は、各々、一般的に
空気温度35℃以下、また、冷却水35℃以下程度のレ
ベルであり,前記飽和温度とに十分な温度差があるため
、吸収器散布溶液をあらかじめ飽和温度以下まで冷却す
るに十分である。
Generally, the saturation temperature of the solution in the absorber of an absorption refrigerator is. 40
~45°C. On the other hand, the air, cold water, and cooling water used for cooling the solution in the present invention generally have an air temperature of 35°C or less and a cooling water of 35°C or less, respectively, and are at a level below the saturation temperature. is sufficient to pre-cool the absorber sparge solution below the saturation temperature.

〔実施例〕〔Example〕

以下,本発明の実施例を第1図から第5図により説明す
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

第1図において,冷水配管12.13が内部を通る蒸発
器1において蒸発した冷媒は、吸収器2に流入し,散布
溶液に吸収される。ここで、吸収冷凍機の空冷吸収器は
,伝熱管群3とその管外側に伝熱フイン4が多数枚付い
ている。吸収器の伝熱管群3の管内吸収による発生熱は
,冷却ファン5による冷却風14により伝熱フイン4を
介して外部へ放出される. 吸収g712.を通過した希溶液は、循かんポンプ7に
より,昇圧され,再生器9に送りこまれる。再生器9で
は、外部人熱10により希溶液は、加熱,濃縮され濃溶
液となって戻ってくる。ここで従来技術では,熱交換器
8により,低温希溶液と高温濃溶液とを熱交換させ、温
度レベルをある程度下げた濃溶液を散布ボンプ11によ
り昇圧し、吸収器2に散布していた。しかし、この技術
では,熱交換器8,出口の濃溶液の温度が、吸収器2内
の溶液の飽和温度まで下がりきれていないため,a溶液
が吸収器2に散布された瞬間に蒸発するため、熱損失を
発生する。しかし、本実施例によれば、熱交換器8によ
りある程度、温度レベルを下げられた濃溶液は、散布ポ
ンプ11の次段に設けられた熱交換器6によりさらに温
度を下げる。この温度を,吸収器2内の溶液の飽和温度
まで下げると、従来技術で発生した散布瞬間の蒸発が発
生しないため、熱損失が生じない。さらに温度を下げて
、過冷却状態にすれば、逆に、吸収能力が増加するとい
う利点がある。ここで、第1図に示した熱交換器6は、
空冷式の形態をとっている例である。
In FIG. 1, the refrigerant evaporated in the evaporator 1, through which the cold water pipes 12, 13 pass, flows into the absorber 2 and is absorbed by the spray solution. Here, the air-cooled absorber of the absorption refrigerator includes a group of heat transfer tubes 3 and a large number of heat transfer fins 4 attached to the outside of the tubes. The heat generated by absorption in the tubes of the heat transfer tube group 3 of the absorber is released to the outside via the heat transfer fins 4 by the cooling air 14 generated by the cooling fan 5. Absorption g712. The dilute solution that has passed through is pressurized by the circulation pump 7 and sent to the regenerator 9. In the regenerator 9, the dilute solution is heated and concentrated by external heat 10 and returns as a concentrated solution. Here, in the prior art, a heat exchanger 8 exchanges heat between a low-temperature dilute solution and a high-temperature concentrated solution, and the concentrated solution whose temperature level has been lowered to a certain degree is pressurized by a spray pump 11 and sprayed into the absorber 2. However, with this technology, the temperature of the concentrated solution at the outlet of the heat exchanger 8 cannot be lowered to the saturation temperature of the solution in the absorber 2, so that the solution a evaporates the moment it is sprayed into the absorber 2. , generating heat loss. However, according to this embodiment, the temperature of the concentrated solution whose temperature level has been lowered to some extent by the heat exchanger 8 is further lowered by the heat exchanger 6 provided at the next stage of the sparge pump 11. When this temperature is lowered to the saturation temperature of the solution in the absorber 2, no heat loss occurs because evaporation at the moment of dispersion, which occurs in the prior art, does not occur. If the temperature is further lowered to create a supercooled state, there is the advantage that the absorption capacity increases. Here, the heat exchanger 6 shown in FIG.
This is an example of an air-cooled type.

この空冷熱交換器は、管内を濃溶液が流れ、管外に伝熱
フィンが多数枚付いた伝熱管により構成されている。冷
却媒体としては、前記吸収器2を冷却する冷却風上4を
利用する。
This air-cooled heat exchanger consists of a heat transfer tube in which a concentrated solution flows and a large number of heat transfer fins are attached to the outside of the tube. As a cooling medium, the cooling upwind 4 that cools the absorber 2 is used.

また、熱交換器6用の単独冷却ファンを設置し、前記冷
却風工4と区別することもできる。
Further, a separate cooling fan for the heat exchanger 6 may be installed to distinguish it from the cooling fan 4.

