JPH0740092A - Press molding method using flastic material mold - Google Patents

Press molding method using flastic material mold

Info

Publication number
JPH0740092A
JPH0740092A JP20576793A JP20576793A JPH0740092A JP H0740092 A JPH0740092 A JP H0740092A JP 20576793 A JP20576793 A JP 20576793A JP 20576793 A JP20576793 A JP 20576793A JP H0740092 A JPH0740092 A JP H0740092A
Authority
JP
Japan
Prior art keywords
pressure
powder
mold
molded body
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20576793A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Yasuo Manabe
康夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20576793A priority Critical patent/JPH0740092A/en
Publication of JPH0740092A publication Critical patent/JPH0740092A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent distorted deformation and to improve surface roughness by packing powder into a mold composed of a soft elastic material, setting the molded article pressurized in a low pressure region into a mold composed of a soft elastic material and subjecting the powder and molded article to press molding under a high pressure. CONSTITUTION:The powder 6 is packed into the first mold 1 and after its aperture is closed, a pressure medium is introduced between pressurizing rubber 5 and a high-pressure vessel 2 from an introducing hole 7. The pressurizing pressure is set at a low pressure to yield the molded articles 21 which can be handled. The first molded article 21 is taken out after the pressurization treatment and is set into the second mold 11, by which the molded article is subjected to the pressurization treatment under the high pressure and the second molded article 22 is obtd. A hard material is used for the elastic material 5 of the second mold 11 to prevent remaining of the shape of the powder 6 on the surface of the second molded article 22. The soft elastic material 5 capable of following up the shrinkage of the powder 6 is used for the first mold 1 which is large in change of apparent density and, therefore, the distorted deformation, such as elephant leg phenomenon, is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金あるいはセラ
ミックス等の粉末を、弾性体製成形型を用いて、等方圧
又は疑似等方圧で加圧成形する弾性体製成形型を用いる
加圧成形方法に関するものであり、特に成形精度の優れ
た加圧成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic molding die for pressing powder of powder metallurgy, ceramics or the like using an elastic molding die under isotropic pressure or pseudo isotropic pressure. The present invention relates to a pressure molding method, and more particularly to a pressure molding method having excellent molding accuracy.

【0002】[0002]

【従来の技術】粉末冶金あるいはセラミックス等の粉末
の加圧成形方法として、ゴムなどの弾性体からなる容器
や型に粉末を充填して、容器又は型の外側から流体圧力
で圧縮する冷間等方加圧法、あるいはプレス装置を用い
て疑似等方的に加圧する弾性体製成形型を用いたプレス
法(特開昭59−224308号公報、特開平4−36
3010号公報参照)がある。これらの方法は、いずれ
も金属製の金型を用いて加圧する金型成形と比べて、成
形型が安価で、複雑形状の製品への適用が容易である。
2. Description of the Related Art As a method for pressure-molding powder such as powder metallurgy or ceramics, a container or a mold made of an elastic material such as rubber is filled with the powder and compressed by fluid pressure from the outside of the container or the mold. Direction pressing method or a pressing method using an elastic molding die that is pseudo-isotropically pressed using a pressing device (JP-A-59-224308 and JP-A-4-36).
3010 publication). In all of these methods, the molding die is less expensive than the die molding in which a metal die is used for pressurization, and it is easy to apply to a product having a complicated shape.

【0003】しかし、一般に、粉末の成形圧力と密度と
の関係は、図6(アルミナの造粒粉末)及び図7(窒化
ケイ素の造粒粉末(信越化学社製のKSN−10M−7
X))に示すように、成形体の見かけ密度の上昇、換言
すると寸法の収縮は500kgf/cm2 以下の圧力で
顕著であり、この傾向は他のセラミックス粉末であって
も同様である。一般に、成形型に充填された初期状態の
粉末のかさ密度は低いため、加圧初期に最密充填状態に
変化して、粉末全体の見かけ体積が大きく収縮する。一
方、粉末全体が大きく収縮する低圧域では、弾性体製成
形型の剛性のために、粉末に追随して収縮できず、冷間
等方加圧法で流体圧力を等方的に作用させても、相似的
な収縮からずれた成形体が得られる傾向にある。このず
れの傾向は、ゴムの弾性率(実用的には硬度)が大きい
程、また成形型の肉厚が厚くなる程顕著となる。
However, in general, the relationship between the molding pressure and the density of the powder is shown in FIGS. 6 (alumina granulated powder) and 7 (silicon nitride granulated powder (KSN-10M-7 manufactured by Shin-Etsu Chemical Co., Ltd.).
As shown in (X)), the increase in the apparent density of the molded body, in other words, the dimensional shrinkage is remarkable at a pressure of 500 kgf / cm 2 or less, and this tendency is the same for other ceramic powders. Generally, since the bulk density of the powder in the initial state filled in the mold is low, it changes to the closest packed state in the initial stage of pressurization, and the apparent volume of the entire powder shrinks greatly. On the other hand, in the low pressure region where the whole powder largely contracts, due to the rigidity of the elastic mold, the powder cannot contract following the powder, and even if the fluid pressure is isotropically applied by the cold isostatic pressing method. However, there is a tendency that a molded product deviated from the similar shrinkage is obtained. The tendency of this deviation becomes more remarkable as the elastic modulus (practically, hardness) of the rubber increases and the wall thickness of the molding die increases.

