JPH0289599A - Method for strengthening metal material or synthetic resin material or the like - Google Patents

Method for strengthening metal material or synthetic resin material or the like

Info

Publication number
JPH0289599A
JPH0289599A JP63243360A JP24336088A JPH0289599A JP H0289599 A JPH0289599 A JP H0289599A JP 63243360 A JP63243360 A JP 63243360A JP 24336088 A JP24336088 A JP 24336088A JP H0289599 A JPH0289599 A JP H0289599A
Authority
JP
Japan
Prior art keywords
synthetic resin
metal
pressurized
cylinder
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63243360A
Other languages
Japanese (ja)
Inventor
Yuzo Kawamura
雄造 川村
Shigeo Nakagawa
滋夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDEA RES KK
Matsuo Sangyo Co Ltd
Original Assignee
IDEA RES KK
Matsuo Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDEA RES KK, Matsuo Sangyo Co Ltd filed Critical IDEA RES KK
Priority to JP63243360A priority Critical patent/JPH0289599A/en
Publication of JPH0289599A publication Critical patent/JPH0289599A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Powder Metallurgy (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To strength a metal material or synthetic resin material by charging the material in a pressurizing cylinder vessel, rotating contacting face while pressurizing and giving shearing force. CONSTITUTION:The material 4 of the metal or the synthetic resin, etc., is charged into the vessel 3 and pressed in the bottom face 1a direction of the cylinder 1 with a pressurizing piston 2, and while pressurizing the material 4, the pressurizing piston 2 is rotated and the shearing force is given on the upper end face of the material 4 brought into contact with the end face 2a of the pressurizing piston and the material is plastic-deformed in the inner part of the material 4. In the case of the metal material, it is desirable to pressurize the material at the pressure of >=0.5 times of yield pressure of the material in the working temp. The material is strengthened with action of deformation, fining of crystal grains and uniformization of inner structure caused by plastic deformation in inner part of the material. In the case of the synthetic resin material, the material has orientating direction having different orientating direction of molecules by extrusion and spreading.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、金属又は合成樹脂等の素材を強化する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for reinforcing materials such as metals or synthetic resins.

〔従来の技術〕[Conventional technology]

金属材料を強化する方法としては、急冷凝固にて得られ
る非晶質金属や微結晶金属等の粉末を例えば特公昭57
−2441号公報や特公昭60−14082号公報に示
される如く、高温に加熱することなく圧粉体化すること
により、これらの金属の本来の特性を保ったまま製品化
する方法が知られている。
As a method for strengthening metal materials, for example, powder of amorphous metal or microcrystalline metal obtained by rapid solidification is
As shown in Japanese Patent Publication No. 2441 and Japanese Patent Publication No. 60-14082, there is a known method of producing products while preserving the original properties of these metals by compacting them without heating them to high temperatures. There is.

又、金属材料をロール圧延等により塑性変形させること
により強化する方法も知られている。
Also known is a method of strengthening a metal material by plastically deforming it by rolling or the like.

一方、ある種の合成樹脂材料においては、延伸により樹
脂分子を一方向へ配向させて材料の強化を行うものもあ
る。
On the other hand, some synthetic resin materials are strengthened by orienting resin molecules in one direction by stretching.

〔発明が解決しようとする課題] しかし、素材として前記の急冷凝固方法による非晶質金
属や微結晶金属等を用いる場合には、素材自体のコスI
・が高くつくだけでなく、素材段階での取り扱いが面倒
である。又、ロールによる圧延法においては、金属材料
が加圧ロール間を通過する際に材料に対して線状に圧力
を加えるものであり、ロールから材料に加えられる加圧
力がロール前後の開放された材料部分に逃げてしまい、
材料に対して充分な加圧力が作用せず、金属材料の結晶
粒子を充分に塑性変形して強化しうる圧力が得られない
[Problems to be Solved by the Invention] However, when using an amorphous metal, a microcrystalline metal, etc. produced by the above-mentioned rapid solidification method as a material, the cost I of the material itself is
-Not only is it expensive, but it is also troublesome to handle at the material stage. In addition, in the rolling method using rolls, pressure is applied linearly to the metal material as it passes between pressure rolls, and the pressure applied to the material from the rolls is applied to the material before and after the rolls are released. It escaped to the material part,
A sufficient pressing force does not act on the material, and a pressure that can sufficiently plastically deform and strengthen the crystal grains of the metal material cannot be obtained.

又、合成樹脂材料の場合、従来の押出法や圧延法におい
ては、樹脂分子を製品の長さ方向にしか配向させること
ができないうえに、加工される材料の形状も線材又はシ
ート材等に限定されていた。
In addition, in the case of synthetic resin materials, conventional extrusion and rolling methods can only orient the resin molecules in the length direction of the product, and the shape of the processed material is also limited to wire rods or sheet materials. It had been.

