JP3616591B2 - Crystal grain refinement method and grain refiner for metal material - Google Patents

Crystal grain refinement method and grain refiner for metal material Download PDF

Info

Publication number
JP3616591B2
JP3616591B2 JP2001270592A JP2001270592A JP3616591B2 JP 3616591 B2 JP3616591 B2 JP 3616591B2 JP 2001270592 A JP2001270592 A JP 2001270592A JP 2001270592 A JP2001270592 A JP 2001270592A JP 3616591 B2 JP3616591 B2 JP 3616591B2
Authority
JP
Japan
Prior art keywords
metal material
container
sample
punch
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270592A
Other languages
Japanese (ja)
Other versions
JP2003073787A (en
JP2003073787A5 (en
Inventor
直幸 金武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001270592A priority Critical patent/JP3616591B2/en
Publication of JP2003073787A publication Critical patent/JP2003073787A/en
Publication of JP2003073787A5 publication Critical patent/JP2003073787A5/ja
Application granted granted Critical
Publication of JP3616591B2 publication Critical patent/JP3616591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/063Friction heat forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、金属又は合金の結晶粒を微細化することにより強度,靭性等、種々の特性を向上させる方法及び結晶粒微細化装置に関する。
【0002】
【従来の技術】
金属又は合金(以下、金属材料で総称する)の結晶粒を微細化するとき、強度,靭性等の特性が向上する。結晶粒の微細化は、金属材料の異方性を打ち消す上でも有効である。しかし、従来の加工熱処理による結晶粒の微細化には限界があるため、強加工で導入される歪による結晶粒微細化が検討されている。
強加工によって結晶粒を微細化する方法としては、圧縮捻り法,ECAP法(Equal Channel Angular Pressing),繰返し圧延接合法等がある(軽金属フォーラム第5巻(1999)第32〜40頁)。圧縮捻り法では、円柱状のコンテナに円柱状金属試料を装填し、パンチを用いて圧縮力,捻り力を金属試料の一端に加えることによって強歪を金属試料に導入し、金属試料の結晶粒を微細化している。ECAP法では、L型孔をもつ金型内に棒状の金属試料を押し通し、断面形状を変えることなく金属試料を強歪加工することによって結晶粒を微細化している。繰返し圧延接合法では、板状金属試料を圧延し、折り重ねた後で再度圧延を繰り返すことによって導入される強歪によって結晶粒を微細化している。
【0003】
【発明が解決しようとする課題】
ECAP法は、主としてアルミニウム合金の結晶粒微細化に利用されているが、装置の大型化は原理的に困難である。繰返し圧延接合法では、良好な接合を形成し圧延荷重を低減するため、再結晶温度以下の温間域で再度の圧延が必要になる。これに対し、圧縮捻り法は、比較的簡単な操作でサブミクロン又は数ミクロンに結晶粒を微細化できる。しかし,従来の圧縮捻り法では、薄い材料や厚み方向片側の狭い領域にある結晶粒が微細化されることが多く、厚い材料や広い領域における結晶粒微細化が困難である。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、上下パンチから独立して回動できるコンテナを採用することによって、コンテナに装填した金属材料に逆方向のネジリを加え、比較的厚みのある金属材料であっても広い領域で結晶粒を微細化し、或いは金属粉末の固化成形と同時に結晶粒を微細化することを目的とする。
【0005】
本発明の結晶粒微細化法は、その目的を達成するため、金属材料が装填されるコンテナを上パンチ,下パンチから独立させて回転自在とし、金属材料に押し付けた状態で上パンチ及び/又は下パンチを相対的に捻り回転させることにより、金属材料に圧縮捻りを繰返し負荷することを特徴とする。
【0006】
また、結晶粒微細化装置は、圧縮捻り加工される金属材料が装填されるコンテナと、該コンテナに装填された金属材料の両端に押し当てられる上パンチ及び下パンチとを備えている。上パンチ及び下パンチからコンテナを独立させて回転自在に配置した状態で上パンチ及び/又は下パンチを相対的に捻り回転させることにより、結晶粒微細化に必要な捻り変形が金属材料の両端に繰返し加えられる。
【0007】
【作用】
本発明に従った結晶粒微細化装置は、図1で模式的に示すように金属材料(試料)Sが装填されるコンテナ1を上下のパンチ2,3から独立させ、コンテナ1の自由回転を可能にしている。金属材料(試料)Sには、中実の金属材料や金属粉末が使用される。中実金属材料では形状変化を伴わずに結晶粒微細化が可能であり、金属粉末では固化成形と同時に成形体の結晶粒微細化が可能である。
【0008】
コンテナ1に装填した金属材料(試料)Sに上パンチ2及び下パンチ3を圧下力Fで押し付けて上パンチ2を捻ると、摩擦力によってコンテナ1が上パンチ2と同じ方向に回転し、ネジリを加えていない下パンチ3はコンテナ1に対して相対的に逆方向に回転する。その結果、パンチ2,3で上下逆方向のネジリ変形が金属材料(試料)Sに加えられる。
ネジリ変形は、上パンチ2に代えて下パンチ3を捻ること、或いはパンチ2と3を逆方向に捻り回転させることによっても金属材料(試料)Sに加えられる。何れの場合も、金属材料(試料)Sの両端から捻り力Tが与えられるため、厚い金属材料であっても結晶粒微細化に必要な塑性歪みが導入される。
【0009】
これに対し、従来の圧縮捻り法(図2)では、固定されたコンテナ1の凹部に装填した金属材料(試料)Sにパンチ2を押し付けてネジリ変形させているので、金属材料(試料)Sの一端に捻り力Tが加えられるだけである。そのため、本発明法に比較して金属材料(試料)Sに加えられる捻り力Tの効果が大幅に少なく、コンテナ1の凹部底面側にある金属材料(試料)Sには結晶粒微細化に十分な塑性歪みが導入されない。
【0010】
この対比から明らかなように、本発明の圧縮捻り法は、金属材料(試料)Sの両端に捻り力Tを加えているので、単純計算で従来法に比較して2倍の塑性歪みを金属材料(試料)Sに導入でき、結晶粒が効率よく微細化される。また、比較的厚い金属材料(試料)Sであっても、両端から加えられる捻り力Tによって広い領域にわたって結晶粒が微細化される。
【0011】
【実施例1】
金属材料(試料)Sとして、直径25mm,高さ10mmの純Al溶製材を使用した。この純Al溶製材は、平均結晶粒径が100μm前後であった。金属材料(試料)Sをコンテナ1に装填し、300℃に加温した状態でパンチ2,3により75MPaの圧下力Fを加え、捻り角度±45度,捻り周波数1/6Hz,捻り回数50回で上パンチ2を捻ることによって金属材料(試料)Sに塑性歪みを導入した。
【0012】
加工後の金属材料(試料)Sを観察したところ、パンチ2,3側から2〜3mmの領域で結晶粒が平均粒径1〜5μmまで微細化されていた。また、コンテナ1の内周面近傍においても塑性歪みが導入されるため、結晶粒の微細化が図られた。
これに対し、固定式コンテナ1に装填した金属材料(試料)Sに捻り変形を加える従来法(図2)では、同じ条件下でパンチ2を捻ったところ、パンチ2側から2〜3mmの領域で結晶粒微細化が進行したに過ぎず、コンテナ1の凹部底面側を始めとする他の部分では当初の平均粒径100μmのままであった。
【0013】
【実施例2】
平均粒径70μmのBi−Te−Sb合金粉末を直径25mm,高さ10mmの円柱状に室温で圧粉成形した圧粉体を金属材料(試料)Sとして使用した。圧粉体Sをコンテナ1に装填して500℃に加温し、圧下力F75MPaでパンチ2,3を金属材料(試料)Sに押し付けた。そして、捻り角度±45度,捻り周波数1/6Hz,捻り回数10回の条件下で圧粉体Sに塑性歪みを導入した。
【0014】
加工後の圧粉体Sをコンテナ1から取り出して観察したところ、粉末が十分に固化しており一体の円柱試料に成形されていた。得られた成形体の高さ方向,半径方向の各部からサンプリングした試料の結晶粒径を測定した。その結果、パンチ2,3側から2〜3mmの領域で平均粒径1〜5μmまで微細化されており、コンテナ1の内周面近傍においても特に微細化が顕著であった。
保持温度,捻り周波数,捻り回数を変えることによって微細化領域も変化し、最大で高さ10mmの試料のほぼ全領域まで微細化可能であった。
【0015】
【発明の効果】
以上に説明したように、本発明においては、上下のパンチからコンテナを独立させることによって金属材料の両端に捻り変形を加えているので、結晶粒微細化に必要な塑性歪みが従来の圧縮捻り法に比較して大幅に広い領域に導入される。そのため、厚い金属材料であっても広範囲で結晶粒微細化が可能となり、金属材料の特性改善が図られる。
【図面の簡単な説明】
【図1】本発明に従った結晶粒微細化装置の概略図
【図2】従来法の圧縮捻り法を説明するための図
[0001]
[Industrial application fields]
The present invention relates to a method and a crystal grain refining apparatus for improving various properties such as strength and toughness by refining metal or alloy crystal grains.
[0002]
[Prior art]