【0004】例えば、JIS硬度70〜90°程度で肉
厚な弾性体製成形型を用いた場合、加圧初期において、
粉末の収縮に追随できないため、加圧初期で曲げ変形を
生じ、円筒状の成形体を得ようと思っても鼓状の成形体
となる場合がある。一般に、剛性の大きな硬質ゴム材か
らなる成形型を用いて成形する場合、単純な円柱状の成
形であっても、鼓状の成形体あるいは上下端部の外径が
中央部に比して大きい所謂象の足現象を呈した成形体が
得られるなど、多かれ少なかれ成形体はいびつに変形し
ており、成形後に切削等の加工が必要となる。
For example, when a thick elastic mold having a JIS hardness of 70 to 90 ° is used, in the initial stage of pressing,
Since it cannot follow the contraction of the powder, bending deformation occurs at the initial stage of pressing, and a cylindrical shaped body may be formed even if an attempt is made to obtain a cylindrical shaped body. Generally, when molding using a mold made of hard rubber with high rigidity, the outer diameter of the drum-shaped molded body or the upper and lower ends is larger than that of the center even if it is a simple cylindrical molding. The molded body is deformed more or less distorted, such as a molded body exhibiting a so-called elephant foot phenomenon is obtained, and it is necessary to perform processing such as cutting after molding.

【0005】一方、剛性が低く肉厚の薄い弾性体製成形
型を用いた場合、弾性体製成形型は粉末に追随して収縮
することが可能となり、成形体がいびつに変形すること
をある程度低減することができるが、ゴム型そのものを
精度良く製作することが困難で十分な寸法精度が得られ
ない。また、成形体表面に造粒粉の粒子形状(粒径が数
10〜100μm)がそのまま残るなど、表面粗度が劣
るという問題がある。
On the other hand, when an elastic mold having a low rigidity and a small thickness is used, the elastic mold can shrink following the powder, and the molded body may deform to some extent. Although it can be reduced, it is difficult to manufacture the rubber mold itself with high accuracy and sufficient dimensional accuracy cannot be obtained. Further, there is a problem that the surface roughness is inferior such that the particle shape of the granulated powder (particle size is several 10 to 100 μm) remains on the surface of the molded body.

【0006】本発明は、上記技術的背景に基づいてなさ
れたものであり、その目的とするところは、弾性体製成
形型を用いて、形状及び寸法精度の要求を満足し得る粉
末成形体を得ることができる加圧成形方法を提供するこ
とにある。
The present invention has been made based on the above technical background, and an object of the present invention is to provide a powder compact which can satisfy the requirements of shape and dimensional accuracy by using an elastic mold. It is to provide a pressure molding method that can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明の弾性体製成形型
を用いる加圧成形方法は、軟質の弾性体で構成された第
1成形型に粉末を充填して、低圧力域で加圧して第1成
形体を得る第1工程と;前記第1成形体を、硬質の弾性
体で構成された第2成形型にセットして、第1工程より
も高い圧力で加圧成形を行う第2工程と;を含むことを
特徴とする。
A method of pressure molding using an elastic body molding die of the present invention is a method in which a first molding die made of a soft elastic body is filled with powder and pressed in a low pressure range. A first step of obtaining a first molded body by pressing; the first molded body is set in a second molding die made of a hard elastic body, and pressure molding is performed at a higher pressure than in the first step. 2 steps and; are included.

【0008】[0008]

【作用】第1工程で用いられる第1成形型は軟質の弾性
体で構成されている。よって、第1工程では、第1成形
型が粉末の収縮に追随して収縮できるので、加圧による
粉末の収縮量が大きいにも拘らず、いびつな変形がない
第1成形体が得られる。次いで、第2工程では、第1工
程よりも高圧で加圧するが、第1成形体の寸法収縮は、
第1工程での粉末の収縮程大きくないので、硬質の弾性
体で構成される第2成形型でも追随できる。一方、硬質
の第2成形型で加圧成形するので、成形体表面の粒子が
圧潰されるため、第2工程で得られる成形体の表面粗度
は優れている。
The first mold used in the first step is made of a soft elastic body. Therefore, in the first step, since the first mold can shrink following the shrinkage of the powder, a first compact having no distorted deformation can be obtained despite the large amount of shrinkage of the powder due to pressurization. Next, in the second step, pressure is applied at a higher pressure than in the first step, but the dimensional shrinkage of the first molded body is
Since it is not as large as the contraction of the powder in the first step, it can be followed even by the second molding die made of a hard elastic body. On the other hand, since pressure molding is performed with a hard second molding die, particles on the surface of the molded body are crushed, and thus the surface roughness of the molded body obtained in the second step is excellent.

【0009】[0009]

【実施例】以下に本発明の方法を図1に基づいて説明す
る。図1は、本発明の加圧成形方法を、乾式の等方加圧
成形方法に適用した実施例を示している。図1(a)
は、第1工程に用いられる第1成形型1を備えたドライ
式冷間等方加圧装置10を示している。この装置は、従
来よりドライバッグ法に用いられている冷間等方加圧装
置である。すなわち、円筒状の高圧容器2内に加圧用ゴ
ム型5を介して円筒状の第1成形型1が設けられてい
る。高圧容器2の上下開口部には蓋体3、3が取りつけ
られていて、該蓋体3、3には、第1成形型1に充填さ
れた粉末を加圧するためのパンチ4、4が取りつけられ
ている。第1成形型1のサイズ、すなわち、粉末が充填
される部分のサイズは、直径D1 、高さH1 で表されて
いる。
The method of the present invention will be described below with reference to FIG. FIG. 1 shows an embodiment in which the pressure molding method of the present invention is applied to a dry isotropic pressure molding method. Figure 1 (a)
Shows a dry cold isotropic pressurizing device 10 provided with a first molding die 1 used in the first step. This device is a cold isotropic pressurizer conventionally used in the dry bag method. That is, the cylindrical first molding die 1 is provided in the cylindrical high-pressure container 2 with the pressing rubber die 5 interposed therebetween. Lids 3 and 3 are attached to the upper and lower openings of the high-pressure container 2, and punches 4 and 4 for pressing the powder filled in the first mold 1 are attached to the lids 3 and 3. Has been. The size of the first mold 1, that is, the size of the portion filled with powder is represented by a diameter D 1 and a height H 1 .

【0010】ここで、第1成形型1の構成材料は、低圧
力域での圧縮量が大きい軟質の弾性体であればよく、具
体的にはJIS硬度50°以下、特に20°以下のラテ
ックス、ウレタンゴム、シリコンゴムなどが好ましく用
いられる。第1成形型1のサイズすなわち直径D1 及び
高さH1 は、得ようとする成形体の形状、サイズ、充填
する粉末の種類、充填量等により適宜選択される。
Here, the constituent material of the first molding die 1 may be a soft elastic body having a large compression amount in a low pressure region, and specifically, a latex having a JIS hardness of 50 ° or less, particularly 20 ° or less. , Urethane rubber, silicone rubber and the like are preferably used. The size of the first molding die 1, that is, the diameter D 1 and the height H 1 is appropriately selected depending on the shape and size of the molded body to be obtained, the type of powder to be filled, the filling amount, and the like.

【0011】この第1成形型1に、成形しようとする粉
末6を充填し、第1成形型1の開口部を閉塞し、シール
した後、低圧P1 をかける。加圧処理は、加圧ゴム5と
高圧容器2内面により形成される空間部に加圧された圧
力媒体が導入孔7より導入され、加圧ゴム5を介して行
われる。第1工程での加圧圧力P1 は、成形体の見かけ
密度の変化が大きい低圧力域においてハンドリングが可
能な成形体が得られる程度の圧力が、成形粉末の種類に
より適宜選択される。例えば、図6に示す特性を有する
アルミナの造粒粉末の場合には、加圧による密度上昇が
顕著な300〜400kgf/cm2 以下で、且つ成形
体のハンドリングの観点から150kgf/cm2 以上
の圧力域からP1を選択すればよい。
The first mold 1 is filled with the powder 6 to be molded, the opening of the first mold 1 is closed and sealed, and then a low pressure P 1 is applied. The pressurizing process is performed through the pressurizing rubber 5 by introducing the pressurized pressure medium into the space formed by the pressurizing rubber 5 and the inner surface of the high-pressure container 2 through the introducing hole 7. The pressurizing pressure P 1 in the first step is appropriately selected depending on the type of the molding powder, so that a pressure can be obtained in which the molded body can be handled in a low pressure range where the apparent density of the molded body is largely changed. For example, in the case of the granulated powder of alumina having the characteristics shown in FIG. 6, the density increase due to pressurization is remarkably 300 to 400 kgf / cm 2 or less, and 150 kgf / cm 2 or more from the viewpoint of handling of the molded body. P 1 may be selected from the pressure range.

【0012】P1 で加圧処理後、第1成形型1より第1
成形体を取り出す。第1工程での加圧処理により得られ
た第1成形体は、図1(b)中、21で示されている。
第1工程での加圧処理により、第1成形体21のサイズ
(直径d1 ,高さh1 )は、径d1 <D1 、高さh1
1 となっている。次いで、この第1成形体21を、第
2成形型11を備えた第2冷間等方加圧装置20にセッ
トする(図1(c)参照)。
After the pressure treatment at P 1 , the first mold 1
Take out the molded body. The first compact obtained by the pressure treatment in the first step is indicated by 21 in FIG. 1 (b).
By the pressure treatment in the first step, the size (diameter d 1 , height h 1 ) of the first molded body 21 has a diameter d 1 <D 1 and a height h 1 <.
It is H 1 . Next, the first molded body 21 is set in the second cold isotropic pressurizing device 20 including the second molding die 11 (see FIG. 1C).

【0013】ここで、第2冷間等方加圧装置20は、第
2成形型11のサイズが小さくなったこと以外は、第1
冷間等方加圧装置10と同様の構成を有している。第1
冷間等方加圧装置10と等価な部分については、共通の
符号を付して説明を省略する。第2成形型11のサイズ
は、第1成形型1よりも小さく、且つ第1成形体21を
収容することができるように、径、高さとも僅かながら
第1成形体21よりも大きいだけである。すなわち、直
径d1 <D2 <D1 、高さh1 <H2 <H1 の関係を有
している。
Here, the second cold isotropic pressurizing device 20 is the first one except that the size of the second mold 11 is reduced.
It has the same configuration as the cold isostatic pressing device 10. First
The parts equivalent to those of the cold isostatic pressing device 10 are designated by common reference numerals and the description thereof will be omitted. The size of the second molding die 11 is smaller than that of the first molding die 1 and is larger than that of the first molding body 21 so that the first molding body 21 can be accommodated therein. is there. That is, there is a relationship of diameter d 1 <D 2 <D 1 and height h 1 <H 2 <H 1 .

【0014】第2工程に用いられる第2成形型11は、
第1成形型1の構成材料よりも硬質な弾性体材料で構成
されている。特に、第1成形体21が造粒粉末から構成
される場合には、第2工程で得られる成形体(以下、
「第2成形体」という)22表面に造粒粒子の粉末形状
が残らないように、JIS硬度50°以上、特に70°
以上のゴム材で構成されることが好ましい。第2成形型
11を構成する弾性体製材料としては、ウレタンゴム、
ニトリルゴム、天然ゴム等で高硬度なゴム材の他、微細
なセラミックス粒子等を分散させて剛性を高めたゴム材
が用いられる。また、第2成形型11のうち、第1成形
体21との接触部分のみを硬質の弾性体で構成した2重
構造の成形型を用いることもできる。
The second molding die 11 used in the second step is
It is made of an elastic material that is harder than the constituent material of the first mold 1. In particular, when the first molded body 21 is composed of granulated powder, the molded body obtained in the second step (hereinafter,
(Referred to as "second molded body") 22 so that the powder shape of the granulated particles does not remain on the surface, JIS hardness is 50 ° or more, especially 70 °
It is preferably composed of the above rubber material. As the elastic material made of the second mold 11, urethane rubber,
In addition to a high hardness rubber material such as nitrile rubber or natural rubber, a rubber material in which fine ceramic particles or the like are dispersed to increase rigidity is used. In addition, it is also possible to use a molding die having a double structure in which only a contact portion of the second molding die 11 with the first molding body 21 is made of a hard elastic body.

【0015】第2成形型11に第1成形体21をセット
した後、開口部を閉塞し、シールして第2工程である冷
間等方加圧処理する。第2工程での加圧圧力P2 は、第
1工程の圧力P1 よりも大きく、緻密な第2成形体を得
るのに必要な圧力で、適宜選択される。第2工程で得ら
れた第2成形体22を図1(d)に示す。第2成形体2
2のサイズは、直径d2 、高さh2 で表されている。
After setting the first molded body 21 in the second molding die 11, the opening is closed and sealed, and the cold isostatic pressing process which is the second step is carried out. The pressurizing pressure P 2 in the second step is higher than the pressure P 1 in the first step and is a pressure necessary for obtaining a dense second molded body, and is appropriately selected. The second molded body 22 obtained in the second step is shown in FIG. Second molded body 2
The size of 2 is represented by a diameter d 2 and a height h 2 .

【0016】以上のような成形方法によれば、第1工程
にて、第1成形型1は粉末6の収縮に追随して収縮でき
るので、象の足現象等を生じることなく、第1成形体2
1を得ることができる。次いで、第2工程では、成形体
21の密度変化が小さいので、硬質の弾性体でなる第2
成形型11であっても十分に追随して収縮することがで
きる。しかも、第1成形体21との接触部分が硬質材で
構成されているため、成形用粉末6として造粒粒子を用
いても、第2成形体22表面に表れる造粒粒子の粒子形
状を圧潰することができる。すなわち、表面粗度の向上
を図ることができる。
According to the above-mentioned molding method, the first molding die 1 can shrink following the shrinkage of the powder 6 in the first step, so that the first molding can be performed without causing an elephant foot phenomenon. Body 2
1 can be obtained. Next, in the second step, since the density change of the molded body 21 is small, the second body made of a hard elastic body is used.
Even the molding die 11 can sufficiently follow and shrink. Moreover, since the contact portion with the first molded body 21 is made of a hard material, even if the granulated particles are used as the molding powder 6, the particle shape of the granulated particles appearing on the surface of the second molded body 22 is crushed. can do. That is, it is possible to improve the surface roughness.

【0017】従って、本発明の加圧成形方法によれば、
象の足現象等の歪な変形がなく、かつ成形体の表面粗度
が優れた第2成形体が得られる。なお、上記実施例にお
いては、第1工程及び第2工程いずれも乾式の冷間等方
加圧加圧処理を行ったが、本発明は弾性体成形型を用い
て加圧する方法であればよく、例えば、図2に示すよう
な湿式の冷間等方加圧加圧装置を用いる方法であっても
よい。図2中、弾性体成形型は31で示されている。ま
た、流体による加圧のみならず、図3に示すように、弾
性体成形型32をパンチ33等で加圧する弾性体製成形
型を用いるプレス方式にも適用される。弾性体製成形型
を用いるプレス方式の詳細については、特開昭59−2
24308号公報に開示されている。
Therefore, according to the pressure molding method of the present invention,
It is possible to obtain a second molded body that is free from distorted deformation such as an elephant foot phenomenon and has an excellent surface roughness. In the above examples, the dry cold isostatic pressing treatment was performed in both the first step and the second step, but the present invention may be performed by a method of pressing using an elastic mold. Alternatively, for example, a method using a wet cold isotropic pressurizing device as shown in FIG. 2 may be used. In FIG. 2, the elastic mold is indicated by 31. Further, not only the pressurization by the fluid but also the pressing method using the elastic body forming die in which the elastic body forming die 32 is pressed by the punch 33 or the like as shown in FIG. For details of the pressing method using the elastic mold, see JP-A-59-2.
It is disclosed in Japanese Patent No. 24308.

【0018】以下、本発明の方法及び効果を、具体的な
実施例に基づいて説明する。 〔具体的実施例〕 実施例1;直径22mm、長さ50mmのアルミナ成形
体の製作を目標として、試作した。
The method and effect of the present invention will be described below based on concrete examples. [Specific Example] Example 1 A prototype was produced with the goal of producing an alumina molded body having a diameter of 22 mm and a length of 50 mm.

【0019】第1成形型として、JIS硬度20°のウ
レタンゴム製で、粉末が充填される部分のサイズが直径
30mm、長さ60mmで肉厚5mmの弾性体製成形型
を用いた。この第1成形型に、アルミナ造粒粉(昭和電
工製のUS3061C)を50g充填し、開口部を閉塞
して、シールした後、冷間等方加圧装置に入れて200
kgf/cm2 で加圧処理を行った。第1成形型から取
り出した第1成形体の寸法は直径23.4mm、長さ5
1.1mmで、ほぼ長手方向全体にわたって外径が一定
であったが、表面には造粒粒子の形状が残っていた。
As the first mold, an elastic mold made of urethane rubber having a JIS hardness of 20 ° and having a powder-filled portion having a diameter of 30 mm, a length of 60 mm and a wall thickness of 5 mm was used. This first molding die was filled with 50 g of alumina granulated powder (US3061C manufactured by Showa Denko KK), the opening was closed and sealed, and then placed in a cold isostatic press for 200
The pressure treatment was performed at kgf / cm 2 . The dimensions of the first molded product taken out from the first molding die are 23.4 mm in diameter and 5 in length.
The outer diameter was 1.1 mm, and the outer diameter was constant over the entire longitudinal direction, but the shape of granulated particles remained on the surface.

【0020】次いで、第1成形体を硬度70°のウレタ
ンゴム製の第2成形型にセットした。第2成形型の充填
部分のサイズは、直径24mm、長さ52mmで肉厚2
0mmである。この第2成形型の開口部を閉塞し、シー
ルした後、冷間等方加圧装置に入れて1000kgf/
cm2 の圧力で加圧処理した。第2成形型から取り出し
た第2成形体の寸法は、外径22.5mm、長さ50.
8mmであった。得られた第2成形体の表面を倍率10
0倍で顕微鏡観察したところ、造粒粒子は押しつぶされ
て凹凸が低減していた。図4に、第2成形体表面の60
倍の顕微鏡写真を示す。
Next, the first molded body was set in a second molding die made of urethane rubber having a hardness of 70 °. The size of the filling portion of the second mold is 24 mm in diameter, 52 mm in length, and 2 in wall thickness.
It is 0 mm. After closing the opening of this second mold and sealing it, it was placed in a cold isostatic pressing device to obtain 1000 kgf /
Pressure treatment was performed at a pressure of cm 2 . The dimensions of the second molded body taken out from the second molding die are an outer diameter of 22.5 mm and a length of 50.
It was 8 mm. The surface of the obtained second molded body is magnified 10 times.
When observed under a microscope at a magnification of 0, the granulated particles were crushed and the unevenness was reduced. In FIG. 4, 60 of the second molded body surface
A double photomicrograph is shown.

【0021】実施例2;造粒粉末として、窒化ケイ素
(信越化学社製のKSN−10M−7X)粉末に焼結助
剤としてイットリア(7%)及びアルミナ(3%)を添
加してものを用いて、円形状の成形体の成形を行った。
第1成形型として、硬度20°のシリコンゴムゴム製
で、充填部分のサイズが直径22mm、高さ50mm
で、肉厚5mmの成形型を用いて、200kgf/cm
2 の圧力で冷間等方加圧処理した。直径16.8mm、
長さ44mm、相対密度51.8%の円柱状の第1成形
体が得られた。
Example 2 As a granulated powder, silicon nitride (KSN-10M-7X manufactured by Shin-Etsu Chemical Co., Ltd.) powder was added with yttria (7%) and alumina (3%) as sintering aids. Using this, a circular shaped body was formed.
The first mold is made of silicone rubber with a hardness of 20 °, and the size of the filling part is 22 mm in diameter and 50 mm in height.
Then, using a mold with a wall thickness of 5 mm, 200 kgf / cm
Cold isostatic pressing was performed at a pressure of 2 . Diameter 16.8 mm,
A cylindrical first molded body having a length of 44 mm and a relative density of 51.8% was obtained.

【0022】次に、この第1成形体を、硬度90°のウ
レタンゴム製で、充填部のサイズが直径17mm、高さ
45mm、肉厚3mmの第2成形型に第1成形体を、充
填して、2000kgf/cm2 の圧力で再度冷間等方
加圧処理を行った。第2成形型から取り出した第2成形
体の寸法は、直径16×長さ42mmで、相対密度5
9.5%であった。この第2成形体表面を倍率100倍
で顕微鏡観察したところ、造粒粒子は押しつぶされて凹
凸が低減されていることが確認できた。
Next, the first molded body is filled with a second molded die made of urethane rubber having a hardness of 90 ° and having a filling portion size of 17 mm in diameter, 45 mm in height and 3 mm in wall thickness. Then, the cold isostatic pressing process was performed again at a pressure of 2000 kgf / cm 2 . The dimensions of the second molded product taken out from the second molding die are 16 mm in diameter and 42 mm in length, and the relative density is 5
It was 9.5%. When the surface of the second molded body was observed under a microscope at a magnification of 100, it was confirmed that the granulated particles were crushed and the unevenness was reduced.

【0023】実施例3;第1成形型として、硬度20°
のシリコンゴム製で、充填部分が50mm×50mm×
10mmで、且つ肉厚10mmの成形型に、実施例1と
同様のアルミナ粉末を充填し、圧力200kgf/cm
2 で冷間等方加圧処理した。得られた第1成形体は、1
辺の長さが41.6mmで厚さ8mm、相対密度約52
%であった。
Example 3; hardness of 20 ° as the first molding die
Made of silicone rubber, the filling part is 50mm x 50mm x
A mold having a thickness of 10 mm and a thickness of 10 mm was filled with the same alumina powder as in Example 1, and the pressure was 200 kgf / cm.
It was treated cold isostatic pressing at 2. The obtained first compact is 1
The side length is 41.6 mm, the thickness is 8 mm, and the relative density is about 52.
%Met.

【0024】次に、この第1成形体を、充填部分のサイ
ズが42mm×42mm×8mmで、硬度90°で肉厚
10mmのウレタンゴム製の第2成形型に充填して、2
000kgf/cm2 の圧力で再度冷間等方加圧処理し
た。得られた成形体は、41mm×41mm×7.6m
mで、相対密度が56.6%で、しかも全体形状として
大きな歪みも認められなかった。顕微鏡観察による表面
粗度も良好であった。
Next, this first molded body is filled in a second molding die made of urethane rubber having a filling portion size of 42 mm × 42 mm × 8 mm, a hardness of 90 ° and a wall thickness of 10 mm.
Cold isostatic pressing was performed again at a pressure of 000 kgf / cm 2 . The obtained molded body has a size of 41 mm x 41 mm x 7.6 m.
m, the relative density was 56.6%, and no large distortion was observed in the overall shape. The surface roughness by observation with a microscope was also good.

【0025】比較例1;実施例1で用いた第1成形型
に、実施例1で用いた粉末と同様の粉末を充填し、開口
部を閉塞してシールした後、冷間等方加圧装置に入れ
て、一気に1000kgf/cm2 の圧力で加圧した。
取り出した成形体は、長手方向の端部が膨れた所謂象の
足現象を呈していた。また、成形体のサイズは、中央部
の直径23.1mm、長さ49.3mmであった。成形
体表面を倍率100倍で顕微鏡観察したところ、造粒粒
子の形状がそのまま残っているのが観察された。図5に
成形体表面の60倍写真を示す。
Comparative Example 1 The first molding die used in Example 1 was filled with the same powder as that used in Example 1, the opening was closed and sealed, and then cold isostatic pressing was performed. It was put in the apparatus and pressurized at a stroke with a pressure of 1000 kgf / cm 2 .
The molded body taken out exhibited a so-called elephant foot phenomenon in which the end portion in the longitudinal direction was swollen. In addition, the size of the molded body was such that the central portion had a diameter of 23.1 mm and a length of 49.3 mm. When the surface of the molded body was observed under a microscope at a magnification of 100, it was observed that the shape of the granulated particles remained as it was. FIG. 5 shows a 60 × photograph of the surface of the molded body.

【0026】比較例2;硬度70°のウレタンゴム製で
充填部分のサイズが直径30mm、長さ60mmで、肉
厚20mmの成形型に、実施例1で用いた粉末と同様の
粉末を充填して、開口部を閉塞してシールした後、冷間
等方加圧装置に入れて、一気に1000kgf/cm2
で加圧処理した。成形型から取り出した成形体は、著し
い象の足現象を呈しており、端部がほとんど欠けている
という状態であった。尚、成形体の中央部の直径は2
1.8mmであった。
Comparative Example 2 The same powder as that used in Example 1 was filled in a molding die made of urethane rubber having a hardness of 70 ° and having a size of a filling portion having a diameter of 30 mm, a length of 60 mm and a wall thickness of 20 mm. After closing the opening and sealing it, put it in a cold isotropic pressurizing device and blow it to 1000 kgf / cm 2 at a stretch.
Was pressure-treated. The molded body taken out of the molding die exhibited a remarkable elephant-foot phenomenon, and was in a state in which the end portions were almost chipped. The diameter of the central part of the molded body is 2
It was 1.8 mm.

【0027】比較例3;実施例2で用いた第1成形型
に、実施例2で用いた粉末と同様の粉末を充填し、一気
に2000kgf/cm2 の圧力で冷間等方加圧処理し
た。得られた第1成形体の相対密度は59.8%で、サ
イズは中央部の直径が15.8mm、長さ42.5mm
であったが、端部の直径は17mm弱で若干の象の足現
象が認められた。また、得られた成形体表面を倍率10
0倍で顕微鏡観察したところ、造粒粒子のもとの球状が
そのまま残っているのが確認され、肉眼による観察でも
表面粗度が実施例2で得られた成形体よりも劣っていた
ことが認められた。
Comparative Example 3; The first molding die used in Example 2 was filled with the same powder as that used in Example 2 and subjected to cold isostatic pressing at a pressure of 2000 kgf / cm 2 . . The relative density of the obtained first molded body was 59.8%, and the size was such that the diameter of the central portion was 15.8 mm and the length was 42.5 mm.
However, the diameter of the end was slightly less than 17 mm, and some elephant foot phenomenon was observed. Further, the surface of the obtained molded body is magnified 10 times.
When observed under a microscope at a magnification of 0, it was confirmed that the original spherical shape of the granulated particles remained as it was, and that the surface roughness was inferior to that of the molded body obtained in Example 2 by visual observation. Admitted.

【0028】比較例4;充填部分のサイズが50mm×
50mm×10mmで、肉厚5mmの硬度90°の成形
型に、実施例3と同様のアルミナ粉末を充填して、20
00kgf/cm2 の圧力で冷間等方加圧処理した。成
形型から取り出した成形体は、厚み方向に象の足現象が
激しい鼓状となっており、且つ4つに割れていた。ま
た、中央部の厚みは約6mmであったが、外周部では
8.5mm程度の厚さの部分もあった。 〔評価〕実施例1〜3及び比較例1〜4の加圧処理条件
及び結果をまとめて表1に示す。
Comparative Example 4; the size of the filling portion is 50 mm ×
A mold having a size of 50 mm × 10 mm and a wall thickness of 5 mm and a hardness of 90 ° was filled with the same alumina powder as in Example 3, and 20
Cold isostatic pressing was performed at a pressure of 00 kgf / cm 2 . The molded body taken out from the molding die had a drum shape in which the elephant foot phenomenon was severe in the thickness direction, and it was cracked into four. The thickness of the central portion was about 6 mm, but the outer peripheral portion also had a thickness of about 8.5 mm. [Evaluation] Table 1 collectively shows the pressure treatment conditions and results of Examples 1 to 3 and Comparative Examples 1 to 4.

【0029】[0029]

【表1】 [Table 1]

【0030】表1からわかるように、本発明の方法によ
り得られた成形体は、いずれも比較例で得られた成形体
と比べて表面粗度、形状に優れていた。すなわち、軟質
ゴムで作成される成形型すなわち第1成形型を用いて一
気に高圧処理した場合には、成形体表面に造粒粒子形状
が残り、表面粗度が劣っていた。また、硬質ゴムで作成
される成形型すなわち第2成形型を用いて一気に高圧処
理した場合に得られた成形体はいずれも象の足現象が著
しく、端部が欠けたり、割れたりするものもあった。
As can be seen from Table 1, each of the molded products obtained by the method of the present invention was superior in surface roughness and shape to the molded products obtained in Comparative Examples. That is, when the molding die made of soft rubber, that is, the first molding die was subjected to a high-pressure treatment at once, the granulated particle shape remained on the surface of the molded body, and the surface roughness was inferior. In addition, all of the moldings obtained by high-pressure treatment at once using a molding die made of hard rubber, that is, a second molding die, have a marked elephant foot phenomenon, and the end portions may be chipped or cracked. there were.

【0031】[0031]

【発明の効果】本発明の加圧成形方法は、成形体のいび
つな変形の原因となる粉末の低圧力での加圧を、粉末の
収縮に追随できる軟質の弾性体で構成される第1成形型
を用いて加圧しているので、象の足現象等の歪な変形を
防止できる。また、第2工程では硬質の弾性体で構成さ
れる第2成形型を用いて加圧しているので、表面粗度の
向上を図ることができる。
EFFECT OF THE INVENTION The pressure molding method of the present invention comprises a soft elastic body capable of following compression of powder at low pressure, which causes distorted deformation of the molded body, with shrinkage of the powder. Since pressure is applied using a molding die, distorted deformation such as an elephant foot phenomenon can be prevented. Further, in the second step, since the pressure is applied using the second molding die made of a hard elastic body, it is possible to improve the surface roughness.

【0032】従って、本発明の弾性体製成形型を用いる
加圧成形方法によれば、寸法精度、形状、表面粗度に優
れた成形体を得ることができる。
Therefore, according to the pressure molding method using the elastic body molding die of the present invention, it is possible to obtain a molded body excellent in dimensional accuracy, shape and surface roughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の加圧成形方法を示す工程図で
ある。
FIG. 1 is a process drawing showing a pressure molding method according to an embodiment of the present invention.

【図2】本発明の他の実施例に使用される加圧装置を示
す図である。
FIG. 2 is a view showing a pressure device used in another embodiment of the present invention.

【図3】本発明の他の実施例に使用される加圧装置を示
す図である。
FIG. 3 is a view showing a pressure device used in another embodiment of the present invention.

【図4】実施例1で得られた第2成形体の表面組織を示
す顕微鏡写真である。
FIG. 4 is a micrograph showing the surface texture of the second molded body obtained in Example 1.

【図5】比較例1で得られた成形体の表面組織を示す顕
微鏡写真である。
5 is a micrograph showing the surface texture of the molded body obtained in Comparative Example 1. FIG.

【図6】アルミナ粉末の圧力と成形体の密度との関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between the pressure of alumina powder and the density of a molded body.

【図7】窒化ケイ素粉末の圧力と成形体の密度との関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the pressure of silicon nitride powder and the density of a molded body.

【符号の説明】[Explanation of symbols]

1 第1成形型 6 粉末 11 第2成形型 21 第1成形体 22 第2成形体 1 1st shaping | molding die 6 powder 11 2nd shaping | molding die 21 1st shaping | molding body 22 2nd shaping | molding body

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月13日[Submission date] January 13, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の加圧成形方法を示す工程図で
ある。
FIG. 1 is a process drawing showing a pressure molding method according to an embodiment of the present invention.

【図2】本発明の他の実施例に使用される加圧装置を示
す図である。
FIG. 2 is a view showing a pressure device used in another embodiment of the present invention.

【図3】本発明の他の実施例に使用される加圧装置を示
す図である。
FIG. 3 is a view showing a pressure device used in another embodiment of the present invention.

【図4】実施例1で得られた第2成形体のセラミック材
料の組織の表面を示す顕微鏡写真である。
FIG. 4 is a ceramic material of a second molded body obtained in Example 1.
It is a microscope picture which shows the surface of the texture of a material .

【図5】比較例1で得られた成形体のセラミック材料の
組織の表面を示す顕微鏡写真である。
FIG. 5 shows the ceramic material of the molded body obtained in Comparative Example 1.
It is a microscope picture which shows the surface of a structure .

【図6】アルミナ粉末の圧力と成形体の密度との関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between the pressure of alumina powder and the density of a molded body.

【図7】窒化ケイ素粉末の圧力と成形体の密度との関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the pressure of silicon nitride powder and the density of a molded body.

【符号の説明】 1 第1成形型 6 粉末 11 第2成形型 21 第1成形体 22 第2成形体[Explanation of Codes] 1 First Mold 6 Powder 11 Second Mold 21 First Molded Body 22 Second Molded Body

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軟質の弾性体で構成された第1成形型に
粉末を充填して、低圧力域で加圧して第1成形体を得る
第1工程と;前記第1成形体を、硬質の弾性体で構成さ
れた第2成形型にセットして、第1工程よりも高い圧力
で加圧成形を行う第2工程と;を含むことを特徴とする
弾性体製成形型を用いる加圧成形方法。
1. A first step of filling a first molding die made of a soft elastic body with powder and pressurizing it in a low pressure range to obtain a first molding body; And a second step of performing pressure molding at a pressure higher than that of the first step by setting the second molding die composed of the elastic body of 1. Molding method.
JP20576793A 1993-07-27 1993-07-27 Press molding method using flastic material mold Pending JPH0740092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20576793A JPH0740092A (en) 1993-07-27 1993-07-27 Press molding method using flastic material mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20576793A JPH0740092A (en) 1993-07-27 1993-07-27 Press molding method using flastic material mold

Publications (1)

Publication Number Publication Date
JPH0740092A true JPH0740092A (en) 1995-02-10

Family

ID=16512337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20576793A Pending JPH0740092A (en) 1993-07-27 1993-07-27 Press molding method using flastic material mold

Country Status (1)

Country Link
JP (1) JPH0740092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440979B1 (en) * 2021-06-28 2022-09-06 한국조폐공사 Pressed product having surface pattern and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440979B1 (en) * 2021-06-28 2022-09-06 한국조폐공사 Pressed product having surface pattern and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2011041983A (en) Device and method for hot isostatic pressing container
EP0403743B1 (en) Method for molding powders
JPH0740092A (en) Press molding method using flastic material mold
KR101496331B1 (en) High purity tube type ceramic-molding apparatus high purity tube type ceramic-molding method using same
JP2004216450A (en) Forming die for wet hydrostatic press forming and wet hydrostatic press forming method using the same
JPH07278607A (en) Powder molding method using segmental die
Eriksson et al. New semi-isostatic high velocity compaction method to prepare titanium dental copings
JPH09241704A (en) Manufacture of irregular shaped molding by cold isostatic press molding of powder
EP1266746A3 (en) Method of producing powder compacts and foil or film-like mold members for use in the method
JP2815930B2 (en) Manufacturing method of ceramic products
JPH06256806A (en) Isostatic pressing method and forming die used therefor
JPH0790313A (en) Hydrostatic press forming method of titanium powder
JP2002035999A (en) Pressure forming apparatus of powder material
JP2594691B2 (en) Method of forming ceramic tube forming body
JPH0989465A (en) Isostatic compression molding apparatus and isostatic compression molding method
JPH06330104A (en) Production of core for production member having hollow part and production of member having hollow part
JPH0826362B2 (en) Powder molding method by hydrostatic molding using a mold
JPH05287314A (en) Isostatic molding die and powder molding method
JPS6358846A (en) Device for manufacturing tablet of semiconductor sealing resin
JPH07242908A (en) Powder compacting method using metal pattern
JP2915565B2 (en) Ceramic powder press mold and ceramic powder press molding method using the same
JPH0957495A (en) Cip forming die
JPH06262398A (en) Mold for hydrostatic compacting and powder compacting method
JP2003305708A (en) Jig for molding
JP3078356B2 (en) Powder pressing method