本発明は上記の点に鑑み、金属材料又は合成樹脂材料等
の強化方法として、素材として比較的安価なバルク材や
固形材を用いての材料強化を可能とし、又、合成樹脂材
料等においても樹脂分子を特定方向へ配向させて材料強
化を図るとともに、従来の線材又はシート材以外の回転
体形状に作成可能とすることを目的とするものである。
In view of the above points, the present invention is a method for strengthening metal materials, synthetic resin materials, etc., which enables material reinforcement using relatively inexpensive bulk materials and solid materials as raw materials, and also enables the reinforcement of materials such as synthetic resin materials. The purpose is to strengthen the material by orienting resin molecules in a specific direction, and to make it possible to create a rotating body shape other than the conventional wire or sheet material.

〔課題を解決するための手段] 本発明は上記の目的を達成するために、強化すべき材料
を加圧シリンダー容器内で加圧した状態でシリンダー容
器内面における材料との接触面を回転させることにより
、加圧状態下の材料へ回転方向の剪断力を付与すること
を特徴とすることを要旨とするものである。前記の如く
材料へ剪断力を付与するには、加圧シリンダー容器内面
の材料に接する側端面を回転させることにより、加圧状
態の材料へその端面から回転方向の剪断力を付与する方
法や、又は加圧シリンダー容器の材料に接する内周面を
回転させることにより、加圧状態の材料へその周面から
回転方向の剪断力を付与する方法があり、この場合、前
記加圧シリンダー容器の回転面をこれと接する材料に対
してその長さ方向に移動させることにより、材料にその
長さ方向に順次剪断力を付与することができる。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes rotating the contact surface with the material on the inner surface of the cylinder container while the material to be strengthened is pressurized in the pressurized cylinder container. The gist of this invention is that a shearing force in the rotational direction is applied to the material under pressure. In order to apply shearing force to the material as described above, there is a method of applying a shearing force in the direction of rotation to the pressurized material from the end face by rotating the side end face in contact with the material on the inner surface of the pressurized cylinder container, Alternatively, there is a method of applying a shearing force in the rotational direction to the pressurized material from the circumferential surface by rotating the inner circumferential surface in contact with the material of the pressurized cylinder container. In this case, the rotation of the pressurized cylinder container By moving the surface along its length relative to the material in contact with it, shear forces can be applied to the material sequentially along its length.

又、金属材料の場合には、加圧シリンダー容器内におい
て加工温度における材料の降伏圧力の0゜5倍以上の圧
力で加圧することが望ましい。
Further, in the case of a metal material, it is desirable to pressurize it in a pressurized cylinder container at a pressure of 0.5 times or more the yield pressure of the material at the processing temperature.

〔作 用〕[For production]

本発明は上記の如く構成してなり、強化すべき金属又は
合成樹脂等のバルク材、固形材等が容器内で加圧された
状態で回転方向の剪断力を付与されることにより材料内
部における結晶粒子の塑性変形、微細化、材料の加工硬
化及び内部組織の均質化等の作用により、材料が強化さ
れる。前記材料への加圧操作は加圧容器内で行うので、
材料に付与される回転方向の剪断力が材料に対して確実
に作用するとともに、材料にクランク等が発生すること
を防止して材料内部で剪断変形を生じ、材料中の結晶粒
子の塑性変形、結晶粒子の微細化、材料の加工硬化均質
化等が効果的に行われるのである。
The present invention is constructed as described above, and a bulk material such as a metal or a synthetic resin, a solid material, etc. to be strengthened is pressurized in a container and subjected to a shearing force in the direction of rotation, so that the inside of the material is The material is strengthened by the effects of plastic deformation of crystal grains, refinement, work hardening of the material, and homogenization of the internal structure. Since the pressurization operation on the material is performed in a pressurized container,
The shearing force applied to the material in the rotational direction acts reliably on the material, prevents cranks, etc. from occurring in the material, causes shearing deformation within the material, and causes plastic deformation of crystal grains in the material. This effectively reduces the size of crystal grains and homogenizes the work hardening of the material.

そして、合成樹脂材料の場合には、樹脂分子が回転方向
に配向されることにより、この回転方向の強度を大きく
できる。
In the case of a synthetic resin material, the resin molecules are oriented in the direction of rotation, so that the strength in the direction of rotation can be increased.