When crystal grains of a metal or alloy (hereinafter collectively referred to as a metal material) are refined, properties such as strength and toughness are improved. Refinement of crystal grains is also effective in canceling the anisotropy of the metal material. However, since there is a limit to the refinement of crystal grains by conventional thermomechanical processing, refinement of crystal grains due to strain introduced by strong processing has been studied.
As a method for refining crystal grains by strong processing, there are a compression twisting method, an ECAP method (Equal Channel Angular Pressing), a repeated rolling joining method and the like (Light Metal Forum Vol. 5 (1999), pages 32 to 40). In the compression torsion method, a cylindrical metal sample is loaded into a cylindrical container, and a strong strain is introduced into the metal sample by applying a compressive force and a twisting force to one end of the metal sample using a punch. Is miniaturized. In the ECAP method, a rod-shaped metal sample is pushed through a metal mold having an L-shaped hole, and the crystal grain is refined by subjecting the metal sample to high strain processing without changing the cross-sectional shape. In the repeated rolling joining method, a plate-shaped metal sample is rolled, folded, and then crystal grains are refined by strong strain introduced by repeating rolling again.
[0003]
[Problems to be solved by the invention]
The ECAP method is mainly used for crystal grain refinement of an aluminum alloy, but it is difficult in principle to increase the size of the apparatus. In the repeated rolling joining method, in order to form a good joint and reduce the rolling load, it is necessary to perform rolling again in a warm region below the recrystallization temperature. On the other hand, the compression twist method can refine crystal grains to submicron or several microns with a relatively simple operation. However, in the conventional compression torsion method, the crystal grains in a thin material or a narrow region on one side in the thickness direction are often miniaturized, and it is difficult to refine the crystal grain in a thick material or a wide region.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such problems, and by adopting a container that can be rotated independently from the upper and lower punches, a twist in the reverse direction is added to the metal material loaded in the container, The object is to refine crystal grains in a wide area even with a relatively thick metal material, or to refine crystal grains simultaneously with solidification molding of metal powder.
[0005]
In order to achieve the object of the grain refinement method of the present invention, the container loaded with the metal material can be rotated independently from the upper punch and the lower punch, and the upper punch and / or the metal material can be rotated while pressed against the metal material. By rotating the lower punch relatively torsionally , the metal material is repeatedly subjected to compression torsion .
[0006]
The crystal grain refining device includes a container loaded with a metal material to be subjected to compression twisting, and an upper punch and a lower punch pressed against both ends of the metal material loaded in the container. By twisting and rotating the upper punch and / or the lower punch relative to each other in a state where the container is disposed independently of the upper punch and the lower punch, the twist deformation necessary for crystal grain refinement is applied to both ends of the metal material. Added repeatedly .
[0007]
[Action]
The crystal grain refining apparatus according to the present invention makes a container 1 loaded with a metal material (sample) S independent of upper and lower punches 2 and 3 as shown schematically in FIG. It is possible. For the metal material (sample) S, a solid metal material or metal powder is used. With solid metal materials, crystal grains can be refined without changing the shape, and with metal powders, crystal grains can be refined simultaneously with solidification.
[0008]
When the upper punch 2 and the lower punch 3 are pressed against the metal material (sample) S loaded in the container 1 with the reduction force F and the upper punch 2 is twisted, the container 1 is rotated in the same direction as the upper punch 2 by the friction force, and the twist The lower punch 3 to which no is added rotates relative to the container 1 in the opposite direction. As a result, the torsional deformation in the upside down direction is applied to the metal material (sample) S by the punches 2 and 3.
The twist deformation is also applied to the metal material (sample) S by twisting the lower punch 3 instead of the upper punch 2 or twisting and rotating the punches 2 and 3 in the opposite directions. In any case, since the twisting force T is applied from both ends of the metal material (sample) S, plastic strain necessary for crystal grain refinement is introduced even if the metal material is thick.
