JPH0294660A - Variable capacity type semiconductor device - Google Patents

Variable capacity type semiconductor device

Info

Publication number
JPH0294660A
JPH0294660A JP24791888A JP24791888A JPH0294660A JP H0294660 A JPH0294660 A JP H0294660A JP 24791888 A JP24791888 A JP 24791888A JP 24791888 A JP24791888 A JP 24791888A JP H0294660 A JPH0294660 A JP H0294660A
Authority
JP
Japan
Prior art keywords
junction
type semiconductor
capacitor
capacity
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24791888A
Other languages
Japanese (ja)
Inventor
Tadashi Iwasaki
正 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24791888A priority Critical patent/JPH0294660A/en
Publication of JPH0294660A publication Critical patent/JPH0294660A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To absorb an irregularity in capacity during a manufacturing process by a method wherein a structure where a dielectric film on a semiconductor substrate is sandwiched between electrode films and a P-N junction structure are connected in series to form a capacitor, and a reverse bias voltage for capacity control use is applied to the P-N junction. CONSTITUTION:A capacity formation part is formed of a structure where a first capacitor of a MIS(Metal Insulator Semiconductor) structure in which a nitride film 4 has been sandwiched between a P-type semiconductor region 3 and polysilicon 5 as electrode materials is connected in series with a second capacitor composed of a junction capacitor by a P-N junction structure of an N-well region 2 and the P-type semiconductor region 3. A composite capacity of a whole double structure of this semiconductor device, i.e., a capacity between the polysilicon 5 and the N-well region 2, is controlled by applying a voltage for capacity control use to an aluminum wiring part 6 and an aluminum wiring part 7 and by changing a junction capacity in such a way that a P-N junction between the N-well region 2 and the P-type semiconductor region 3 is reverse- biased. Thereby, it is possible to adjust a capacity value even after a manufacturing process.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は半導体製造時の素子容量のバラツキを吸収する
のに有効な可変容量型の半導体装置に関し、特に、オペ
アンプの位相補償用のコンデンサとしての利用を始め、
積分回路の時定数及びアクティブフィルタの係数等の調
整並びに回路特性の最適化に好適の可変容量型の半導体
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a variable capacitance type semiconductor device that is effective in absorbing variations in element capacitance during semiconductor manufacturing, and is particularly applicable as a capacitor for phase compensation of an operational amplifier. Start using the
The present invention relates to a variable capacitance type semiconductor device suitable for adjusting the time constant of an integrating circuit, the coefficients of an active filter, etc., and optimizing circuit characteristics.

[従来の技術] 従来、半導体基板上にコンデンサ素子を形成する技術と
しては、例えば、第6図に示すように半導体基板24上
に誘電体23及び電極22の各層を形成し、誘電体23
を電極22と半導体基板24とで挟んだ構造のものがあ
り、電極22と半導体基板24とに夫々端子27及び2
8を設けてコンデンサを構成している。また、第7図に
示すように、N型半導体25をP型半導体26の表面に
形成し、両者の境界にできる空乏層領域を利用するもの
もあり、N型半導体25の表面及びP型半導体26の裏
面から夫々端子29.30を取り出してコンデンサ素子
を構成している。
[Prior Art] Conventionally, as shown in FIG. 6, as a technique for forming a capacitor element on a semiconductor substrate, each layer of a dielectric material 23 and an electrode 22 is formed on a semiconductor substrate 24,
Terminals 27 and 2 are provided on the electrode 22 and the semiconductor substrate 24, respectively.
8 to form a capacitor. Furthermore, as shown in FIG. 7, there is a method in which an N-type semiconductor 25 is formed on the surface of a P-type semiconductor 26 and a depletion layer region formed at the boundary between the two is used. Terminals 29 and 30 are respectively taken out from the back side of 26 to form a capacitor element.