又、素材に金属圧粉体や粒状体を用いた場合における材
料強化や粉体粒子の接着は、これらの材料に加圧状態下
で大きな剪断力が加えられることにより、材料中の粒子
相互間の位置が変化して間隙率が低下することによる材
料密度が増大し、更に材料中の結晶粒子の微細化、分散
効果、析出効果等の作用とともに、加工硬化、内部組織
の均質化等による材料強化、更には結晶粒子の塑性変形
による粒子同士の接着作用により、金属粉体や圧粉体中
の粒子が互いに強固に結合されて材料強化がなされるの
である。
In addition, when metal compacts or granules are used as materials, material reinforcement and adhesion of powder particles are achieved by applying a large shearing force to these materials under pressure, which causes the particles in the materials to bond. The density of the material increases due to the change in the position of the porosity and the decrease in porosity, and in addition to the effects of refinement of crystal grains in the material, dispersion effect, precipitation effect, etc., the material density increases due to work hardening, homogenization of the internal structure, etc. Through reinforcement and further adhesion between particles due to plastic deformation of crystal particles, the particles in the metal powder or green compact are firmly bonded to each other and the material is strengthened.

〔実施例〕〔Example〕

以下、添付図面に基づいて本発明の実施の態様を説明す
る。
Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図及び第2図に示したものは、本発明の1実施態様
を示すものであり、有底のシリンダー1と、加圧ピスト
ン2とにより加圧シリンダー容器3を構成し、前記シリ
ンダー1の内部に加圧ピストン2との間で形成される円
柱状内部空間に金属、又は合成樹脂等の材料4を装填し
、加圧、剪断加工するものである。
What is shown in FIGS. 1 and 2 shows one embodiment of the present invention, in which a pressurized cylinder container 3 is constituted by a cylinder 1 with a bottom and a pressurizing piston 2, and the cylinder 1 A material 4 such as metal or synthetic resin is loaded into a cylindrical internal space formed between the inside and the pressurizing piston 2, and subjected to pressure and shear processing.

前記シリンダー容器3の加圧ピストン2は、シリンダ−
1開口端から内部へ摺動、且つ軸回りで回転可能に嵌挿
してなり、容器3内部に装填した材料4を該ピストン2
にてシリンダーlの底面1a方向へ押圧することにより
材料4を加圧するとともに、この加圧状態で加圧ピスト
ン2をその軸回りで回転させて加圧ピストン端面2aか
ら該端面と接触している材料4の上端面に対して剪断力
を付与することにより、材料4をその内部で塑性変形さ
せるのである。この場合において、第3図の如く、シリ
ンダー1の内周面1bに摩擦係数の小さな合成樹脂等の
被膜7を形成したり、又は材料4との間に摺動リング等
を介装しておくことにより、該内周面1bとこれに接触
する材料4との間に発生する摩擦力を軽減し、前記加圧
ピストン2の回転により材料上端面から付与される剪断
力がシリンダー1の内周面1bとのFll方力より粉粒
体4下部への伝達されることを阻害されることなく、材
料4が加圧ピストン端面2aとシリンダー底面1aとの
間で加圧された状態でその内部にて全体が均一に回転方
向で塑性変形するのである。
The pressurizing piston 2 of the cylinder container 3 is a cylinder.
The material 4 loaded inside the container 3 is inserted into the piston 2 so that the material 4 loaded inside the container 3 can be slid into the interior from the open end and rotated around the axis.
The material 4 is pressurized by pressing it in the direction of the bottom surface 1a of the cylinder l, and in this pressurized state, the pressurizing piston 2 is rotated around its axis to contact the end surface from the pressurizing piston end surface 2a. By applying a shearing force to the upper end surface of the material 4, the material 4 is plastically deformed inside. In this case, as shown in FIG. 3, a coating 7 made of synthetic resin or the like with a small coefficient of friction is formed on the inner circumferential surface 1b of the cylinder 1, or a sliding ring or the like is interposed between it and the material 4. By doing so, the frictional force generated between the inner circumferential surface 1b and the material 4 in contact therewith is reduced, and the shearing force applied from the upper end surface of the material due to the rotation of the pressure piston 2 is applied to the inner circumference of the cylinder 1. The inside of the material 4 is pressurized between the pressure piston end surface 2a and the cylinder bottom surface 1a without being prevented from being transmitted to the lower part of the powder or granule material 4 due to the Fl direction force with the surface 1b. The entire body undergoes uniform plastic deformation in the direction of rotation.

第4図に示したものは、このときの材料4が受ける変形
の様子を表すものであり、金属材料を用いた場合には、
材料4はその上下両端面間で加圧Pされた状態で上端面
4aに回転方向の剪断力Fが加えられることにより、材
料4の上部において回転方向に大きな変形作用が働き、
材料中に塑性流動の状態が発生する。この材料の塑性流
動fの速度は、材料4の上部において大きく下方へ向か
うに従って小さくなる。又、この場合のピストン2によ
る加圧力Pは、該ピストン端面2aと金属材料上端面4
aとの間のスリップを防止して材料4に確実に回転方向
の剪断力を付与するとともに、金属材料中の結晶粒子を
塑性変形させために少なくとも加工時の温度における金
属材料の降伏圧力の0.5倍以上の圧力をかけるもので
ある。
What is shown in FIG. 4 represents the state of deformation that material 4 undergoes at this time, and when a metal material is used,
The material 4 is pressurized between its upper and lower end surfaces, and a shearing force F in the rotational direction is applied to the upper end surface 4a, thereby causing a large deformation action in the rotational direction at the upper part of the material 4.
A state of plastic flow occurs in the material. The velocity of the plastic flow f of this material is large in the upper part of the material 4 and becomes smaller as it goes downward. Moreover, the pressing force P by the piston 2 in this case is between the piston end surface 2a and the metal material upper end surface 4.
In order to prevent slip between the material 4 and the material 4 and to reliably apply a shearing force in the direction of rotation to the material 4, and to plastically deform the crystal grains in the metal material, the yield pressure of the metal material at least at the temperature during processing is reduced to 0. It applies more than .5 times the pressure.