次に、第2図によって他の実施例を説明する。Next, another embodiment will be explained with reference to FIG.

第2図は,第1図に示される濃溶液を冷却する空冷熱交
換器6に使用される伝熱フィンを示したものである。伝
熱フイン■6の1部には空冷凝縮器用伝熱管17が通り
、残りの部分には前記空冷熱交換器用伝熱管18が通さ
れている。そして、第3図に示されるごとく、空冷凝縮
器工9と,空冷熱交換器6は、上部ヘッダおよび下部ヘ
ッダにより完全に分離された状態で隣接設置され、伝熱
フイン16は,空冷凝縮器19と空冷熱交換器6とが共
用している。さらに、第4図のごとく、冷却空気14の
流れは、空冷凝縮器19から空冷熱交換器6への方向と
する.これは、空冷凝縮器19の方が空冷熱交換器6よ
りも放熱量が大きいため、低温の空気を空冷凝縮器l9
に配分するためである.一方,空冷熱交換器6の内部は
、第4図の様に、上部および下部ヘッダ部にて溶液の流
れを反転させ、冷却空気14に対し、多パス直交流の形
態をとり、熱伝達向上を図っている。
FIG. 2 shows heat transfer fins used in the air-cooled heat exchanger 6 shown in FIG. 1 for cooling the concentrated solution. A heat transfer tube 17 for an air-cooled condenser passes through a portion of the heat transfer fin 6, and a heat transfer tube 18 for an air-cooled heat exchanger passes through the remaining portion. As shown in FIG. 3, the air-cooled condenser 9 and the air-cooled heat exchanger 6 are installed adjacent to each other while being completely separated by an upper header and a lower header, and the heat transfer fins 16 are connected to the air-cooled condenser. 19 and the air-cooled heat exchanger 6. Furthermore, as shown in FIG. 4, the flow of cooling air 14 is from the air-cooled condenser 19 to the air-cooled heat exchanger 6. This is because the amount of heat released by the air-cooled condenser 19 is larger than that of the air-cooled heat exchanger 6, so low-temperature air is transferred to the air-cooled condenser 19.
This is to allocate it to On the other hand, inside the air-cooled heat exchanger 6, as shown in Fig. 4, the flow of the solution is reversed at the upper and lower header sections to form a multi-pass cross flow with respect to the cooling air 14, thereby improving heat transfer. We are trying to

以上は空冷吸収冷凍機における実施例であるが、第5図
には、水冷式吸収冷凍機への応用実施例を図示する。
The above is an example of an air-cooled absorption refrigerator, but FIG. 5 shows an example of application to a water-cooled absorption refrigerator.

吸収器2を通る冷却水人口20より分枝した冷却水が水
冷熱交換器l5を通って、濃溶液を冷却した後、冷却水
出口21に合流するものである。
The cooling water branched from the cooling water population 20 passing through the absorber 2 passes through the water-cooled heat exchanger 15, cools the concentrated solution, and then joins the cooling water outlet 21.

なお,上述の実施例はいずれも単効用のサイクルになっ
ているが、2重効用にも適用でき、効果を発揮するもの
である。
Although the above-mentioned embodiments are all single-effect cycles, they can also be applied to double-effect cycles, and are effective.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸収器散布溶液の温度を吸収器内の溶
液飽和温度、もしくは、それ以下の過冷却温度まで下げ
ることが出来るので、吸収器への溶液散布時の蒸発によ
る熱損失をなくすことができ、効果的な吸収作用が行な
われる。
According to the present invention, the temperature of the solution sprayed in the absorber can be lowered to the solution saturation temperature in the absorber or a supercooling temperature lower than that, thereby eliminating heat loss due to evaporation during solution spraying to the absorber. , and effective absorption takes place.

すなわち、吸収器における放熱量を少なくすることによ
り,吸収温度を下げ,溶液濃度をうずくし5ひいては、
サイクル効率を改善することができる,
In other words, by reducing the amount of heat dissipated in the absorber, the absorption temperature is lowered and the solution concentration is reduced.
can improve cycle efficiency,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は,空冷式吸収冷凍機における本発明の一実施例
を示す説明図、第2図から第4図は、空冷吸収冷凍機に
おける溶液冷却のための空冷熱交換器の構造例を示す説
明図、第5図は、水冷吸収冷凍機における本発明の一実
施例を示す説明図である。 1・・・蒸発器、2・・・吸収器,5・・・冷却ファン
,6・・・空冷熱交換器.9・・・再生器,14・・・
冷却風、15・・・水冷熱交換器,16・・・伝熱フィ
ン。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention in an air-cooled absorption refrigerator, and FIGS. 2 to 4 show structural examples of an air-cooled heat exchanger for solution cooling in an air-cooled absorption refrigerator. FIG. 5 is an explanatory diagram showing an embodiment of the present invention in a water-cooled absorption refrigerator. 1... Evaporator, 2... Absorber, 5... Cooling fan, 6... Air-cooled heat exchanger. 9... Regenerator, 14...
Cooling air, 15... water-cooled heat exchanger, 16... heat transfer fins.

Claims (1)

【特許請求の範囲】 1、蒸発器、再生器、吸収器、凝縮器、熱交換器、ポン
プ及びこれらを結ぶ配管からなる吸収冷凍機において、
再生器から吸収器へ流れる濃溶液流路の途中に熱交換器
を設け、前記熱交換器において、空気により濃溶液を冷
却した後、吸収器に散布することを特徴とする吸収冷凍
機。 2、熱交換器に設けられる管外空気側伝熱フィンと空冷
凝縮器の管外空気側伝熱フィンとを一体成形し、熱交換
器と空冷凝縮器を隣接して設置したことを特徴とする請
求項1記載の吸収冷凍機。 3、熱交換器を空冷凝縮器の空気出口側に隣接して設置
することを特徴とする請求項2記載の吸収冷凍機。 4、蒸発器、再生器、吸収器、凝縮器、熱交換器、ポン
プ、これらを結ぶ配管からなる吸収冷凍機において、再
生器から吸収器へ流れる濃溶液流路の途中に熱交換器を
設け、前記熱交換器において、凝縮器および吸収器内を
通る冷却水により濃溶液を冷却することを特徴とする吸
収冷凍機。
[Claims] 1. An absorption refrigerator comprising an evaporator, a regenerator, an absorber, a condenser, a heat exchanger, a pump, and piping connecting these,
An absorption refrigerator characterized in that a heat exchanger is provided in the middle of a concentrated solution flow path flowing from a regenerator to an absorber, and the concentrated solution is cooled by air in the heat exchanger and then sprayed onto the absorber. 2. The heat transfer fins on the outside air side of the heat exchanger and the air side heat transfer fins outside the tube of the air-cooled condenser are integrally molded, and the heat exchanger and the air-cooled condenser are installed adjacent to each other. The absorption refrigerator according to claim 1. 3. The absorption refrigerator according to claim 2, wherein the heat exchanger is installed adjacent to the air outlet side of the air-cooled condenser. 4. In an absorption refrigerator consisting of an evaporator, regenerator, absorber, condenser, heat exchanger, pump, and piping connecting these, a heat exchanger is installed in the middle of the concentrated solution flow path flowing from the regenerator to the absorber. . An absorption refrigerator, characterized in that in the heat exchanger, a concentrated solution is cooled by cooling water passing through a condenser and an absorber.
JP24000389A 1989-09-18 1989-09-18 Absorption freezer Pending JPH03105169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24000389A JPH03105169A (en) 1989-09-18 1989-09-18 Absorption freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24000389A JPH03105169A (en) 1989-09-18 1989-09-18 Absorption freezer

Publications (1)

Publication Number Publication Date
JPH03105169A true JPH03105169A (en) 1991-05-01

Family

ID=17053019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24000389A Pending JPH03105169A (en) 1989-09-18 1989-09-18 Absorption freezer

Country Status (1)

Country Link
JP (1) JPH03105169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232574A (en) * 2007-03-22 2008-10-02 Osaka Gas Co Ltd Absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232574A (en) * 2007-03-22 2008-10-02 Osaka Gas Co Ltd Absorption refrigerating machine

Similar Documents

Publication Publication Date Title
US3491545A (en) Absorption refrigeration system
JP2829080B2 (en) Absorption heat pump
JP2000171119A (en) Triple-effect absorption refrigerating machine
JP2000154945A (en) Triple effect absorption refrigeration machine
JPH03152362A (en) Absorption refrigerator
JPH03105169A (en) Absorption freezer
JP2000154946A (en) Triple effect absorption refrigeration machine
JP3762217B2 (en) refrigerator
JP2959210B2 (en) Absorption refrigerator
JP2520946B2 (en) Air-cooled absorption refrigerator
JPH04268170A (en) Absorption type heat pump device
KR100234062B1 (en) Ammonia absorber cycle
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPH0350463A (en) Absorption refrigerator
JPS6135893Y2 (en)
JPH01244257A (en) Double-effect absorption water cooler/heater
JPS6122224B2 (en)
JPH02118367A (en) Air-cooled absorption type refrigerator
JPH0480312B2 (en)
JP2000081253A (en) Absorptive freezer
JPH05280823A (en) Double effective absorption refrigeration system
JPH05272848A (en) Absorption type refrigerator
JPH05272831A (en) Absorption refrigerator
JPH0448171A (en) Refrigerant mist preventing device for absorption type refrigerating machine
JPS6025709B2 (en) absorption refrigerator