[発明が解決しようとする課題] しかしながら、上述した技術はいずれの場合もコンデン
サの構造を形成した後は、容量値を制御することができ
ない0例えば、第6図に示す構造のコンデンサ素子では
、製造時の条件である電極22の面積と、誘電体23の
厚さとによって容量が決まってしまうので、使用時に容
量を可変にすることができない、また、第7図に示す構
造のコンデンサ素子では、N型半導体25とP型半導体
26との間の逆バイアス電圧の変化により空乏層の幅が
変化するので、容量は逆バイアス電圧依存性を有するが
、端子29.30を介して逆バイアス電圧を印加する部
分自体がコンデンサ素子を形成する領域であるため、外
部から容量を制御するということができない。
[Problems to be Solved by the Invention] However, in any of the above techniques, the capacitance value cannot be controlled after the capacitor structure is formed.For example, in a capacitor element having the structure shown in FIG. Since the capacitance is determined by the area of the electrode 22 and the thickness of the dielectric 23, which are the manufacturing conditions, the capacitance cannot be varied during use.Furthermore, in the capacitor element having the structure shown in FIG. Since the width of the depletion layer changes depending on the change in the reverse bias voltage between the N-type semiconductor 25 and the P-type semiconductor 26, the capacitance has reverse bias voltage dependence. Since the area to which the voltage is applied is itself a region forming a capacitor element, it is not possible to control the capacitance from the outside.

本発明はかかる問題点に鑑みてなされたものであって、
集積回路製造後でも、その回路特性の最適化のために容
量値を調整することができる可変容量型の半導体装置を
提供することを目的とする。
The present invention has been made in view of such problems, and includes:
An object of the present invention is to provide a variable capacitance type semiconductor device whose capacitance value can be adjusted to optimize the circuit characteristics even after the integrated circuit is manufactured.

[課題を解決するための手段] 本発明に係る可変容量型の半導体装置は、半導体基板上
に配設された誘電体膜及びこの誘電体膜に重ねて形成さ
れた電極膜を有する第1のコンデンサ素子と、前記半導
体基板の表面に形成された第1導電型層及びこの第1導
電型層とPN接合を形成する第2導電型層を有し前記第
1のコンデンサ素子と直列接続された第2のコンデンサ
素子と、前記PN接合に逆バイアス電圧を印加する手段
とを有することを特徴とする。
[Means for Solving the Problems] A variable capacitance type semiconductor device according to the present invention includes a first semiconductor device having a dielectric film disposed on a semiconductor substrate and an electrode film formed over the dielectric film. a capacitor element, a first conductivity type layer formed on the surface of the semiconductor substrate, and a second conductivity type layer forming a PN junction with the first conductivity type layer, connected in series with the first capacitor element. It is characterized by comprising a second capacitor element and means for applying a reverse bias voltage to the PN junction.

[作用コ 本発明においては、第1のコンデンサ素子は半導体基板
上に形成された誘電体膜を電極で挾む構造を有し、半導
体基板表面に形成された第2のコンデンサ素子はPN接
合を有する。そして、この第1及び第2のコンデンサ素
子が直列接続されているから、前記PN接合に印加する
逆バイアス電圧を変更することにより、このPN接合部
の空乏層幅を調節することができ、第1及び第2のコン
デンサ素子全体の容量を最適化制御することができる。
[Operation] In the present invention, the first capacitor element has a structure in which a dielectric film formed on a semiconductor substrate is sandwiched between electrodes, and the second capacitor element formed on the surface of the semiconductor substrate has a PN junction. have Since the first and second capacitor elements are connected in series, the depletion layer width of the PN junction can be adjusted by changing the reverse bias voltage applied to the PN junction. The capacitance of the first and second capacitor elements as a whole can be optimally controlled.