又、合成樹脂材料の場合にも、上記金属材料の場合と同
様に材料中において剪断力のかかる回転方向の塑性流動
が発生し、樹脂分子はこの材料の流動にともなって回転
方向に配向することになる。
Also, in the case of synthetic resin materials, plastic flow occurs in the material in the direction of rotation where shearing force is applied, as in the case of the metal materials mentioned above, and resin molecules are oriented in the direction of rotation as the material flows. become.

上記の如くして強化される材料としては、例えば鋳造品
、スポンジチタン等の金属固形バルク材や、粉体状金属
、メカニカルアロイ等の金属粒状体や金属圧粉体、又は
金属を溶融状態としたもの、又は各種合成樹脂材料、特
に樹脂分子の配向により強化されるものは本発明におい
て好ましい材料といえる。
Materials to be strengthened in the above manner include, for example, cast products, solid metal bulk materials such as titanium sponge, metal powders, metal granules such as mechanical alloys, metal compacts, or metals in a molten state. In the present invention, preferred materials include materials that have been strengthened or various synthetic resin materials, especially those that are reinforced by the orientation of resin molecules.

次に、第5図及び第6図に示したものはリング状の材料
4の強化を行うものであり、有底のシリンダー1と加圧
ピストン2とによりシリンダー容器3を構成し、前記シ
リンダー1の底面中央に設けた貫通孔5に加圧ピストン
2の先端に突設した突軸6を挿入してシリンダー1と加
圧ピストン2とにより形成されるリング状空間内に金属
又は合成樹脂等の材料4を装填し、これを加圧ピストン
2にて加圧するとともに、該加圧ピストン2をその軸回
りで回転させることにより、加圧ピストン2の端面2a
及び突軸6の外周面6aから材料4に対して回転方向の
剪断力が付与されるのである。
Next, what is shown in FIGS. 5 and 6 is for strengthening a ring-shaped material 4. A cylinder container 3 is constituted by a bottomed cylinder 1 and a pressurizing piston 2, and the cylinder 1 A protruding shaft 6 protruding from the tip of the pressure piston 2 is inserted into a through hole 5 provided at the center of the bottom surface of the cylinder 1, and a metal or synthetic resin material is inserted into the ring-shaped space formed by the cylinder 1 and the pressure piston 2. By loading the material 4, pressurizing it with the pressurizing piston 2, and rotating the pressurizing piston 2 around its axis, the end surface 2a of the pressurizing piston 2 is
A shearing force in the rotational direction is applied to the material 4 from the outer peripheral surface 6a of the protruding shaft 6.

この場合、第7図に示したようにシリンダー底面la及
び加圧ピストン端面2aを摩擦係数の小さな合成樹脂等
の被膜にて被覆するか、又は粉粒体4との間に摺動リン
グ8を介装しておくことにより、突軸外周面6aからリ
ング状の材料4の外周方向に向かって均一、且つ同方向
に回転剪断力を伝達しうるのである。このときの塑性流
動の状態は、第8図に示す如くリングの内周部において
大きく、外周方向へ向かうにしたがって小さくなり、同
様に合成−樹脂材料の場合には、この材料の流動方向に
樹脂分子が配向する。
In this case, as shown in FIG. 7, the cylinder bottom surface la and the pressurizing piston end surface 2a are coated with a film made of synthetic resin or the like having a small coefficient of friction, or a sliding ring 8 is provided between the powder and the granular material 4. By interposing it, rotational shearing force can be transmitted uniformly and in the same direction from the outer circumferential surface 6a of the protruding shaft toward the outer circumferential direction of the ring-shaped material 4. The state of plastic flow at this time is large at the inner periphery of the ring, as shown in Fig. 8, and becomes smaller toward the outer periphery. molecules are oriented.