[0009]
On the other hand, in the conventional compression torsion method (FIG. 2), the punch 2 is pressed against the metal material (sample) S loaded in the recessed portion of the fixed container 1 so that the metal material (sample) S is deformed. Only a twisting force T is applied to one end of the. Therefore, the effect of the twisting force T applied to the metal material (sample) S is significantly less than that of the method of the present invention, and the metal material (sample) S on the bottom surface side of the recess of the container 1 is sufficient for crystal grain refinement. Plastic strain is not introduced.
[0010]
As is clear from this comparison, the compression torsion method of the present invention applies a twisting force T to both ends of the metal material (sample) S, so that the plastic strain twice as much as that of the conventional method can be obtained by simple calculation. It can be introduced into the material (sample) S, and the crystal grains are efficiently miniaturized. Even in the case of a relatively thick metal material (sample) S, crystal grains are refined over a wide region by the twisting force T applied from both ends.
[0011]
[Example 1]
As the metal material (sample) S, a pure Al ingot having a diameter of 25 mm and a height of 10 mm was used. This pure Al ingot material had an average crystal grain size of around 100 μm. A metal material (sample) S is loaded in the container 1 and heated to 300 ° C., a punching force F of 75 MPa is applied by the punches 2 and 3, a twist angle ± 45 degrees, a twist frequency 1/6 Hz, and the number of twists 50 times. Then, plastic strain was introduced into the metal material (sample) S by twisting the upper punch 2.
[0012]
When the metal material (sample) S after processing was observed, the crystal grains were refined to an average particle diameter of 1 to 5 μm in a region of 2 to 3 mm from the punches 2 and 3 side. Further, since plastic strain is also introduced in the vicinity of the inner peripheral surface of the container 1, the crystal grains are miniaturized.
On the other hand, in the conventional method (FIG. 2) in which the metal material (sample) S loaded in the fixed container 1 is twisted, the punch 2 is twisted under the same conditions. However, the refinement of the crystal grains only progressed, and the initial average grain size remained at 100 μm in other parts including the bottom surface of the concave portion of the container 1.
[0013]
[Example 2]
A green compact obtained by compacting Bi-Te-Sb alloy powder having an average particle size of 70 μm into a cylindrical shape having a diameter of 25 mm and a height of 10 mm at room temperature was used as the metal material (sample) S. The green compact S was loaded into the container 1 and heated to 500 ° C., and the punches 2 and 3 were pressed against the metal material (sample) S with a rolling force F75 MPa. Then, plastic strain was introduced into the green compact S under the conditions of a twist angle of ± 45 degrees, a twist frequency of 1/6 Hz, and a twist frequency of 10 times.
[0014]
When the green compact S after processing was taken out from the container 1 and observed, the powder was sufficiently solidified and formed into an integral cylindrical sample. The crystal grain size of the sample sampled from each part in the height direction and radial direction of the obtained compact was measured. As a result, it was refined to an average particle diameter of 1 to 5 μm in the region of 2 to 3 mm from the punch 2 and 3 side, and the refinement was particularly remarkable in the vicinity of the inner peripheral surface of the container 1.
By changing the holding temperature, the twist frequency, and the number of twists, the miniaturization region also changed, and it was possible to miniaturize almost the entire region of a sample having a maximum height of 10 mm.
[0015]
【The invention's effect】
As described above, in the present invention, twisting deformation is applied to both ends of the metal material by making the container independent from the upper and lower punches, so that the plastic strain necessary for crystal grain refinement is the conventional compression twisting method. Compared to, it is introduced in a wide area. Therefore, even if it is a thick metal material, crystal grain refinement is possible in a wide range, and the characteristics of the metal material can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a crystal grain refining apparatus according to the present invention. FIG. 2 is a diagram for explaining a conventional compression twisting method.

