JPH0297684A - Production of thin oxide film superconductor - Google Patents

Production of thin oxide film superconductor

Info

Publication number
JPH0297684A
JPH0297684A JP63249203A JP24920388A JPH0297684A JP H0297684 A JPH0297684 A JP H0297684A JP 63249203 A JP63249203 A JP 63249203A JP 24920388 A JP24920388 A JP 24920388A JP H0297684 A JPH0297684 A JP H0297684A
Authority
JP
Japan
Prior art keywords
thin film
superconductor
heat treatment
substrate
film superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63249203A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
清孝 和佐
Shinichiro Hatta
八田 真一郎
Tomiyo Fukuda
福田 富代
Kumiko Hirochi
広地 久美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63249203A priority Critical patent/JPH0297684A/en
Publication of JPH0297684A publication Critical patent/JPH0297684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin oxide film superconductor of high quality with high reproducibility by sticking a thin film contg. Tl, Cu, alkaline earth metals (group IIa) and O as essential components on a substrate, coating the thin film with a thin film of Au or Pt and carrying out heat treatment. CONSTITUTION:A thin film contg. Tl, Cu, O, Ca and at least one of Sr and Ba as essential components is stuck on a substrate by magnetron sputtering or other method. The thin film is then coated with a thin film of Au or Pt and heat treatment is carried out at 850-950 deg.C. The molar ratio of Tl is preferably regulated to the range represented by the inequality. Since evaporable Tl is prevented from escaping from the thin film and is crystallized, a Tl-based thin film superconductor of high quality can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化物薄膜超電導体の製造方法および加工方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing and processing an oxide thin film superconductor.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbGe)な
どが知られていたが、これらの材料の超電導転移温度は
たかだか24゛にであった。
Niobium nitride (NbN) and niobium germanium (NbGe) are known as A15 type binary compounds as conventional high temperature superconductors, but the superconducting transition temperature of these materials is at most 24°.

一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され*  Ba−La−Cu−0系の高温超
電導体が提案された[J、G、Bednorz and
K 、A 、Mu I Ier +ツァイト シュリフ
ト フェア フィジーク(Zeitshrlft fu
r Physik B) −Condensed Ma
tter 64. 189−193  (198G))
 コ。
On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures.* Ba-La-Cu-0-based high-temperature superconductors have been proposed [J, G, Bednorz and
K, A, Mu I Ier + Zeitshrlft fu.
r Physik B) -Condensed Ma
ter 64. 189-193 (198G))
Ko.

そして*  Y −B a  Cu −0系がより高い
超電導転移温度を持つ材料であることが、提案された。
And it was proposed that the *Y-B a Cu-0 system is a material with a higher superconducting transition temperature.

文献[M 、K 、Wu等、フィジカル レビュー レ
ターズ(Physical Revlew Lette
rs) Vol、58. No、9.908−910 
(1987)コ。さらに最近、これらの材料より超、電
導転移温度を示す材料として+  T l −B a−
Ca−Cu−0系が提案された。文献[Z、Z、She
ng and A、M、Hermann、ネイチ+ −
(Nature) Vol。
Literature [M., K., Wu et al., Physical Review Letters
rs) Vol, 58. No, 9.908-910
(1987) Ko. Furthermore, recently, + T l -B a - has been developed as a material that exhibits a conductive transition temperature higher than that of these materials.
The Ca-Cu-0 system was proposed. Literature [Z, Z, She
ng and A, M, Hermann, Neich + -
(Nature) Vol.

332.138  (+9811))  コ。332.138 (+9811)) Ko.

この挿の材料の超電導機構の詳細は明かではないが、転
移温度が液体窒素温度以上に高くなる可能性があり、高
温超電導体として従来の2元系化合物より、より有益か
つ効果的な特性が期待される。
The details of the superconducting mechanism of this superconducting material are not clear, but the transition temperature may be higher than that of liquid nitrogen, making it more useful and effective as a high-temperature superconductor than conventional binary compounds. Be expected.

発明が解決しようとする課題 しかしながら+  Tl−Ba−Ca−Cu−0系の材
料は、TIの蒸気圧が異常に高いため熱処理工程が非常
に難しいものであった。従ってこの種の材料で再現性良
く超電導特性を得ることが課題となっていた。
Problems to be Solved by the Invention However, + Tl-Ba-Ca-Cu-0 type materials have an extremely difficult heat treatment process due to the abnormally high vapor pressure of TI. Therefore, it has been a challenge to obtain superconducting properties with good reproducibility using this type of material.

また現在の技術では焼結という過程でしか形成できない
ため、セラミックの粉末あるいはブロックの形吠でしか
得られない。一方、この種の材料を実用化する場合、薄
膜状に加工することが強く要望されているが、従来の技
術では、薄膜化は非常に困難とされている。
Furthermore, with current technology, it can only be formed through the process of sintering, so it can only be obtained in the form of ceramic powder or blocks. On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but with conventional techniques, it is considered very difficult to process the material into a thin film.

本発明者らは、この種の材料の薄膜がイオンプロセスに
より付着させると、薄膜状の高温超電導体が形成される
ことを発見し、これにもとづいて好適な形成過程有する
超電導体を製造方法提供することを目的としている。
The present inventors have discovered that when a thin film of this kind of material is deposited by an ion process, a thin film-like high temperature superconductor is formed, and based on this, they provide a method for manufacturing a superconductor having a suitable formation process. It is intended to.

課題を解決するための手段 本発明の酸化物薄膜超電導体の製造方法は、基体上に主
体成分に少なくともタリウム(Tl)。
Means for Solving the Problems The method for producing an oxide thin film superconductor of the present invention includes at least thallium (Tl) as a main component on a substrate.

銅(Cu ) +  アルカリ土類(IIa族)、酸素
(0)を含み、アルカリ土類がカルシウム(Ca)とス
トロンチウム(Sr、)もしくはバリウム(B a)の
少なくとも一方からなる薄膜を付着させ、さらに金(A
u)もしくは白金(Pt)の金属膜を前記薄膜上にコー
ティングし、熱処理することを特徴とするものである。
Depositing a thin film containing copper (Cu) + alkaline earth (group IIa) and oxygen (0), where the alkaline earth is composed of calcium (Ca) and at least one of strontium (Sr) or barium (Ba), Furthermore, gold (A
u) Or a metal film of platinum (Pt) is coated on the thin film and heat treated.

作用 本発明者らは、上記方法の形成工程を行うことにより、
再現性よ<TIを含む酸化物薄膜超電導体を作製できる
ことを発見した。
Effect The present inventors achieved the following by performing the forming step of the above method.
We have discovered that it is possible to fabricate oxide thin film superconductors containing TI with high reproducibility.

すなわち、主体成分が少なくともTLCu*0+  C
aとSrもしくはBaの少なくとも一方から成る薄膜を
、基体上に付着させ、その上にAuもしくはpt膜をコ
ーティングして、熱処理することにより、蒸気圧が高く
蒸発しやすいTIがTIを含む薄膜から逃げることを防
ぎ、併せて、結晶化させるので高品質なTI系薄膜超電
導体を得易いという特徴を持つ。
That is, the main component is at least TLCu*0+C
By depositing a thin film consisting of a and at least one of Sr or Ba on a substrate, coating it with an Au or PT film, and heat-treating it, TI, which has a high vapor pressure and easily evaporates, is removed from the thin film containing TI. It prevents escape and also causes crystallization, making it easy to obtain high-quality TI-based thin film superconductors.

以下本発明の内容をさらに深く理解されるために、具体
的な実施例を示す。
In order to further understand the content of the present invention, specific examples will be shown below.

実施例 第1図に本発明による酸化物薄膜超電導体の製造工程を
示す。
EXAMPLE FIG. 1 shows the manufacturing process of an oxide thin film superconductor according to the present invention.

高周波プレナーマグネトロンスパッタにより。By high frequency planar magnetron sputtering.

TI−Ca−Ha−Cu−0薄膜11を酸化マグネシウ
ム単結晶(100)基体12上に約1μm堆積させた(
a)。
A TI-Ca-Ha-Cu-0 thin film 11 was deposited to a thickness of about 1 μm on a magnesium oxide single crystal (100) substrate 12 (
a).

この場合、ターゲットは9組成比がTl:Ba:Ca:
 Cu=2:  l: 2: 3になるように1T12
03+ BaCO3、CaC0a + CuOを秤量し
・混合し、900℃。
In this case, the target has a composition ratio of 9 Tl:Ba:Ca:
1T12 so that Cu=2: l: 2: 3
03+ BaCO3, CaC0a + CuO were weighed and mixed, and heated to 900°C.

8時間焼成し作製したものを用いた。スパッタガスはA
 r : 02= 1 :  L  ガス圧力0. 5
  Pa。
The one prepared by firing for 8 hours was used. Sputter gas is A
r: 02=1: L Gas pressure 0. 5
Pa.

高周波電力ioow、  基体温度200℃とした。The high frequency power ioow and the substrate temperature were 200°C.

この結果、膜の組成比はTI: Ba: Ca:  C
u=2: 2:  2: 3であった。
As a result, the composition ratio of the film was TI: Ba: Ca: C
u=2:2:2:3.

このようにして堆積した薄膜上に、真空上着法により約
0.2μmのpt膜13をコーティングした(b)。さ
らに、このTl−Ca−Ba−Cu−0薄膜11に酸素
雰囲気中で900℃、30分間の熱処理を施した。熱処
理後、Pt膜13に、実施例1に示した熱処理工程を施
した。熱処理後pt膜13にマスクを用いArイオンビ
ームで電極14をパターン出しして(c ) *  T
l−Ca−Ba−Cu−0薄膜11の温度による抵抗の
変化を測定した結果、第2図に本発明の実施例によって
得られたTl−Ca−Ba−Cu−0薄膜11の抵抗の
温度変化15とPt膜13をコートせずに熱処理した時
のTl−Ca−Ba−Cu−0薄膜の抵抗の温度変化1
6を示す。Pt膜でコーティングした場合、Tl−Ca
−Ba−Cu−0薄膜ゼロ抵抗温度は120にの良好な
超電導特性が得られた。
On the thin film thus deposited, a PT film 13 of about 0.2 μm was coated by a vacuum coating method (b). Further, this Tl-Ca-Ba-Cu-0 thin film 11 was subjected to heat treatment at 900° C. for 30 minutes in an oxygen atmosphere. After the heat treatment, the Pt film 13 was subjected to the heat treatment process shown in Example 1. After heat treatment, the electrode 14 is patterned with an Ar ion beam using a mask on the PT film 13 (c) *T
As a result of measuring the change in resistance of the Tl-Ca-Ba-Cu-0 thin film 11 due to temperature, FIG. Change 15 and temperature change 1 in resistance of Tl-Ca-Ba-Cu-0 thin film when heat treated without coating Pt film 13
6 is shown. When coated with Pt film, Tl-Ca
-Ba-Cu-0 thin film had a zero resistance temperature of 120, and good superconducting properties were obtained.

なお9本発明者らは本発明の実施例において。Note that 9 the present inventors have described in Examples of the present invention.

熱処理時間が1分から1時間が良好な超電導特性を得る
に適していることを確認した。
It was confirmed that the heat treatment time was 1 minute to 1 hour suitable for obtaining good superconducting properties.

さらに1本発明者らは、上記熱処理工程を行う前のTl
−Ca−Ba−Cu−0薄膜11の元素のモル比率がI の範囲にあれば1本発明の製造工程により超電導特性に
差がないことを確認した。
Furthermore, the present inventors discovered that Tl before performing the above heat treatment step.
It was confirmed that if the molar ratio of the elements in the -Ca-Ba-Cu-0 thin film 11 is within the range of I, there is no difference in superconducting properties depending on the manufacturing process of the present invention.

ここでAはSrもしくはBaa なお、本実施例におけるTl−Ca−Ba−Cu−0薄
膜11の形成は実施例1の形成法に限るものではない。
Here, A is Sr or Baa. Note that the formation of the Tl-Ca-Ba-Cu-0 thin film 11 in this example is not limited to the formation method of Example 1.

X線回折測定によってもTl−Ca−Ba−Cu−0薄
膜11の結晶性の劣化は認められず、薄膜11の表面へ
の金属膜13のエツチング残りもなかった。
Even by X-ray diffraction measurement, no deterioration of the crystallinity of the Tl-Ca-Ba-Cu-0 thin film 11 was observed, and no etching residue of the metal film 13 was found on the surface of the thin film 11.

発明の効果 本発明の酸化物薄膜超電導体の製造方法によると、臨界
温度の高いT L  Cat  Cul  B a (
もしくはSr)を含む酸化物薄膜超電導体が良好にしか
も再現性良く得ることができる。従って9本発明の工業
的価値は高い。
Effects of the Invention According to the method for producing an oxide thin film superconductor of the present invention, T L Cat Cul Ba (
or Sr) can be obtained satisfactorily and with good reproducibility. Therefore, the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における酸化物薄膜超電導体の
製造工程の様子を示す概略図、第2図はT l−Ca−
Ba−Cu−0薄膜超電導体の抵抗の温度変化を示す図
である。 11 * @ * Tl−Ca−Ba−Cu−0薄膜、
12*e*基体、13・・・金属膜、 14・ ・・電
極、 15争・・T 1−Ca−Ha−Cu−0薄膜の
抵抗の温度変化。 代理人の氏名 弁理士 粟野重孝 ほか1名1 図 第2図 OO 温 崖 (K)
FIG. 1 is a schematic diagram showing the manufacturing process of an oxide thin film superconductor in an example of the present invention, and FIG. 2 is a T l-Ca-
It is a figure showing the temperature change of the resistance of Ba-Cu-0 thin film superconductor. 11 * @ * Tl-Ca-Ba-Cu-0 thin film,
12*e*Substrate, 13...Metal film, 14...Electrode, 15...T Temperature change in resistance of T1-Ca-Ha-Cu-0 thin film. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1 Figure 2 OO On Gai (K)

Claims (3)

【特許請求の範囲】[Claims] (1)基体上に主体成分に少なくともタリウム(Tl)
、銅(Cu)、アルカリ土類(IIa族)、酸素(O)を
含み、アルカリ土類がカルシウム(Ca)とストロンチ
ウム(Sr)もしくはバリウム(Ba)の少なくとも一
方からなる薄膜を付着させ、さらに金(Au)もしくは
白金(Pt)の金属膜を前記薄膜上にコーティングし、
熱処理することを特徴とする酸化物薄膜超電導体の製造
方法。
(1) At least thallium (Tl) as the main component on the substrate
, a thin film containing copper (Cu), alkaline earth (group IIa), and oxygen (O), in which the alkaline earth is composed of calcium (Ca) and at least one of strontium (Sr) or barium (Ba), and Coating a metal film of gold (Au) or platinum (Pt) on the thin film,
A method for producing an oxide thin film superconductor, the method comprising heat treatment.
(2)タリウム元素のモル比率が、(2) The molar ratio of thallium element is 3.0≦(Ca+A+Cu)/Tl≦10 の範囲にあることを特徴とする特許請求の範囲第1項記
載の酸化物薄膜超電導体の製造方法。 ここでAはSrもしくはBa。 (3)熱処理の温度を850〜950℃としたことを特
徴とする特許請求の範囲第1項記載の酸化物薄膜超電導
体の製造方法。
3.0≦(Ca+A+Cu)/Tl≦10. The method for producing an oxide thin film superconductor according to claim 1, wherein Here, A is Sr or Ba. (3) The method for producing an oxide thin film superconductor according to claim 1, wherein the heat treatment temperature is 850 to 950°C.
JP63249203A 1988-10-03 1988-10-03 Production of thin oxide film superconductor Pending JPH0297684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249203A JPH0297684A (en) 1988-10-03 1988-10-03 Production of thin oxide film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249203A JPH0297684A (en) 1988-10-03 1988-10-03 Production of thin oxide film superconductor

Publications (1)

Publication Number Publication Date
JPH0297684A true JPH0297684A (en) 1990-04-10

Family

ID=17189445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249203A Pending JPH0297684A (en) 1988-10-03 1988-10-03 Production of thin oxide film superconductor

Country Status (1)

Country Link
JP (1) JPH0297684A (en)

Similar Documents

Publication Publication Date Title
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
JPH0297684A (en) Production of thin oxide film superconductor
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
JPH01208327A (en) Production of thin film of superconductor
US5462921A (en) Method of forming Hg-containing oxide superconducting films
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
EP0333513B1 (en) Oxide superconductor
JPH0222126A (en) Production of superconductor
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH0375204A (en) Production of oxide superconductive film pattern
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JPH0297419A (en) Production of thin film superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01105416A (en) Manufacture of thin film superconductor
JPH0761870B2 (en) Method for manufacturing high temperature superconducting thin film
JPH01208328A (en) Sputtering target and production of superconductor thin film
JPH01219023A (en) Production of thin superconductor film
JPH07106896B2 (en) Superconductor
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPS6161717B2 (en)