又、第9図(イ)〜(ハ)に示したものは、本発明に係
る他の方法を示すものであり、両端開口のシリンダー1
内に装填した材料4を、シリンダー1の両端開口から嵌
装した加圧ピストン2、2゛にて加圧した状態で一方の
加圧ピストン2を回転させるとともに、シリンダー1の
一部11をシリンダー1の他の部分12に対して回転さ
せることにより隣接する回転部11と固定部12との境
界面Aにおいて材料4に回転方向の剪断力を付与しなが
ら加圧ピストン2及び2°を図中左方へ移動させて材料
4全体を順次前記境界面Aを通過させることにより、材
料4の全長にわたって均一に回転方向の剪断力を付与す
るものである。この場合の材料4中における塑性流動や
分子の配向は第10図に示すようなものとなる。即ち、
材料4はシリンダー内で両端から加圧ピストン2.2゛
で加圧Pされた状態で、相対的に回転している隣接する
回転部11と固定部12との境界面Aにおいて回転方向
の剪断力を与えられ、この部分で塑性変形が起こる。そ
して材料4を移動させることにより、材料4をその一端
から他端へわたって前記境界面Aを通過させることによ
り、材料全体に塑性変形されるのである。
Moreover, what is shown in FIGS. 9(a) to 9(c) shows another method according to the present invention, in which a cylinder 1 with openings at both ends is used.
While the material 4 loaded inside is pressurized by the pressurizing pistons 2, 2'' fitted from the openings at both ends of the cylinder 1, one pressurizing piston 2 is rotated, and a part 11 of the cylinder 1 is pressed into the cylinder. The pressurizing pistons 2 and 2° are rotated relative to the other part 12 of the material 4 while applying a shearing force in the rotational direction to the material 4 at the interface A between the adjacent rotating part 11 and the fixed part 12. By moving the material 4 to the left and passing the entire material 4 sequentially through the boundary surface A, a shearing force in the rotational direction is applied uniformly over the entire length of the material 4. In this case, the plastic flow and molecular orientation in the material 4 are as shown in FIG. That is,
While the material 4 is pressurized from both ends in the cylinder by a pressurizing piston 2.2゜, shearing occurs in the rotational direction at the interface A between the relatively rotating adjacent rotating part 11 and fixed part 12. When force is applied, plastic deformation occurs in this part. By moving the material 4, the material 4 passes through the boundary surface A from one end to the other, whereby the entire material is plastically deformed.

更に第11図に示したものは、シリンダー1の中間部分
を回転部11とし、シリンダー1内を再加圧ピストン2
.2°にて圧縮された状態の材料4を移動させることに
より、前記回転部11の両側端部における隣接する固定
部12.12°との画境界面A、Aにおいて材料4に対
して順次回転方向の剪断力を付与して回転方向に塑性変
形させてなるものである。
Furthermore, in the case shown in FIG.
.. By moving the material 4 compressed at an angle of 2°, the direction of rotation is sequentially changed relative to the material 4 at the image boundary surfaces A, A with the adjacent fixed parts 12 and 12° at both ends of the rotating part 11. The material is plastically deformed in the direction of rotation by applying a shearing force of .

又、第12図及び第13図で示したものは、それぞれ前
記第9図及び第11図の装置における一方の加圧ピスト
ン2°に代えて固定シリンダ一部12又は12°の端部
12aを閉鎖し、これに押出口13を設けておくことに
より、回転部11と固定部12との境界面Aで剪断力を
付与されて強化された後の材料4を所望の形状に押出成
形可能としたものである。
Furthermore, in the devices shown in FIGS. 12 and 13, a fixed cylinder part 12 or a 12° end 12a is used in place of the 2° pressurizing piston in the devices shown in FIGS. 9 and 11, respectively. By closing this and providing an extrusion port 13 therein, it is possible to extrude the material 4, which has been strengthened by applying shear force at the interface A between the rotating part 11 and the fixed part 12, into a desired shape. This is what I did.

更に第14図に示したものは、本発明の他の実施例を示
すものであり、一端を閉鎖した回転シリンダ一部11の
開口端から、両端を開口し回転方向に固定され且つ軸方
向に移動可能とした移動シリンダ一部15を内挿すると
ともに、該移動シリンダ一部15の開口端には加圧ピス
トン2を内挿して加圧シリンダー容器3を構成し、前記
加圧ピストン2にて容器3内部に装填した材料4を加圧
した状態で回転シリンダ一部11を回転させるとともに
、移動シリンダ一部15を加圧ピストン2方向へ後退さ
せることより、回転シリンダ一部ll内に位置する移動
シリンダ一部15の開口端面Bにおいて材料4へ回転方
向の剪断力を付与して材料強化を行うものである。
Furthermore, FIG. 14 shows another embodiment of the present invention, in which a rotary cylinder part 11 with one end closed is opened at both ends, fixed in the rotational direction, and fixed in the axial direction. A movable movable cylinder part 15 is inserted, and a pressurizing piston 2 is inserted into the open end of the movable cylinder part 15 to form a pressurizing cylinder container 3. By rotating the rotary cylinder part 11 while pressurizing the material 4 loaded inside the container 3 and moving the movable cylinder part 15 backward in the direction of the pressurizing piston 2, the material 4 is located within the rotary cylinder part ll. A shearing force in the rotational direction is applied to the material 4 at the open end surface B of the moving cylinder part 15 to strengthen the material.