Claims (2)

金属材料が装填されるコンテナを上パンチ,下パンチから独立させて回転自在とし、金属材料に押し付けた状態で上パンチ及び/又は下パンチを相対的に捻り回転させることにより、金属材料に圧縮捻りを繰返し負荷することを特徴とする金属材料の結晶粒微細化方法。The container loaded with the metal material can be rotated independently of the upper punch and the lower punch, and the upper punch and / or the lower punch is relatively twisted and rotated while being pressed against the metal material. A method for refining crystal grains of a metal material, characterized by repeatedly loading 圧縮捻り加工される金属材料が装填されるコンテナと、該コンテナに装填された金属材料の両端に押し当てられる上パンチ及び下パンチとを備え、上パンチ及び下パンチから独立して前記コンテナを回転自在に配置し、上パンチ及び/又は下パンチの相対的な捻り回転によって金属材料の両端に捻り変形を繰返し加えることを特徴とする結晶粒微細化装置。A container loaded with a metal material to be compression-twisted, and an upper punch and a lower punch pressed against both ends of the metal material loaded in the container, the container being rotated independently of the upper punch and the lower punch A crystal grain refining device that is freely arranged and repeatedly applies twist deformation to both ends of a metal material by relative twist rotation of an upper punch and / or a lower punch.
JP2001270592A 2001-09-06 2001-09-06 Crystal grain refinement method and grain refiner for metal material Expired - Fee Related JP3616591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270592A JP3616591B2 (en) 2001-09-06 2001-09-06 Crystal grain refinement method and grain refiner for metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270592A JP3616591B2 (en) 2001-09-06 2001-09-06 Crystal grain refinement method and grain refiner for metal material