[実施例] 次に、本発明の実施例について添付の図面を参照して説
明する。第1図及び第2図は本発明の第1の実施例の要
部を示す図であって、第1図は基板表面における各層の
パターンを示す平面図、第2図は第1図の■−■線に沿
う断面図である0本実施例はM OS F E T (
Metal OxideSemiconductor 
Field Effect Transistor >
、の製造プロセスにおいて、可変容量型のコンデンサを
形成した例である。半導体装置は、P型半導体基板1の
表面にN型半導体のNウェル領域2と、更に、このNウ
ェル領域2の内側にP型半導体領域3とを有する。この
Nウェル領域2及びP型半導体領域3は半導体基板1の
表面に形成されたLOCO8酸化膜8に囲まれた素子形
成領域に形成されている。
[Example] Next, an example of the present invention will be described with reference to the accompanying drawings. 1 and 2 are diagrams showing the main parts of the first embodiment of the present invention, in which FIG. 1 is a plan view showing the pattern of each layer on the substrate surface, and FIG. This embodiment, which is a cross-sectional view taken along the line -■, is MOS FET (
Metal Oxide Semiconductor
Field Effect Transistor >
This is an example of forming a variable capacitance type capacitor in the manufacturing process of . The semiconductor device has an N-well region 2 of an N-type semiconductor on the surface of a P-type semiconductor substrate 1, and a P-type semiconductor region 3 inside the N-well region 2. The N-well region 2 and the P-type semiconductor region 3 are formed in an element formation region surrounded by a LOCO8 oxide film 8 formed on the surface of the semiconductor substrate 1.

また、基板lの上面には、誘電体の窒化膜4と電極材料
のポリシリコン5とが積層されてパターン形成されてい
る。そして、全面がガラス質の絶縁膜9で覆われており
、その適所に設けた開口を介してNウェル領域2にアル
ミニウム配線6が接合され、P型半導体領域3にアルミ
ニウム配a7が接合されている。
Further, on the upper surface of the substrate l, a dielectric nitride film 4 and an electrode material polysilicon 5 are laminated and patterned. The entire surface is covered with a glass insulating film 9, and an aluminum interconnect 6 is bonded to the N-well region 2 through openings provided at appropriate locations, and an aluminum interconnect a7 is bonded to the P-type semiconductor region 3. There is.

また、第2図に示すように、Nウェル領域2とアルミニ
ウム配線6との接合部及びP型半導体領域3とアルミニ
ウム配線7との接合部はポリシリコン5を挾むようにそ
の幅方向に離隔し、ポリシリコン5の長手方向に沿って
延長するように形成されている。一方、ポリシリコン5
はP型半導体領域3の直上域を外れる位置まで延長して
形成されており、この位置にてポリシリコン5とアルミ
ニウム配R10とが接合されている。
Further, as shown in FIG. 2, the junction between the N-well region 2 and the aluminum wiring 6 and the junction between the P-type semiconductor region 3 and the aluminum wiring 7 are spaced apart in the width direction so as to sandwich the polysilicon 5. It is formed to extend along the longitudinal direction of polysilicon 5. On the other hand, polysilicon 5
is formed to extend to a position outside the area immediately above the P-type semiconductor region 3, and the polysilicon 5 and the aluminum interconnection R10 are bonded at this position.

このように、構成された半導体装置においては、窒化膜
4を、電極材であるP型半導体領域3とポリシリコン5
とで挾んだM I S (MetalInsulato
r Sem1conductor ) 111造の第1
のコンデンサと、Nウェル領域2とP型半導体領域3と
のPN接合構造による接合容量からなる第2のコンデン
サとを直列に接続した構造を持つ容量形成部が得られる
In the semiconductor device constructed in this way, the nitride film 4 is separated from the P-type semiconductor region 3 and the polysilicon 5 which are the electrode materials.
M I S (MetalInsulato
r Sem1conductor) 111 structure first
A capacitor forming portion having a structure in which the capacitor 1 and a second capacitor constituted by a junction capacitance formed by a PN junction structure of an N well region 2 and a P type semiconductor region 3 are connected in series is obtained.

この半導体装置の2重構造全体の合成容量、即ち、ポリ
シリコン5とNウェル領域2との間の容量は、Nウェル
領域2とP型半導体領域3との間のPN接合が逆バイア
スとなるように、アルミニウム配線6とアルミニウム配
線7とに容量制御用電圧を印加して接合容量を変化させ
ることにより制御される。例えば、Nウェル領域2のド
ナー濃度が10110l6’  P型半導体領域3のア
クセプター濃度が10110l8’である場合、アルミ
ニウム配線6とアルミニウム配線7との間に0■の逆バ
イアス電圧を印加すると、空乏層幅が0.17μmとな
り、接合容量は約6.2X 10−’ F/m”となる
。また、5Vの逆バイアス電圧を印加すると、空乏層幅
が0.47μmとなり、接合容量は約2.3X 10 
”−’ F/m2となる。ここで、窒化膜の厚さが20
0人であるとして、MIS構造の容量を約1.2X10
−’ F/♂と見積ると、半導体装置全体の容量はMI
S構造容量と上記接合容量との直列接続として求めるこ
とができ、逆バイアス電圧が0■のときは5.2X10
−’ F/♂、逆バイアス電圧が5Vのときは2.lX
l0−4 F/m2となる。このように、容量制御用電
圧により、2倍以上の容量変化を生じさせることができ
る。
The combined capacitance of the entire double structure of this semiconductor device, that is, the capacitance between the polysilicon 5 and the N-well region 2, is such that the PN junction between the N-well region 2 and the P-type semiconductor region 3 is reverse biased. As such, the junction capacitance is controlled by applying a capacitance control voltage to the aluminum wiring 6 and the aluminum wiring 7 to change the junction capacitance. For example, when the donor concentration of the N-well region 2 is 10110l6' and the acceptor concentration of the P-type semiconductor region 3 is 10110l8', applying a reverse bias voltage of 0■ between the aluminum wiring 6 and the aluminum wiring 7 causes the depletion layer to The width becomes 0.17 μm, and the junction capacitance becomes approximately 6.2×10−′ F/m”. When a reverse bias voltage of 5 V is applied, the depletion layer width becomes 0.47 μm, and the junction capacitance becomes approximately 2. 3X 10
"-'F/m2.Here, the thickness of the nitride film is 20
Assuming that there are 0 people, the capacity of the MIS structure is approximately 1.2X10
-' F/♂, the total capacity of the semiconductor device is MI
It can be obtained as a series connection of the S structure capacitance and the above junction capacitance, and when the reverse bias voltage is 0■, it is 5.2X10
-' F/♂, 2 when the reverse bias voltage is 5V. lX
10-4 F/m2. In this way, the capacitance control voltage can cause a capacitance change of twice or more.

半導体製造技術を用いて、アナログ素子を集積化する場
合、製造時の素子特性のバラツキが目的とする集積回路
の特性に大きな影響を与えることがある。特に、演算増
幅器の位相補償を始め、演算増幅器を使用して構成した
微・積分回路及びアクティブフィルタ等の特性決定に本
実施例の可変容量型の半導体装置を使用すれば、適当な
容量制御用電圧を供給することで製造時のバラツキを吸
収することができるのに加え、更に、積極的に回路特性
を変化させることもできる。
When analog elements are integrated using semiconductor manufacturing technology, variations in element characteristics during manufacturing can have a significant impact on the characteristics of the intended integrated circuit. In particular, if the variable capacitance type semiconductor device of this embodiment is used to determine the characteristics of differential/integral circuits, active filters, etc. constructed using operational amplifiers, as well as phase compensation of operational amplifiers, suitable capacitance control can be achieved. In addition to being able to absorb manufacturing variations by supplying voltage, it is also possible to actively change circuit characteristics.

次に、本発明の実施例に係る可変容量型の半導体装置を
演算増幅器の位相補償用コンデンサに応用した例につい
て、第3図を参照して説明する。
Next, an example in which the variable capacitance type semiconductor device according to the embodiment of the present invention is applied to a phase compensation capacitor of an operational amplifier will be described with reference to FIG.

第3図は、演算増幅器101の位相補償を行う可変容量
コンデンサC,,c、の容量制御に入力信号の周波数を
利用し、発振を起こしにくい反転増幅回路を半導体集積
回路上に構成した場合の概略図である。
Figure 3 shows a case where an inverting amplifier circuit that is less prone to oscillation is constructed on a semiconductor integrated circuit by using the frequency of the input signal to control the capacitance of variable capacitors C, , c, which perform phase compensation of the operational amplifier 101. It is a schematic diagram.

入力端子INからの信号は、抵抗R,,R2の抵抗値に
より表わされる増幅率R2/R1の反転増幅器の入力と
、直流成分カット用のコンデンサcoを介して周波数を
電圧に変換するF/Vコンバータ100とに導かれる。
The signal from the input terminal IN is input to an inverting amplifier with an amplification factor R2/R1 represented by the resistance values of resistors R, , R2, and F/V which converts the frequency into voltage via a capacitor co for cutting DC components. converter 100.

F/Vコンバータ100は、位相補償用のコンデンサC
I、C2のうち接合容量を構成するコンデンサC1に周
波数に依存する電圧を印加することで位相補償量の最適
化を行う。
The F/V converter 100 includes a capacitor C for phase compensation.
The amount of phase compensation is optimized by applying a frequency-dependent voltage to the capacitor C1 of I and C2 that constitutes the junction capacitance.

演算増幅器101は入力周波数が高い程、位相の遅れが
大きくなり、発振しやすくなるので、位相補償用のコン
デンサC,,C,の容量は大きい方がよいが、容量が大
きすぎると増幅率の低下を招来するため、適切な制御が
必要である。
The higher the input frequency of the operational amplifier 101 is, the larger the phase delay becomes and the more likely it is to oscillate. Therefore, it is better to have a larger capacitance for the phase compensation capacitors C, , C, but if the capacitance is too large, the amplification factor will decrease. Appropriate control is necessary to prevent this from occurring.

この場合に、本実施例によれば、低周波側では十分な利
得を有し、高周波側では利得を多少犠牲にしても位相補
償量を多くして発振しにくい反転増幅回路を構成するこ
とができる。
In this case, according to this embodiment, it is possible to configure an inverting amplifier circuit that has sufficient gain on the low frequency side and increases the phase compensation amount even if it sacrifices some gain on the high frequency side, making it difficult to oscillate. can.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第4図は第2の実施例の要部を示す図であって、第4図
は基板表面における各層のパターンを示す平面図、第5
図は第4図のV−V線に沿う断面図である0本実施例も
MOSFETの製造プロセスにおいて、可変容量コンデ
ンサを形成した例である。半導体装置は、P型半導体基
板11の表面に形成されたN型半導体のNウェル領域1
2と、更に、このNウェル領域12の内側に形成された
P型半導体領域13を有し、その上面に電極材料のポリ
シリコン14と、誘電体の窒化膜15と、電極材料のポ
リシリコン16とを積層しである。そして、全面を覆う
ガラス質の絶縁膜19に開口部を設けてNウェル領域1
2にアルミニウム配線17を接合する。なお、LOCO
3酸化膜18は素子分離領域であり、このLOGO8酸
化膜に囲まれた素子形成領域に半導体装置が形成されて
いる。
FIG. 4 is a diagram showing the main part of the second embodiment, and FIG. 4 is a plan view showing the pattern of each layer on the substrate surface, and FIG.
The figure is a sectional view taken along the line V--V in FIG. 4. This embodiment is also an example in which a variable capacitor is formed in the MOSFET manufacturing process. The semiconductor device includes an N-well region 1 of an N-type semiconductor formed on the surface of a P-type semiconductor substrate 11.
2, and further has a P-type semiconductor region 13 formed inside this N-well region 12, and on its upper surface, a polysilicon 14 as an electrode material, a nitride film 15 as a dielectric, and a polysilicon 16 as an electrode material. and are laminated together. Then, an opening is provided in the glass insulating film 19 covering the entire surface, and the N-well region 1 is
The aluminum wiring 17 is bonded to 2. In addition, LOCO
The 3 oxide film 18 is an element isolation region, and a semiconductor device is formed in the element formation region surrounded by this LOGO 8 oxide film.

第4図はNウェル領域12とアルミニウム配線17、ポ
リシリコン14とアルミニウム配線21及びポリシリコ
ン16とアルミニウム配線20の各接合部の位置関係を
表わす。
FIG. 4 shows the positional relationship between the N-well region 12 and the aluminum wiring 17, the polysilicon 14 and the aluminum wiring 21, and the polysilicon 16 and the aluminum wiring 20.

容量形成部は、窒化膜15をポリシリコン14とポリシ
リコン16とで挾んだMIS構造の第1のコンデンサと
、Nウェル領域12とP型半導体領域13のPN接合構
造による接合容量からなる第2のコンデンサとを直列に
接続した構造を持つ。
The capacitor forming section includes a first capacitor having an MIS structure in which a nitride film 15 is sandwiched between polysilicon 14 and polysilicon 16, and a junction capacitor having a PN junction structure between an N well region 12 and a P type semiconductor region 13. It has a structure in which two capacitors are connected in series.

°半導体装置の2重構造全体の合成容量、即ち、ポリシ
リコン16とNウェル領域12との間の容量はNウェル
領域12とP型半導体領域13との間のPN接合が逆バ
イアスとなるようにアルミニウム配線17とポリシリコ
ン14(アルミニウム配線21)とに容量制御用電圧を
印加することで、接合容量を変化させることにより制御
される。
°The combined capacitance of the entire double structure of the semiconductor device, that is, the capacitance between the polysilicon 16 and the N-well region 12, is such that the PN junction between the N-well region 12 and the P-type semiconductor region 13 is reverse biased. The junction capacitance is controlled by applying a capacitance control voltage to the aluminum wiring 17 and the polysilicon 14 (aluminum wiring 21) to change the junction capacitance.

本実施例では、Nウェル領域12を形成した後、全面に
ポリシリコン14を形成し、その後の工程でP型半導体
を形成するためのボロンをポリシリコン14にイオン注
入し、このポリシリコン14をエツチングしてバターニ
ングし、熱拡散によりポリシリコン14の直下にP型半
導体領域13を形成することにより、2重構造の自己整
合が可能となるから、可変容量型半導体装置の面積を小
さくすることができる。
In this embodiment, after forming the N-well region 12, polysilicon 14 is formed on the entire surface, and boron ions for forming a P-type semiconductor are implanted into the polysilicon 14 in the subsequent process. By etching and buttering and forming the P-type semiconductor region 13 directly under the polysilicon 14 by thermal diffusion, self-alignment of the double structure becomes possible, so the area of the variable capacitance type semiconductor device can be reduced. Can be done.

[発明の効果] 以上説明したように本発明は、半導体基板上の誘電体膜
を電極膜で挾んだ構造と、PN接合楕運上を直列接続さ
せてコンデンサを形成し、このうちPN接合に容量制御
用の逆バイアス電圧を印加することにより、2重構造全
体のコンデンサの容量制御を行うことができる。このた
め、この可変容量型半導体装置を使用してアナログ素子
の集積化を行えば、適当な容量制御用電圧を供給するこ
とにより、製造時の容量バラツキを吸収することができ
る外、更に、積極的に回路、特性の最適化を行うことも
できるという効果を奏する。
[Effects of the Invention] As explained above, the present invention forms a capacitor by connecting in series a structure in which a dielectric film on a semiconductor substrate is sandwiched between electrode films and a PN junction. By applying a reverse bias voltage for capacitance control to , it is possible to control the capacitance of the entire double structure capacitor. Therefore, if analog elements are integrated using this variable capacitance type semiconductor device, it is possible to absorb capacitance variations during manufacturing by supplying an appropriate capacitance control voltage, and also to proactively This has the effect that circuits and characteristics can be optimized in a controlled manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の要部平面図、第2図は
第1の■−■線による断面図、第3図は本発明の第1の
実施例に係る容量可変型半導体装置の応用例を示す回路
図、第4図は本発明の第2の実施例の要部平面図、第5
図は第4図の■−■線による断面図、第6図及び第7図
は従来技術を示す一部断面図である。 1.11.P型半導体基板、2,12.Nウェル領域、
3.13;P型半導体領域、4,15;窒化膜、5,1
4,16;ポリシリコン、6.7゜17.20,21 
;アルミニウム配線、8,18; LOCO8酸化膜、
9,19.絶縁膜、22;電極、23;誘電体、24;
半導体基板、25;N型半導体、26;P型半導体
FIG. 1 is a plan view of essential parts of the first embodiment of the present invention, FIG. 2 is a sectional view taken along the first line ■-■, and FIG. 3 is a variable capacity type according to the first embodiment of the present invention. FIG. 4 is a circuit diagram showing an application example of a semiconductor device; FIG. 4 is a plan view of a main part of the second embodiment of the present invention;
The figure is a sectional view taken along the line ■--■ in FIG. 4, and FIGS. 6 and 7 are partial sectional views showing the prior art. 1.11. P-type semiconductor substrate, 2,12. N-well area,
3.13; P-type semiconductor region, 4, 15; Nitride film, 5, 1
4,16; Polysilicon, 6.7°17.20,21
; Aluminum wiring, 8, 18; LOCO8 oxide film,
9,19. Insulating film, 22; electrode, 23; dielectric, 24;
Semiconductor substrate, 25; N-type semiconductor, 26; P-type semiconductor

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に配設された誘電体膜及びこの誘電
体膜に重ねて形成された電極膜を有する第1のコンデン
サ素子と、前記半導体基板の表面に形成された第1導電
型層及びこの第1導電型層とPN接合を形成する第2導
電型層を有し前記第1のコンデンサ素子と直列接続され
た第2のコンデンサ素子と、前記PN接合に逆バイアス
電圧を印加する手段とを有することを特徴とする可変容
量型の半導体装置。
(1) A first capacitor element having a dielectric film disposed on a semiconductor substrate and an electrode film formed over the dielectric film, and a first conductivity type layer formed on the surface of the semiconductor substrate. and a second capacitor element having a second conductivity type layer forming a PN junction with the first conductivity type layer and connected in series with the first capacitor element, and means for applying a reverse bias voltage to the PN junction. A variable capacitance semiconductor device comprising:
JP24791888A 1988-09-30 1988-09-30 Variable capacity type semiconductor device Pending JPH0294660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24791888A JPH0294660A (en) 1988-09-30 1988-09-30 Variable capacity type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24791888A JPH0294660A (en) 1988-09-30 1988-09-30 Variable capacity type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0294660A true JPH0294660A (en) 1990-04-05

Family

ID=17170492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24791888A Pending JPH0294660A (en) 1988-09-30 1988-09-30 Variable capacity type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0294660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360184B1 (en) * 1995-03-30 2003-01-15 산요 덴키 가부시키가이샤 Method for manufacturing semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360184B1 (en) * 1995-03-30 2003-01-15 산요 덴키 가부시키가이샤 Method for manufacturing semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US5952704A (en) Inductor devices using substrate biasing technique
JP3441330B2 (en) Semiconductor device and manufacturing method thereof
JP2826149B2 (en) Capacitor structure and monolithic voltage multiplier
JPH0260163A (en) Semiconductor memory and manufacture thereof
JPH0714009B2 (en) MOS type semiconductor memory circuit device
JPH03241772A (en) Semiconductor device
US4399417A (en) Integrated CRC filter circuit
JPH0234962A (en) Manufacture of semiconductor device
JPS6065559A (en) Semiconductor memory
JPH0294660A (en) Variable capacity type semiconductor device
JPH07135296A (en) Semiconductor integrated circuit device
JPH0590502A (en) Semiconductor device
JP3127951B2 (en) Semiconductor device and manufacturing method thereof
JPS5892272A (en) Negative feedback type gaas microwave monolithic amplifier circuit device
JPH01253265A (en) Semiconductor device
JPH06103735B2 (en) Semiconductor integrated circuit
JPH01268049A (en) Diffused resistor element
JP2563456B2 (en) MIS type capacitive element
JPS5850426B2 (en) How to stabilize self-substrate bias level
JPS6046077A (en) Variable capacitance element
JP2917428B2 (en) Semiconductor integrated circuit device
JPS6190455A (en) Capacitor
JPS59228752A (en) Semiconductor device
JPS63141360A (en) Semiconductor device
JPH02283055A (en) Capacitor formed in semiconductor device and manufacture thereof