尚、上述した本発明方法においては、強化される金属又
は合成樹脂等の材料は、固形バルク体、粉体、溶融状態
等のものが用いられる。前記固体又は圧粉体等の材料を
用いた場合は加圧、剪断加工時の摩擦熱の発生により、
溶融状態となる場合もあり、又、加圧、剪断加工時に必
要に応じて材料を加熱したり、又、加工後の強化材料を
冷却することも考慮されるのである。更には、強化すべ
き材料を予め溶融状態又はそれに近い状態として供給し
、加圧、剪断加工の丙申に降温させて加工終了時に再結
晶温度以下となるように材料温度を調節するようになし
てもよい。
In the above-described method of the present invention, the material to be reinforced, such as metal or synthetic resin, is used in a solid bulk, powder, or molten state. When using materials such as the solid or compacted powder, frictional heat is generated during pressurization and shearing,
In some cases, the reinforcing material may be in a molten state, and it is also considered to heat the material as necessary during pressurization and shear processing, and to cool the reinforcing material after processing. Furthermore, the material to be strengthened is supplied in advance in a molten state or a state close to it, and the temperature is lowered during the pressurization and shearing process, and the material temperature is adjusted so that it is below the recrystallization temperature at the end of the process. It's okay.

尚、本発明方法により上述の如く加圧、剪断加工により
強化された後の材料は、これを更に再結晶温度に加熱す
ると、前記の加工により材料中の結晶粒子が微細化され
ているうえに材料の加工度が大きいために結晶粒子の成
長が抑制された状態で、微細結晶組織が破壊されること
なく強化された材料強度を維持したままの状態で内部歪
や加工硬化を除去することが可能である。
In addition, when the material that has been strengthened by the above-mentioned pressure and shear processing according to the method of the present invention is further heated to the recrystallization temperature, the crystal grains in the material have been refined by the above-mentioned processing, and In a state where the growth of crystal grains is suppressed due to the high degree of processing of the material, it is possible to remove internal strain and work hardening while maintaining the strengthened material strength without destroying the microcrystalline structure. It is possible.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明に係る金属材料又は合成樹脂材料等
の強化方法によれば、これらの材料に加圧状態で回転方
向の剪断力を付与することにより、材料内部の塑性変形
を生じ、結晶粒子の変形、微細化、更には内部組織の均
質化等の作用により、材料が強化される。そして合成樹
脂材料の場合においては、材料粒子の塑性変形による強
化に加えて、従来の押出、延伸等による分子の配向方向
とは全く異なり、樹脂分子が材料の回転方向への塑性流
動により回転方向に配向された合成樹脂材料4゜ を得ることが可能である。
As described above, according to the method for strengthening metal materials, synthetic resin materials, etc. according to the present invention, by applying a shearing force in the rotational direction to these materials under pressure, plastic deformation occurs inside the materials, and crystallization is caused. The material is strengthened by deforming the particles, making them finer, and further homogenizing the internal structure. In the case of synthetic resin materials, in addition to strengthening by plastic deformation of material particles, resin molecules are strengthened in the direction of rotation by plastic flow in the direction of rotation of the material, which is completely different from the direction of molecular orientation caused by conventional extrusion, stretching, etc. It is possible to obtain a synthetic resin material oriented at 4°.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための加圧シリンダー容
器の一実施例の斜視図、第2図は前記シリンダー容器を
用いた本発明方法の説明用側断面図、第3図は前記方法
の他の実施例の側断面説明図、第4図は前記方法におけ
る材料強化強化機構の説明図、第5図はシリンダー容器
の他実施例の斜視図、第6図は前記シリンダー容器を用
いた本発明方法の説明用側断面図、第7図は前記方法の
他の実施例の側断面説明図、第8図は前記方法における
材料強化機構の説明図、第9図(イ)〜(ハ)は他の実
施例の工程説明図、第10図は第9図の方法における材
料の強化機構の説明図、第11図〜第14図は更に他実
施例の説明用側断面図である。 回転部、12:固定部、13:押出口、15:移動部。 特許出願人 有限会社 イブアリサーチ(外1名) 1ニジリンダ−2:加圧ピストン、3:加圧シリンダー
容器、4:粉粒体、5:貫通孔、6:突軸、7:被膜、
8:リング、9:供給口、11:第2J図 第2d 図 ノ 第2ノ 図 第72図 / ノ
FIG. 1 is a perspective view of an embodiment of a pressurized cylinder container for carrying out the method of the present invention, FIG. 2 is a side cross-sectional view for explaining the method of the present invention using the cylinder container, and FIG. 3 is a perspective view of an embodiment of the method of the present invention. FIG. 4 is an explanatory diagram of the material reinforcement mechanism in the above method, FIG. 5 is a perspective view of another embodiment of the cylinder container, and FIG. 6 is a side cross-sectional view of another embodiment using the cylinder container. FIG. 7 is an explanatory side sectional view of another embodiment of the method of the present invention, FIG. 8 is an explanatory diagram of the material reinforcement mechanism in the method, and FIGS. ) is a process explanatory diagram of another embodiment, FIG. 10 is an explanatory diagram of a material reinforcement mechanism in the method of FIG. 9, and FIGS. 11 to 14 are side sectional views for explaining still another embodiment. Rotating part, 12: Fixed part, 13: Extrusion port, 15: Moving part. Patent applicant Ibuari Research Co., Ltd. (1 other person) 1 Niji cylinder - 2: Pressurized piston, 3: Pressurized cylinder container, 4: Powder, 5: Through hole, 6: Projected shaft, 7: Coating,
8: Ring, 9: Supply port, 11: Fig. 2J Fig. 2d Fig. 2 Fig. 72 / ノ