Publications (3)

Publication Number Publication Date
JP2003073787A JP2003073787A (en) 2003-03-12
JP2003073787A5 JP2003073787A5 (en) 2004-08-26
JP3616591B2 true JP3616591B2 (en) 2005-02-02

Family

ID=19096226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270592A Expired - Fee Related JP3616591B2 (en) 2001-09-06 2001-09-06 Crystal grain refinement method and grain refiner for metal material

Country Status (1)

Country Link
JP (1) JP3616591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480789A (en) * 2013-10-18 2014-01-01 核工业理化工程研究院 Pressure-torsion forming method of high-strength aluminium-alloy disc-shaped workpiece

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563716B2 (en) * 2004-04-08 2010-10-13 有限会社リナシメタリ Forging apparatus and forging method
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material
JP4652882B2 (en) * 2005-03-29 2011-03-16 古河電気工業株式会社 Thin speaker
JP2007084889A (en) * 2005-09-22 2007-04-05 Aisin Seiki Co Ltd Aluminum alloy and its production method
JP5310272B2 (en) * 2009-06-01 2013-10-09 株式会社明電舎 Electrode contact member for vacuum circuit breaker and method for manufacturing electrode contact member for vacuum circuit breaker
KR101323168B1 (en) * 2011-12-16 2013-11-05 포항공과대학교 산학협력단 Torsional severe plastic deformation method for conical tube metals
JP6069145B2 (en) * 2013-09-12 2017-02-01 住友重機械工業株式会社 High pressure twist molding machine
CN107639152B (en) * 2017-10-17 2018-12-07 燕山大学 A kind of shear-deformable device of laser gain material test specimen friction pressure
JP7090281B2 (en) * 2018-05-14 2022-06-24 善治 堀田 Manufacturing method of long wire rod and equivalent strain introduction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480789A (en) * 2013-10-18 2014-01-01 核工业理化工程研究院 Pressure-torsion forming method of high-strength aluminium-alloy disc-shaped workpiece
CN103480789B (en) * 2013-10-18 2015-11-18 核工业理化工程研究院 Aluminium alloy dish workpiece pressure turns round forming method

Also Published As

Publication number Publication date
JP2003073787A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP3616591B2 (en) Crystal grain refinement method and grain refiner for metal material
JP4305151B2 (en) Material torsion extrusion process
JP6077000B2 (en) Torsional high strain processing method for conical metal members
JP2002509191A (en) High-density components made by uniaxial compression of agglomerated spherical metal powder
US4921664A (en) Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy
JP2001073062A (en) Production of amorphous soft magnetic alloy powder molded body
JP2003073787A5 (en)
US4996014A (en) Method for manufacture of spike rivits
JPH0617490B2 (en) Solidification method of crushing / fixing powder containing mainly metal
JPH0289599A (en) Method for strengthening metal material or synthetic resin material or the like
Kvačkaj et al. Simulation of ECAP process by finite element method
WO2019172302A1 (en) Continuous casting method for steel and reduction roll for continuous casting
JP4309026B2 (en) Spiral bevel gear manufacturing equipment
JP3308241B2 (en) Metal material compression processing equipment
Ahn et al. Compressibility of hierarchic-architectured agglomerates of hydrogen-reduced copper nanopowders
JPH03240901A (en) Manufacture of sintered oil-containing bearing
DE102008035854B4 (en) Process for the production of compacts
RU2192333C2 (en) Method for dynamic treatment of powder materials
JPS62198354A (en) Presser for tea leaf
JPH05239506A (en) Production of metal powder sintered compact
JP2640642B2 (en) Method of improving alloy material properties and processing apparatus and product thereof
SU1482764A1 (en) Apparatus for pressing articles from powder materials
JP2000035015A (en) Ceramic pin and manufacture therefor
JPH0740092A (en) Press molding method using flastic material mold
JPH03267326A (en) Production of sintered body made of amorphous alloy powder

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees