JPH05272848A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH05272848A
JPH05272848A JP7137092A JP7137092A JPH05272848A JP H05272848 A JPH05272848 A JP H05272848A JP 7137092 A JP7137092 A JP 7137092A JP 7137092 A JP7137092 A JP 7137092A JP H05272848 A JPH05272848 A JP H05272848A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
cooling
absorber
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7137092A
Other languages
Japanese (ja)
Inventor
Yuji Watabe
裕司 渡部
Shiro Yakushiji
史朗 薬師寺
Katsuhiro Kawabata
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP7137092A priority Critical patent/JPH05272848A/en
Publication of JPH05272848A publication Critical patent/JPH05272848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To continue heating operation even during defrosting operation by composing a heat source side heat exchanger and a heat exchanger for dissipating heat of cross fin coils sharing fins and flowing warm water through the heat exchanger for dissipating heat as a refrigerating cycle remains to be a heating cycle at the time of defrosting operation. CONSTITUTION:A heat source side heat exchanger 2 and a heat exchanger 5 for dissipating heat are constituted of cross fin coils sharing fins 71. In defrosting operation, a pump 53 is operated as a refrigerating cycle remains to be a heating cycle, and the heat exchanger 5 for dissipating heat is supplied with warm water, which absorbs the heat of absorption in a heat exchanger 48 in an absorber for cooling and a temperature of which is elevated. Consequently, heat is transmitted to the heat source side heat exchanger 2 side through the shared fins 71, and attached frost is melted. Accordingly, heating operation can be continued even during defrosting operation, thus improving accumulated heating capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、水ーアンモニア系あ
るいは水ーリチウムブロマイド系等の吸収式冷凍装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-ammonia type or water-lithium bromide type absorption refrigerating apparatus.

【0002】[0002]

【従来の技術】吸収式冷凍装置は従来から良く知られて
おり、例えば水ーアンモニア系吸収式冷凍装置の場合、
高濃度のアンモニアガスを発生させる発生器と、該発生
器で得られたアンモニアガスを凝縮させる凝縮器と、該
凝縮器において得られたたアンモニア液を蒸発させる蒸
発器と、該蒸発器で得られたアンモニアガスをアンモニ
ア希溶液に吸収させる吸収器とを備えた構成とされてい
る。
2. Description of the Related Art Absorption refrigeration systems are well known in the prior art. For example, in the case of water-ammonia absorption refrigeration system,
A generator for generating a high-concentration ammonia gas, a condenser for condensing the ammonia gas obtained by the generator, an evaporator for evaporating the ammonia liquid obtained in the condenser, and an evaporator for the evaporator. And an absorber that absorbs the ammonia gas thus obtained into a diluted ammonia solution.

【0003】ところで、上記のような構成の吸収式冷凍
装置を冷房用あるいは暖房用に共用できるようにしたも
のとしては、発生器、凝縮器、蒸発器および吸収器を流
れる冷媒(即ち、アンモニア)の流通方向を反対に切り換
えるようにする方法がある(例えば、特開平2ー251
061号公報参照)。
By the way, as the absorption type refrigerating apparatus having the above-mentioned structure which can be used for both cooling and heating, a refrigerant (that is, ammonia) flowing through a generator, a condenser, an evaporator and an absorber is used. There is a method of switching the distribution direction of the reverse direction (for example, JP-A-2-251).
061).

【0004】[0004]

【発明が解決しようとする課題】ところで、吸収式冷凍
装置における熱源側熱交換器として空冷熱交換器を用い
ると、外気温度の低下等に起因して暖房運転中に蒸発器
として作用している熱源側熱交換器に着霜が生じる場合
がある。このような着霜が生じると、熱交換器における
伝熱能力が低下し、必要な冷凍能力が得られなくなるた
め、前記着霜を除去するためのデフロスト運転が実行さ
れる。
When an air-cooled heat exchanger is used as the heat source side heat exchanger in the absorption refrigeration system, it functions as an evaporator during heating operation due to a decrease in outside air temperature and the like. Frost may form on the heat source side heat exchanger. When such frost formation occurs, the heat transfer capacity of the heat exchanger decreases, and the required refrigerating capacity cannot be obtained. Therefore, the defrost operation for removing the frost formation is executed.

【0005】該デフロスト運転は、冷媒サイクルにおけ
る冷媒循環方向を逆に(即ち、冷房運転サイクル)に切り
換えることにより行なわれるのが通例であるが、デフロ
スト運転中には暖房運転ができないこととなって積算暖
房能力が低下するという不具合が生ずる。
The defrosting operation is usually performed by switching the refrigerant circulation direction in the refrigerant cycle to the opposite direction (that is, the cooling operation cycle), but the heating operation cannot be performed during the defrosting operation. There is a problem that the integrated heating capacity decreases.

【0006】本願発明は、上記の点に鑑みてなされたも
ので、デフロスト運転中においても暖房運転を継続し得
るようにすることを目的とするものである。
The present invention has been made in view of the above points, and an object thereof is to make it possible to continue the heating operation even during the defrost operation.

【0007】[0007]

【課題を解決するための手段】本願発明では、上記課題
を解決するための手段として、図面に示すように、発生
器1と、冷房運転時には凝縮器として作用し、暖房運転
時には蒸発器として作用する空冷式の熱源側熱交換器2
と、冷房運転時には蒸発器として作用し、暖房運転時に
は凝縮器として作用する利用側熱交換器3と、吸収器4
とからなる冷媒サイクルに、該吸収器4において発生す
る吸収熱を外気へ放熱する空冷式の放熱用熱交換器5を
付設し、前記利用側熱交換器3において流通冷媒と利用
側熱媒体とを熱交換させるようにした吸収式冷凍装置に
おいて、前記熱源側熱交換器2と放熱用熱交換器5と
を、フィン71,71・・を共用するクロスフィンコイ
ルで構成するとともに、デフロスト運転時において前記
冷媒サイクルを暖房サイクルとしたまま前記放熱用熱交
換器5へ温水を流通させるようにしている。
In the present invention, as means for solving the above-mentioned problems, as shown in the drawings, the generator 1 acts as a condenser during cooling operation and as an evaporator during heating operation. Air-cooled heat source side heat exchanger 2
And a use-side heat exchanger 3 that acts as an evaporator during cooling operation and a condenser during heating operation, and an absorber 4
An air-cooling type heat-radiating heat exchanger 5 for radiating the absorbed heat generated in the absorber 4 to the outside air is attached to the refrigerant cycle consisting of and, and in the use-side heat exchanger 3, a circulating refrigerant and a use-side heat medium In the absorption refrigeration apparatus configured to exchange heat with each other, the heat source side heat exchanger 2 and the heat radiating heat exchanger 5 are constituted by a cross fin coil sharing the fins 71, 71 ,. In the above, the hot water is circulated to the heat radiating heat exchanger 5 while the refrigerant cycle is the heating cycle.

【0008】[0008]

【作用】本願発明では、上記手段によって次のような作
用が得られる。
In the present invention, the following actions are obtained by the above means.

【0009】即ち、暖房運転中において熱源側熱交換器
2に着霜が生じた場合、熱源側熱交換器2の着霜を除去
するデフロスト運転が行なわれるが、この時冷媒サイク
ルは暖房サイクルのままとされ、熱源側熱交換器2と一
体構成とされた放熱用熱交換器5に温水を流通させるよ
うにしているため、放熱用熱交換器5から熱源側熱交換
器2へフィン71,71・・を介して伝達される熱によ
り着霜がとかされることとなる。従って、デフロスト運
転中においても暖房運転を継続することが可能となる。
That is, when frost forms on the heat source side heat exchanger 2 during the heating operation, a defrost operation for removing the frost on the heat source side heat exchanger 2 is performed. At this time, the refrigerant cycle is the heating cycle. Since the hot water is circulated through the heat radiating heat exchanger 5 that is left as it is and is integrated with the heat source side heat exchanger 2, the fins 71, The frost will be melted by the heat transferred via 71 ... Therefore, it becomes possible to continue the heating operation even during the defrost operation.

【0010】[0010]

【発明の効果】本願発明によれば、発生器1と、冷房運
転時には凝縮器として作用し、暖房運転時には蒸発器と
して作用する空冷式の熱源側熱交換器2と、冷房運転時
には蒸発器として作用し、暖房運転時には凝縮器として
作用する利用側熱交換器3と、吸収器4とからなる冷媒
サイクルに、該吸収器4において発生する吸収熱を外気
へ放熱する空冷式の放熱用熱交換器5を付設し、前記利
用側熱交換器3において流通冷媒と利用側熱媒体とを熱
交換させるようにした吸収式冷凍装置であって、前記熱
源側熱交換器2と放熱用熱交換器5とを、フィン71,
71・・を共用するクロスフィンコイルで構成するとと
もに、デフロスト運転時において前記冷媒サイクルを暖
房サイクルとしたまま前記放熱用熱交換器5へ温水を流
通させるようにして、デフロスト運転に入っても冷媒サ
イクルを暖房サイクルのままとし且つ放熱用熱交換器5
から熱源側熱交換器2へフィン71,71・・を介して
伝達される熱により着霜をとかし得るようにしたので、
デフロスト運転中においても暖房運転を継続することが
可能となり、積算暖房能力を大幅に向上せしめることが
できるという優れた効果がある。
According to the present invention, the generator 1, the air-cooling type heat source side heat exchanger 2 that acts as a condenser during the cooling operation and the evaporator during the heating operation, and the evaporator as the evaporator during the cooling operation. An air-cooling type heat exchange for heat radiation that radiates the absorbed heat generated in the absorber 4 to the outside air in the refrigerant cycle consisting of the utilization side heat exchanger 3 that acts as a condenser during heating operation and the absorber 4 An absorption type refrigerating apparatus, which is provided with a heat exchanger 5 and is configured to exchange heat between a circulating refrigerant and a use side heat medium in the use side heat exchanger 3, the heat source side heat exchanger 2 and a heat radiating heat exchanger. 5 and fins 71,
71 ... Is shared by a cross fin coil, and hot water is circulated to the heat radiating heat exchanger 5 while the refrigerant cycle is a heating cycle during the defrost operation, so that the refrigerant can be used even when the defrost operation is started. The heat exchange for heat dissipation 5 while keeping the cycle as a heating cycle
Since the heat transmitted from the heat exchanger 2 to the heat source side heat exchanger 2 via the fins 71, 71 ...
The heating operation can be continued even during the defrosting operation, and there is an excellent effect that the integrated heating capacity can be significantly improved.

【0011】[0011]

【実施例】以下、添付の図面を参照して、本願発明の幾
つかの好適な実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0012】実施例1 図1および図2には、本願発明の実施例1にかかる吸収
式冷凍装置における回路構成図が示されている。
Embodiment 1 FIGS. 1 and 2 are circuit configuration diagrams of an absorption refrigerating apparatus according to Embodiment 1 of the present invention.

【0013】本実施例の吸収式冷凍装置は、水ーアンモ
ニア系のものとされており、符号1はアンモニアガスを
発生させる発生器、2は冷房運転時には凝縮器として作
用し、暖房運転時には蒸発器として作用する空冷式の熱
源側熱交換器、3は冷房運転時には蒸発器として作用
し、暖房運転時には凝縮器として作用する利用側熱交換
器、4は吸収器を示している。
The absorption refrigerating apparatus of this embodiment is of a water-ammonia type, and reference numeral 1 is a generator for generating ammonia gas, 2 is a condenser during cooling operation, and is an evaporator during heating operation. The air-cooling type heat source side heat exchanger 3 that acts as a heat source side heat exchanger acts as an evaporator during the cooling operation, and the utilization side heat exchanger 4 that acts as a condenser during the heating operation indicates an absorber.

【0014】ところで、吸収式冷凍サイクルの原理それ
自体は既に周知であるため、図1および図2の吸収式冷
凍装置において同冷凍サイクルがどのようにして実行さ
れるかについては以下簡略に説明する。
By the way, since the principle of the absorption refrigeration cycle itself is already well known, how the refrigeration cycle is executed in the absorption refrigeration apparatus of FIGS. 1 and 2 will be briefly described below. ..

【0015】(I) 冷房運転時(図1参照) 発生器1は、容器11内に下方から順に蒸気発生部1
2、精溜部13、分縮部14を備えて構成されており、
加熱手段(本実施例では、バーナ)19によって容器11
の底部に形成された前記蒸気発生部12に貯溜されてい
る作動液(この実施例ではアンモニア水溶液)を加熱する
と、該作動液から冷媒(アンモニア)と吸収液(水)の混合
蒸気が発生し、この混合蒸気が前記精溜部13を通って
上昇する。
(I) During cooling operation (see FIG. 1) The generator 1 comprises a steam generator 1 in a container 11 in order from the bottom.
2, is provided with a rectifying section 13 and a dividing section 14,
The container 11 is heated by a heating means (burner in this embodiment) 19.
When the working fluid (ammonia aqueous solution in this embodiment) stored in the vapor generating part 12 formed at the bottom of the working fluid is heated, a mixed vapor of a refrigerant (ammonia) and an absorbing liquid (water) is generated from the working fluid. The mixed vapor rises through the rectifying section 13.

【0016】この精溜部13では、適宜段数(この実施
例では5段)の貯液部D1〜D5が形成されていて、後述
する吸収器4側から発生器1に供給される作動液(即
ち、アンモニア濃溶液)Bcが上段の貯液部D5から順次
下段の貯液部D4,D3,D2,D1へ流下するようにされて
いる。
In this rectification section 13, liquid storage sections D 1 to D 5 of an appropriate number of stages (five in this embodiment) are formed, and the operation is to be supplied to the generator 1 from the absorber 4 side described later. The liquid (that is, the concentrated ammonia solution) Bc is made to flow from the upper liquid storage portion D 5 to the lower liquid storage portions D 4 , D 3 , D 2 , and D 1 in sequence.

【0017】前記精溜部13では、下方から上昇するア
ンモニアと水の混合蒸気が各貯液棚(D1〜D5)を通過す
るたびに、温度降下と、上方からのアンモニア濃溶液と
の接触とにより同混合蒸気中のアンモニア濃度が上昇
し、そして該精溜部13で濃縮されたアンモニア−水混
合蒸気は、さらに上段の分縮部(詳しくは後述する)14
で水分が分離されて約99.8%のアンモニアガス(ガス冷
媒)となる。このガス冷媒は図1において矢印A11,A12
で示すように第1の四路切換弁31を経て凝縮器として
作用する熱源側熱交換器2へ供給される。該熱源側熱交
換器2では、ファン68により空冷されて凝縮熱を放出
しアンモニアガスが液化してアンモニア液(液冷媒)とな
る。
In the rectifying section 13, every time the mixed vapor of ammonia and water rising from below passes through each storage rack (D 1 to D 5 ), the temperature drop and the ammonia-rich solution from above are generated. Upon contact, the ammonia concentration in the same mixed vapor rises, and the ammonia-water mixed vapor concentrated in the rectifying section 13 is further separated in the upper partial condenser section (details will be described later) 14
The water is separated by and becomes about 99.8% ammonia gas (gas refrigerant). This gas refrigerant is indicated by arrows A 11 and A 12 in FIG.
As shown in (1), it is supplied to the heat source side heat exchanger 2 acting as a condenser through the first four-way switching valve 31. In the heat source side heat exchanger 2, the air is cooled by the fan 68 to release the heat of condensation and the ammonia gas is liquefied to become ammonia liquid (liquid refrigerant).

【0018】この液冷媒は図1において矢印A13で示す
ように冷媒間熱交換器(詳しくは後述する)32を通って
減圧手段として作用するキャピラリチューブ33で減圧
された後、二重管構造の利用側熱交換器(蒸発器として
作用する)3で室内機からポンプ52の駆動により利用
側熱媒体流路35を介して供給される利用側熱媒体(本
実施例では、水)と熱交換して蒸発し(水は冷却されて冷
房用冷熱源となる)、再度ガス冷媒(アンモニアガス)と
なる。このガス冷媒は図1において矢印A14で示すよう
に第2の四路切換弁36を通って前述の冷媒間熱交換器
32へ送られ、そこで熱源側熱交換器2からの液冷媒
(コイル32C内を通る)を予冷却した後、前述の第1の
四路切換弁31及び第2の四路切換弁36を経て(図1
中の矢印A15、A16)、吸収器4へ送給される。
This liquid refrigerant passes through a heat exchanger between refrigerants (details will be described later) 32 as shown by an arrow A 13 in FIG. 1 and is decompressed by a capillary tube 33 acting as a decompression means, and then has a double pipe structure. In the use side heat exchanger (acting as an evaporator) 3, the heat and the use side heat medium (in this embodiment, water) supplied from the indoor unit through the use side heat medium flow path 35 by driving the pump 52. The gas is exchanged and evaporated (water is cooled to serve as a cooling heat source for cooling), and becomes gas refrigerant (ammonia gas) again. This gas refrigerant is sent to the above-mentioned inter-refrigerant heat exchanger 32 through the second four-way switching valve 36 as shown by an arrow A 14 in FIG. 1, and the liquid refrigerant from the heat source side heat exchanger 2 is there.
After pre-cooling (passing through the coil 32C), the first four-way switching valve 31 and the second four-way switching valve 36 described above are used (see FIG. 1).
The arrows A 15 and A 16 in the inside are fed to the absorber 4.

【0019】該吸収器4は、このガス冷媒を発生器1か
ら供給される作動液中に再度吸収する作用を行うもの
で、次のような方法で同作用を実行する。
The absorber 4 serves to absorb the gas refrigerant again into the working fluid supplied from the generator 1, and carries out the same action in the following manner.

【0020】すなわち、吸収器4の容器41内の最上段
部には作動液の散布器42が設けられており、該散布器
42に対して矢印L1で示すように発生器1の蒸気発生
部12から精溜部内熱交換器27及び減圧手段として作
用するキャピラリチューブ28を介して作動液(3%ア
ンモニア希溶液)Baが供給される。このアンモニア希溶
液Baは吸収器容器41内で散布器42から散布され、
前記利用側熱交換器3から吸収器容器41内に供給され
るガス冷媒を吸収して容器底部液溜り49に落下する。
That is, a sprayer 42 of the working fluid is provided at the uppermost stage in the container 41 of the absorber 4, and the steam generation of the generator 1 is indicated by the arrow L 1 with respect to the sprayer 42. The working liquid (3% ammonia dilute solution) Ba is supplied from the part 12 through the heat exchanger 27 in the rectification part and the capillary tube 28 which functions as a pressure reducing means. This diluted ammonia solution Ba is sprayed from the sprayer 42 in the absorber container 41,
The gas refrigerant supplied from the utilization side heat exchanger 3 into the absorber container 41 is absorbed and dropped into the container bottom liquid pool 49.

【0021】この容器底部液溜り49に貯留される作動
液(アンモニア濃溶液)Bcは、ポンプ51により、図1
中の矢印L2,L3,L4,L5で示すように圧送され、その
間において分縮部熱交換器29および熱回収用吸収器内
熱交換器46で熱交換(吸熱)したあと、発生器1内の最
上段の貯液棚D5へ供給される。
The working liquid (concentrated ammonia solution) Bc stored in the liquid reservoir 49 at the bottom of the container is supplied by a pump 51 as shown in FIG.
After being pressure-fed as indicated by arrows L 2 , L 3 , L 4 , and L 5 in the middle, heat is exchanged (heat absorption) by the heat exchanger 29 in the partial condenser heat exchanger 29 and the heat exchanger 46 in the heat recovery absorber during that time, It is supplied to the uppermost liquid storage shelf D 5 in the generator 1.

【0022】(II) 暖房運転時(図2参照) 図1に示す冷房運転時の冷凍回路のうち、第1および第
2の四路切換弁31,36が切換り、同冷凍回路を流通
するガス冷媒(アンモニアガス)の流れ方向が切換えられ
る(矢印A21〜A28)。
(II) During heating operation (see FIG. 2) Of the refrigeration circuit during cooling operation shown in FIG. 1, the first and second four-way switching valves 31 and 36 are switched and flow through the refrigeration circuit. The flow direction of the gas refrigerant (ammonia gas) is switched (arrows A 21 to A 28 ).

【0023】そして、発生器1の分縮部14で生成され
たガス冷媒(濃度99.8%)は、矢印A21〜A23で示すよう
に第1の四路切換弁31および第2の四路切換弁36を
通って凝縮器として作用する利用側熱交換器3へ流入
し、ここで利用側熱媒体流路35を通って室内機から供
給される利用側熱媒体(本実施例では、水)と熱交換して
凝縮する。水はこれにより加熱され、室内機での暖房用
温熱源となる。
Then, the gas refrigerant (concentration 99.8%) generated in the partial condensing unit 14 of the generator 1 has a first four-way switching valve 31 and a second four-way switching valve as shown by arrows A 21 to A 23. The heat exchanger 3 flows through the switching valve 36 and flows into the heat exchanger 3 on the side that acts as a condenser. Here, the heat medium on the user side (water ) And heat and condense. The water is heated by this, and becomes a heat source for heating in the indoor unit.

【0024】前記利用側熱交換器3で液化した冷媒は、
矢印A24で示すようにキャピラリチューブ33で減圧さ
れたあと、蒸発器として作用する熱源側熱交換器2で蒸
発し、さらに第1の四路切換弁31、冷媒間熱交換器3
2、第2の四路切換弁36を経て吸収器4へ供給される
(矢印A25〜A28)。
The refrigerant liquefied in the use side heat exchanger 3 is
After being decompressed by the capillary tube 33 as shown by an arrow A 24 , it is evaporated by the heat source side heat exchanger 2 acting as an evaporator, and further, the first four-way switching valve 31 and the inter-refrigerant heat exchanger 3
2, supplied to the absorber 4 via the second four-way switching valve 36
(Arrows A 25 to A 28 ).

【0025】なお、発生器1での水−アンモニア混合蒸
気の発生・精溜・分縮作用と、吸収器4におけるアンモ
ニアガス冷媒の吸収作用とは、図1に示す冷房運転時の
場合と同様であり、又、その間の作動液(アンモニア濃
溶液とアンモニア希溶液)の流れも図1の場合と同様で
あるのでその説明は省略する。
The generation, rectification and partial condensation of the water-ammonia mixed vapor in the generator 1 and the absorption of the ammonia gas refrigerant in the absorber 4 are the same as in the cooling operation shown in FIG. Further, the flow of the working liquid (concentrated ammonia solution and diluted ammonia solution) during that time is also the same as in the case of FIG. 1, and therefore its explanation is omitted.

【0026】しかして、本実施例においては、前記吸収
器4内には、前記熱回収用吸収器内熱交換器46(吸収
器4内で発生する吸収熱の一部を作動液中に回収するた
めの熱交換器)のほかに、暖房用吸収器内熱交換器47
および冷房用吸収器内熱交換器48が設けられている。
In this embodiment, however, the heat exchanger internal heat exchanger 46 for heat recovery (a part of the absorption heat generated in the absorber 4 is recovered in the working fluid) in the absorber 4. In addition to the heat exchanger for
Further, an in-absorber heat exchanger 48 for cooling is provided.

【0027】前記暖房用吸収器内熱交換器47の入口側
と出口側とには、前記利用側熱交換器3の入口側におけ
る利用側熱媒体流路35から三方切換弁61を介して分
岐された分岐往路64aと、前記三方切換弁61の下流
側に合流する分岐復路64bとがそれぞれ接続されてい
る。この三方切換弁61は、冷房運転時には分岐往路6
4a側が閉状態となり、暖房運転時には分岐往路64a側
が開となるように制御されることとなっている。つま
り、暖房用吸収器内熱交換器47は、暖房運転時にのみ
作動することとなっているのである。
The inlet side and the outlet side of the heating absorber internal heat exchanger 47 are branched from the use side heat medium flow passage 35 at the inlet side of the use side heat exchanger 3 via a three-way switching valve 61. The branched outbound path 64a and the branched inbound path 64b that join the downstream side of the three-way switching valve 61 are connected to each other. The three-way switching valve 61 is used for the branch outward path 6 during the cooling operation.
The 4a side is closed and the branch outward path 64a side is controlled to be open during the heating operation. In other words, the heat exchanger in the heating heat exchanger 47 operates only during the heating operation.

【0028】一方、前記冷房用吸収器内熱交換器48
は、冷房運転時において吸収器4内で発生する吸収熱を
大気中に放出するためのもので、該冷房用吸収器内熱交
換器48にはポンプ53により空冷式の放熱用熱交換器
5から矢印S1,S2で示すように冷却水流路60を通し
て冷却水が供給され、この冷却水により吸収熱が外気へ
放出される。従って、前記ポンプ53およびファン69
は冷房運転時にのみ駆動されることとなっている。符号
69は空冷用のファンである。
On the other hand, the heat exchanger 48 in the cooling absorber.
Is for releasing the absorption heat generated in the absorber 4 to the atmosphere during the cooling operation. The heat exchanger 48 in the cooling absorber has an air-cooling type heat exchanger 5 for heat radiation by a pump 53. As shown by arrows S 1 and S 2 , cooling water is supplied through the cooling water passage 60, and the absorption heat is released to the outside air by the cooling water. Therefore, the pump 53 and the fan 69
Is to be driven only during cooling operation. Reference numeral 69 is a fan for air cooling.

【0029】しかして、本実施例の場合、前記熱源側熱
交換器2と放熱用熱交換器5とは、図3および図4に示
すように、フィン71,71・・を共用するクロスフィ
ンコイルにより構成されている。符号72は熱源側熱交
換器2の伝熱管、73は放熱用熱交換器5の伝熱管であ
る。
Therefore, in the case of this embodiment, the heat source side heat exchanger 2 and the heat radiating heat exchanger 5 are cross fins sharing the fins 71, 71, ... As shown in FIGS. 3 and 4. It is composed of a coil. Reference numeral 72 is a heat transfer tube of the heat source side heat exchanger 2, and 73 is a heat transfer tube of the heat radiating heat exchanger 5.

【0030】そして、暖房運転時においては、上記した
ようにポンプ53およびファン69の運転が停止される
が、外気温度の低下等に起因して蒸発器として作用して
いる熱源側熱交換器2に着霜が生ずると、該着霜を除去
するためにデフロスト運転に入る。
During the heating operation, the operation of the pump 53 and the fan 69 is stopped as described above, but the heat source side heat exchanger 2 acting as an evaporator due to a decrease in outside air temperature or the like. When frost is formed on the surface, defrost operation is started to remove the frost.

【0031】該デフロスト運転においては、冷媒サイク
ルは暖房サイクルのままで、ポンプ53が運転され、前
記放熱用熱交換器5(具体的には、伝熱管73)に冷房用
吸収器内熱交換器48において吸収熱を吸熱して温度上
昇せしめられた温水が供給されることとなっている。す
ると、共用しているフィン71,71・・を介して熱源
側熱交換器2側に熱が伝達されることとなり、着霜がと
かされることとなる。従って、デフロスト運転中におい
ても暖房運転を継続することが可能となり、積算暖房能
力を大幅に向上せしめることができるのである。
In the defrost operation, the pump 53 is operated while the refrigerant cycle remains the heating cycle, and the heat radiating heat exchanger 5 (specifically, the heat transfer tube 73) is connected to the heat exchanger in the cooling absorber. At 48, hot water that has absorbed the absorbed heat and has been raised in temperature is supplied. Then, the heat is transferred to the heat source side heat exchanger 2 side via the shared fins 71, 71, ..., and the frost is dissolved. Therefore, the heating operation can be continued even during the defrost operation, and the integrated heating capacity can be significantly improved.

【0032】実施例2 図5および図6には、本願発明の実施例2にかかる吸収
式冷凍装置における回路構成図が示されている。
Embodiment 2 FIGS. 5 and 6 are circuit configuration diagrams of an absorption refrigerating apparatus according to Embodiment 2 of the present invention.

【0033】本実施例の場合、吸収器4内には、熱回収
用吸収器内熱交換器46の下方に位置して1個の冷暖兼
用吸収器内熱交換器45が設けられており、該冷暖兼用
吸収器内熱交換器45の入口側と出口側とには、前記利
用側熱交換器3の入口における利用側熱媒体流路35か
ら三方切換弁61を介して分岐された分岐往路64a
と、前記三方切換弁61の下流側に合流する分岐復路6
4bとがそれぞれ接続されている。
In the case of the present embodiment, one absorber internal heat exchanger 45 for both cooling and heating is provided in the absorber 4 below the internal heat exchanger 46 for heat recovery. On the inlet side and the outlet side of the cooling / heating combined heat exchanger 45, a branch forward path branched from the use-side heat medium flow path 35 at the inlet of the use-side heat exchanger 3 via a three-way switching valve 61. 64a
And the branch return path 6 that joins the downstream side of the three-way switching valve 61.
4b are respectively connected.

【0034】また、放熱用熱交換器5およびポンプ53
を接続する冷却水流路60におけるポンプ53の出口側
は、前記分岐往路64aに対して三方切換弁63を介し
て接続される一方、前記冷却水流路60における放熱用
熱交換器5の入口側は、前記分岐復路64bに対して三
方切換弁62を介して接続されている。
Further, the heat radiation heat exchanger 5 and the pump 53.
The outlet side of the pump 53 in the cooling water passage 60 is connected to the branch outward passage 64a via a three-way switching valve 63, while the inlet side of the heat dissipation heat exchanger 5 in the cooling water passage 60 is , Is connected to the branch return path 64b through a three-way switching valve 62.

【0035】ここで、三方切換弁62,63は、冷房運
転時においては図5に示すように、冷却水流路60側が
開、分岐往路64aおよび分岐復路64b側が閉となり、
暖房運転時においては図6に示すように、冷却水流路6
0側が閉、分岐往路64aおよび分岐復路64b側が開と
なるように制御されることとなっている。従って、冷房
運転時においては、冷暖兼用吸収器内熱交換器45へは
利用側熱媒体は供給されず、放熱用熱交換器5からの冷
却水が供給され、暖房運転時においては、冷暖兼用吸収
器内熱交換器45へは利用側熱媒体が供給され、放熱用
熱交換器5からの冷却水は供給されないこととなってい
るのである。なお、前記三方切換弁62,63は、デフ
ロスト運転時においては冷却水流路60側も開となる
が、その時の分岐往路64aおよび分岐復路64bに流れ
る流量と冷却水流路60側に流れる流量との比が所定比
率(例えば、8:2)となるようにされている。
Here, in the three-way switching valves 62, 63, the cooling water flow path 60 side is open and the branch outward path 64a and the branch return path 64b side are closed during the cooling operation as shown in FIG.
During heating operation, as shown in FIG.
The 0 side is controlled to be closed, and the branch outward path 64a and the branch return path 64b side are controlled to be open. Therefore, during the cooling operation, the heat medium in the absorber side heat exchanger 45 for heating and cooling is not supplied with the use side heat medium, but the cooling water from the heat radiating heat exchanger 5 is supplied. The heat transfer medium on the utilization side is supplied to the heat exchanger 45 in the absorber, and the cooling water from the heat exchanger 5 for heat radiation is not supplied. The three-way switching valves 62 and 63 are also opened on the cooling water flow passage 60 side during the defrost operation, but at that time, the flow rate of the flow on the branch outward path 64a and the branch return path 64b and the flow rate on the cooling water flow path 60 side. The ratio is set to be a predetermined ratio (for example, 8: 2).

【0036】また、本実施例の場合、ポンプ53をバイ
パスするバイパス路65が設けられており、該バイパス
路65には、デフロスト運転時にのみ開作動される開閉
弁66が介設されている。つまり、デフロスト運転時に
おいては、分岐往路64aから冷却水流路60に供給さ
れた温水が放熱用熱交換器5を経て分岐復路64bへ還
流されることとなっているのである。その他の構成は実
施例1と同様なので説明を省略する。
Further, in the case of this embodiment, a bypass passage 65 for bypassing the pump 53 is provided, and an opening / closing valve 66 which is opened only during the defrost operation is provided in the bypass passage 65. That is, during the defrost operation, the hot water supplied from the branch outward path 64a to the cooling water flow path 60 is returned to the branch return path 64b via the heat radiating heat exchanger 5. The other configuration is similar to that of the first embodiment, and thus the description is omitted.

【0037】上記のように構成したことにより、本実施
例では、デフロスト運転時において、放熱用熱交換器5
へ温水(即ち、利用側熱媒体の一部)が供給されることと
なり、共用しているフィン71,71・・を介して熱源
側熱交換器2側に熱が伝達され、着霜がとかされること
となる。従って、デフロスト運転中においても暖房運転
を継続することが可能となり、積算暖房能力を大幅に向
上せしめることができるのである。
With the above-mentioned structure, in this embodiment, the heat radiating heat exchanger 5 is operated during the defrosting operation.
The hot water (that is, a part of the heat medium on the use side) is supplied to the heat source side heat exchanger 2 side through the shared fins 71, 71 ,. Will be done. Therefore, the heating operation can be continued even during the defrost operation, and the integrated heating capacity can be significantly improved.

【0038】本願発明は、上記実施例の構成に限定され
るものではなく、発明の要旨を逸脱しない範囲において
適宜設計変更可能なことは勿論である。
The invention of the present application is not limited to the configuration of the above-described embodiment, and it goes without saying that the design can be changed as appropriate without departing from the gist of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施例1にかかる吸収式冷凍装置の
冷房運転時における回路構成図である。
FIG. 1 is a circuit configuration diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention during a cooling operation.

【図2】本願発明の実施例1にかかる吸収式冷凍装置の
暖房運転時における回路構成図である。
FIG. 2 is a circuit configuration diagram during the heating operation of the absorption refrigeration system according to the first embodiment of the present invention.

【図3】本願発明の実施例1にかかる吸収式冷凍装置に
おける熱源側熱交換器と放熱用熱交換器との一体状態を
示す斜視図である。
FIG. 3 is a perspective view showing an integrated state of the heat source side heat exchanger and the heat radiation heat exchanger in the absorption refrigerating apparatus according to the first embodiment of the present invention.

【図4】図3のIV−IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】本願発明の実施例2にかかる吸収式冷凍装置の
冷房運転時における回路構成図である。
FIG. 5 is a circuit configuration diagram during the cooling operation of the absorption refrigeration apparatus according to the second embodiment of the present invention.

【図6】本願発明の実施例2にかかる吸収式冷凍装置の
暖房運転時における回路構成図である。
FIG. 6 is a circuit configuration diagram of the absorption refrigeration apparatus according to the second embodiment of the present invention during heating operation.

【符号の説明】[Explanation of symbols]

1は発生器、2は熱源側熱交換器、3は利用側熱交換
器、4は吸収器、5は放熱用熱交換器、31は台1の四
路切換弁、35は利用側熱媒体流路、36は第2の四路
切換弁、45は冷暖兼用吸収器内熱交換器、46は熱回
収用吸収器内熱交換器、47は暖房用吸収器内熱交換
器、48は冷房用吸収器内熱交換器、60は冷却水流
路、61,62,63は三方切換弁、64aは分岐往路、
64bは分岐復路、71はフィン、72,73は伝熱管。
1 is a generator, 2 is a heat source side heat exchanger, 3 is a use side heat exchanger, 4 is an absorber, 5 is a heat radiation heat exchanger, 31 is a four-way switching valve of the base 1, 35 is a use side heat medium A flow path, 36 is a second four-way switching valve, 45 is an internal heat exchanger for cooling / heating, an internal heat exchanger for heat recovery, 47 is an internal heat exchanger for heating, and 48 is cooling. Absorber heat exchanger, 60 is a cooling water flow path, 61, 62 and 63 are three-way switching valves, 64a is a branch outward path,
64b is a branch return path, 71 is a fin, and 72 and 73 are heat transfer tubes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発生器(1)と、冷房運転時には凝縮器と
して作用し、暖房運転時には蒸発器として作用する空冷
式の熱源側熱交換器(2)と、冷房運転時には蒸発器とし
て作用し、暖房運転時には凝縮器として作用する利用側
熱交換器(3)と、吸収器(4)とからなる冷媒サイクル
に、該吸収器(4)において発生する吸収熱を外気へ放熱
する空冷放熱用熱交換器(5)を付設し、前記利用側熱交
換器(3)において流通冷媒と利用側熱媒体とを熱交換さ
せるようにした吸収式冷凍装置であって、前記熱源側熱
交換器(2)と空冷式の放熱用熱交換器(5)とを、フィン
(71),(71)・・を共用するクロスフィンコイルで構
成するとともに、デフロスト運転時において前記冷媒サ
イクルを暖房運転サイクルとしたまま前記放熱用熱交換
器(5)へ温水を流通させることを特徴とする吸収式冷凍
装置。
1. A generator (1), an air-cooled heat source side heat exchanger (2) that acts as a condenser during cooling operation, and acts as an evaporator during heating operation, and acts as an evaporator during cooling operation. For air-cooling heat radiation, which radiates the absorption heat generated in the absorber (4) to the outside air in the refrigerant cycle consisting of the utilization side heat exchanger (3) acting as a condenser during heating operation and the absorber (4) An absorption type refrigerating apparatus, which is provided with a heat exchanger (5) to exchange heat between a circulating refrigerant and a use side heat medium in the use side heat exchanger (3), wherein the heat source side heat exchanger ( 2) and the air-cooling type heat exchanger for heat radiation (5)
(71), (71) ··· are shared, and hot water is circulated to the heat radiating heat exchanger (5) while the refrigerant cycle is in the heating operation cycle during defrost operation. A characteristic absorption refrigeration system.
JP7137092A 1992-03-27 1992-03-27 Absorption type refrigerator Pending JPH05272848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137092A JPH05272848A (en) 1992-03-27 1992-03-27 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137092A JPH05272848A (en) 1992-03-27 1992-03-27 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH05272848A true JPH05272848A (en) 1993-10-22

Family

ID=13458551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137092A Pending JPH05272848A (en) 1992-03-27 1992-03-27 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH05272848A (en)

Similar Documents

Publication Publication Date Title
JP3193720B2 (en) Triple effect absorption heat exchanger combining a second cycle generator and a first cycle absorber
US3491545A (en) Absorption refrigeration system
JP2829080B2 (en) Absorption heat pump
JPH08159594A (en) Multiple effect absorption refrigerator
JP5338270B2 (en) Absorption refrigeration system
JPH0446339B2 (en)
JPH05272848A (en) Absorption type refrigerator
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2858908B2 (en) Absorption air conditioner
KR100554061B1 (en) Absorption type refrigerator
JPH10122686A (en) Air-cooled absorption refrigerating apparatus
JP3857955B2 (en) Absorption refrigerator
JP4278609B2 (en) Absorption refrigerator
JP2001082824A (en) Absorption refrigerating machine
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JPS5849872A (en) Heat pump device
JP3762217B2 (en) refrigerator
JP6779760B2 (en) Absorption chiller
JPH05272831A (en) Absorption refrigerator
JPH05272844A (en) Absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JPH10132421A (en) Absorption type refrigerating device
JP5233716B2 (en) Absorption refrigeration system
JPH03105169A (en) Absorption freezer
JP2003021420A (en) Absorption refrigerating plant and its operating method