Claims (1)

【特許請求の範囲】 1)強化すべき材料を加圧シリンダー容器内で加圧した
状態でシリンダー容器内面における材料との接触面を回
転させることにより、加圧状態下の材料へ回転方向の剪
断力を付与することを特徴とする金属材料又は合成樹脂
材料等の強化方法。 2)加圧シリンダー容器内面の材料に接する側端面を回
転させることにより、加圧状態の材料へその端面から回
転方向の剪断力を付与することを特徴とする特許請求の
範囲第1項記載の金属材料又は合成樹脂材料等の強化方
法。 3)加圧シリンダー容器の材料に接する内周面を回転さ
せることにより、加圧状態の材料へその外周面から回転
方向の剪断力を付与することを特徴とする特許請求の範
囲第1項記載の金属材料又は合成樹脂材料等の強化方法
。 4)加圧シリンダー容器の回転面をこれと接する材料に
対してその長さ方向に移動させることにより、材料に剪
断力を付与することを特徴とする特許請求の範囲第3項
記載の金属材料又は合成樹脂材料等の強化方法。 5)金属材料を用い、これを加圧シリンダー容器内で加
工温度における材料の降伏圧力の0.5倍以上の圧力で
加圧することを特徴とする特許請求の範囲第1項記載の
金属材料又は合成樹脂材料等の強化方法。
[Claims] 1) By rotating the contact surface with the material on the inner surface of the cylinder container while the material to be strengthened is pressurized in a pressurized cylinder container, the material under pressure is subjected to rotational shearing. A method for strengthening metal materials, synthetic resin materials, etc., characterized by applying force. 2) A shearing force in the rotational direction is applied to the pressurized material from the end surface by rotating the side end surface in contact with the material on the inner surface of the pressurized cylinder container, according to claim 1. A method for strengthening metal materials or synthetic resin materials. 3) A shearing force in the rotational direction is applied to the pressurized material from its outer circumferential surface by rotating the inner circumferential surface of the pressurized cylinder container that is in contact with the material. A method of strengthening metal materials or synthetic resin materials, etc. 4) The metal material according to claim 3, wherein shearing force is applied to the material by moving the rotating surface of the pressurized cylinder container in the longitudinal direction of the material in contact with the material. Or a method of strengthening synthetic resin materials, etc. 5) The metal material according to claim 1, characterized in that the metal material is pressurized in a pressurized cylinder container at a pressure of 0.5 times or more the yield pressure of the material at the processing temperature; Method for strengthening synthetic resin materials, etc.
JP63243360A 1988-09-27 1988-09-27 Method for strengthening metal material or synthetic resin material or the like Pending JPH0289599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243360A JPH0289599A (en) 1988-09-27 1988-09-27 Method for strengthening metal material or synthetic resin material or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243360A JPH0289599A (en) 1988-09-27 1988-09-27 Method for strengthening metal material or synthetic resin material or the like

Publications (1)

Publication Number Publication Date
JPH0289599A true JPH0289599A (en) 1990-03-29

Family

ID=17102681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243360A Pending JPH0289599A (en) 1988-09-27 1988-09-27 Method for strengthening metal material or synthetic resin material or the like

Country Status (1)

Country Link
JP (1) JPH0289599A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material
US7240529B2 (en) 2003-03-17 2007-07-10 Toyota Jidosha Kabushiki Kaisha Partially reinforcing method and apparatus of metal material
JP2008144208A (en) * 2006-12-07 2008-06-26 Kyushu Univ Fullerene composite and method for manufacturing the same
JP2009061499A (en) * 2007-08-13 2009-03-26 Zenji Hotta Method and apparatus for applying strain
JP2010132973A (en) * 2008-12-04 2010-06-17 San-Etsu Metals Co Ltd Compression twisting device
JP4777775B2 (en) * 2003-03-10 2011-09-21 有限会社リナシメタリ Metal body processing method and metal body processing apparatus
JP2019034336A (en) * 2017-08-10 2019-03-07 長野鍛工株式会社 Equivalent strain introduction method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424958Y1 (en) * 1964-11-13 1967-03-14
JPS49124677A (en) * 1973-04-02 1974-11-28
JPS5036810A (en) * 1973-08-08 1975-04-07
JPS5631366U (en) * 1979-08-17 1981-03-26
JPS62287002A (en) * 1986-06-05 1987-12-12 Ishikawajima Harima Heavy Ind Co Ltd Powder molding method
JPS634003A (en) * 1986-06-24 1988-01-09 Ishikawajima Harima Heavy Ind Co Ltd Powder extruding method
JPS63169301A (en) * 1986-12-29 1988-07-13 Kubota Ltd Method for crushing and molding quickly cooled and solidified powder essentially consisting of al
JPS63241103A (en) * 1987-03-27 1988-10-06 Idea Res:Kk Method for solidifying powder of metal or the like
JPH045636U (en) * 1990-04-27 1992-01-20

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424958Y1 (en) * 1964-11-13 1967-03-14
JPS49124677A (en) * 1973-04-02 1974-11-28
JPS5036810A (en) * 1973-08-08 1975-04-07
JPS5631366U (en) * 1979-08-17 1981-03-26
JPS62287002A (en) * 1986-06-05 1987-12-12 Ishikawajima Harima Heavy Ind Co Ltd Powder molding method
JPS634003A (en) * 1986-06-24 1988-01-09 Ishikawajima Harima Heavy Ind Co Ltd Powder extruding method
JPS63169301A (en) * 1986-12-29 1988-07-13 Kubota Ltd Method for crushing and molding quickly cooled and solidified powder essentially consisting of al
JPS63241103A (en) * 1987-03-27 1988-10-06 Idea Res:Kk Method for solidifying powder of metal or the like
JPH045636U (en) * 1990-04-27 1992-01-20

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777775B2 (en) * 2003-03-10 2011-09-21 有限会社リナシメタリ Metal body processing method and metal body processing apparatus
US8394214B2 (en) 2003-03-10 2013-03-12 Rinascimetalli Ltd. Method for processing metal body and apparatus for processing metal body
US7240529B2 (en) 2003-03-17 2007-07-10 Toyota Jidosha Kabushiki Kaisha Partially reinforcing method and apparatus of metal material
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material
JP2008144208A (en) * 2006-12-07 2008-06-26 Kyushu Univ Fullerene composite and method for manufacturing the same
JP2009061499A (en) * 2007-08-13 2009-03-26 Zenji Hotta Method and apparatus for applying strain
JP2010132973A (en) * 2008-12-04 2010-06-17 San-Etsu Metals Co Ltd Compression twisting device
JP2019034336A (en) * 2017-08-10 2019-03-07 長野鍛工株式会社 Equivalent strain introduction method

Similar Documents

Publication Publication Date Title
CA1222858A (en) Method of object consolidation employing graphite particulate
CA1202788A (en) Method for making thixotropic materials
US4667497A (en) Forming of workpiece using flowable particulate
JPH0289599A (en) Method for strengthening metal material or synthetic resin material or the like
DE1504672B2 (en) Process for the production of molded bodies from cellular polystyrene
JPH01268802A (en) Method for molding metal product
FR2555480A1 (en) PROCESS AND DEVICE FOR THE MANUFACTURE OF COMPACT AGGLOMERATES FROM A FLUID OR SINTERED METAL POWDER
US20060124701A1 (en) Friction stir processing for surface properties
DE2258485C3 (en)
EP0556664B1 (en) Method and apparatus for heating a mould
JPH04228221A (en) Molding method of composite material
JPH0617490B2 (en) Solidification method of crushing / fixing powder containing mainly metal
JPH0289520A (en) Method and apparatus for manufacturing reinforced metal
JP3616591B2 (en) Crystal grain refinement method and grain refiner for metal material
JPS61140328A (en) Formation of superplastic material by using granular body as pressure-transmitting medium
JPS61501692A (en) Extrusion molding equipment and its molding method
JPS61181630A (en) Method of molding powdery particle
JPS62287002A (en) Powder molding method
GB2138731A (en) A Method and Apparatus for Forming an Extruded Product from Powdered or Granular Material or from Feed-Stock
JPS5834102A (en) Powder molding device
KR100291753B1 (en) Press apparatus
JP2593531B2 (en) Extrusion molding method for Al-based rapidly solidified powder
JPH0293031A (en) Manufacture of fiber reinforced composite material
DE2611420C3 (en) Process for the production of molded parts from polymers by impact melting powder or granular raw materials
SU1482764A1 (en) Apparatus for pressing articles from powder materials