JPH0617490B2 - Solidification method of crushing / fixing powder containing mainly metal - Google Patents
Solidification method of crushing / fixing powder containing mainly metalInfo
- Publication number
- JPH0617490B2 JPH0617490B2 JP62075697A JP7569787A JPH0617490B2 JP H0617490 B2 JPH0617490 B2 JP H0617490B2 JP 62075697 A JP62075697 A JP 62075697A JP 7569787 A JP7569787 A JP 7569787A JP H0617490 B2 JPH0617490 B2 JP H0617490B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- piston
- particles
- pressing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として金属を含む粉体を固形化して製品等を
製造する方法に関し、更に詳しくは急冷凝固粉体等の高
温加熱すると該粉体の持つ特性が失われてしまうような
金属の粉体を比較的低温条件下で機械的に固形化するこ
とにより、該金属粉体のもつ特性を維持したまま製品化
でき、また、性質の異なる異種金属同士の合金や金属と
セラミック材料とを混合した複合物の作成等も可能とす
る金属等の粉体を圧潰・固着させる固形化方法に関す
る。TECHNICAL FIELD The present invention relates to a method for producing a product or the like by solidifying a powder containing a metal, and more specifically, to a powder obtained by heating at high temperature such as a rapidly solidified powder. By mechanically solidifying a metal powder that loses its properties under relatively low temperature conditions, it is possible to commercialize the product while maintaining the properties of the metal powder, and with different properties. The present invention relates to a solidification method of crushing and adhering powder of metal or the like, which enables the production of an alloy of different metals or a composite of a metal and a ceramic material.
急冷凝固方法等による非晶質金属または微結晶金属は耐
摩耗性、表面硬度、引張り強度、更には、磁気特性等に
おいて優れた物性を有することはよく知られており、こ
れらの金属を製品化すれば非常に広い分野での応用が可
能である。ところが、これらの金属は耐熱性に問題があ
り、結晶化温度以上、例えばアルミニウムの場合300℃
程度以上に加熱されるとその非晶質構造、または微結晶
構造が破壊されてしまい、その優れた物性が失われてし
まう。従って、このような該金属を製品化するには、加
熱を必要とする一般的な方法、例えば熱間プレスや鋳造
等の方法は採用することができない。太陽電池等に用い
られる薄膜状のアモルファスSi金属等はグロー放電法等
により作成しうるが、棒状または板状、更に大きな製品
の場合にはこのような方法では作成することはできな
い。It is well known that amorphous metals or microcrystalline metals produced by the rapid solidification method have excellent physical properties such as wear resistance, surface hardness, tensile strength, and magnetic properties. If this is done, application in a very wide field is possible. However, these metals have a problem in heat resistance, and are higher than the crystallization temperature, for example, 300 ° C in the case of aluminum.
When heated to a certain degree or more, the amorphous structure or the microcrystalline structure is destroyed and the excellent physical properties are lost. Therefore, in order to commercialize such a metal, a general method that requires heating, for example, a method such as hot pressing or casting cannot be adopted. Thin-film amorphous Si metal or the like used for solar cells and the like can be prepared by the glow discharge method or the like, but in the case of rod-shaped or plate-shaped or larger products, it cannot be prepared by such a method.
このようなことから、非晶質金属または微結晶金属をそ
の特性を維持したまま製品化する当たっては該金属の急
冷凝固粉末を高温加熱を必要としない機械的手段により
する必要がある。従来から知られている金属粉末の固形
化方法としては、押出し法、圧延法、更には特公昭57-2
441 号公報や特公昭60-14082号公報にみられるように、
粉体を固定壁の駆動壁間に形成した粉体通路を駆動壁の
動きにより輸送して通過させて圧縮し、圧粉体を製造す
る方法等がある。For this reason, when an amorphous metal or a microcrystalline metal is manufactured while maintaining its characteristics, it is necessary to use a rapidly solidified powder of the metal by mechanical means that does not require high temperature heating. Conventionally known methods for solidifying metal powder include extrusion method, rolling method, and Japanese Patent Publication No. 57-2.
As can be seen in the 441 publication and the Japanese Patent Publication 60-14082 publication,
There is a method of manufacturing a green compact by transporting the powder through a powder passage formed between the drive walls of the fixed wall, passing through the powder passage by the movement of the drive wall, and compressing the powder.
上記のような従来の押出し法や圧延法は、金属等の粉体
粒子同士を加熱および摩擦熱による温度条件下で加圧、
圧縮し密度を大きくすることにより粉体粒子間を接合し
ようとするものである。しかし、このような方法では金
属の結晶化温度以下の加工温度では粉体粒子間を強固に
接合することは困難で、硬化が激しく、焼きなまし等に
よる焼結処理が必要となり、非晶質金属や急冷凝固法に
よる金属の微結晶組織を維持して製品化することは不可
能である。The conventional extrusion method and rolling method as described above, the powder particles such as metal are pressed under the temperature condition by heating and friction heat,
It is intended to join the powder particles by compressing and increasing the density. However, with such a method, it is difficult to firmly bond the powder particles at a processing temperature lower than the crystallization temperature of the metal, the curing is violent, and the sintering treatment such as annealing is required. It is impossible to maintain the microcrystalline structure of metal by the rapid solidification method and to commercialize it.
また、特にアルミニウム等の粉体粒子表面が強固な酸化
膜で覆われているような金属粉体の場合には、単に密度
を大きくするだけでは粒子表面の酸化膜がバリヤーとな
り粉体粒子間を強固に接着して固形化することはできな
い。このような金属粉体の粒子表面に酸化膜が形成され
ているような場合には、粉体粒子を塑性変形して粒子表
面の強固な酸化膜を破壊し、粒子内部の清浄な部分を表
面に露出させて該洗浄面により粒子同士を強固に接合す
ることではじめて固形化しうるのである。しかし、この
ような金属粒子表面の酸化膜を加圧による圧縮だけで完
全に破壊することは困難で、たとえ部分的に酸化膜を破
壊出来たとしても、残った酸化膜の層が元の粒子の表面
に残れば表面の接合強度は依然として弱く、成形後に焼
きなましによる焼結処理を行っても表面に残った酸化膜
がバリヤーとなって粉体粒子間の接合を阻害し、製品全
体の強度低下の原因となる。Further, particularly in the case of metal powder in which the surface of powder particles such as aluminum is covered with a strong oxide film, simply increasing the density causes the oxide film on the particle surface to act as a barrier and to prevent the powder particles from being separated from each other. It cannot be firmly bonded and solidified. When an oxide film is formed on the particle surface of such metal powder, the powder particle is plastically deformed to destroy the strong oxide film on the particle surface, and the clean part inside the particle is surfaced. It is possible to solidify the particles only by exposing them to the surface and firmly bonding the particles to each other by the washed surface. However, it is difficult to completely destroy the oxide film on the surface of such metal particles only by compression by pressure, and even if the oxide film can be partially destroyed, the remaining oxide film layer is the original particle. If it remains on the surface, the surface bonding strength is still weak, and even if sintering treatment by annealing is performed after molding, the oxide film remaining on the surface acts as a barrier and hinders the bonding between powder particles, reducing the strength of the entire product. Cause of.
また、従来の押出し法において粒子を塑性変形して酸化
膜を破壊する能力を増大させるには、押出しの際の押圧
面積と押出し部面積の比、いわゆる押出し比を大きく設
定することによりダイス付近で生ずる粉体粒子の変形量
を増大させればよいが、このように押出し比を大きく設
定したときには粉体の流動性を上げてやらなければなら
ない。このため、実際の押出し加工においてはアルミニ
ウム合金の場合550℃前後に加熱している。これは550℃
以上の温度では析出物の粗大化等により急冷凝固粉末の
特性が失われてしまうためである。しかしながら、アル
ミニウムの場合、約300℃以上の温度で結晶粒が成長し
て微細結晶組織は破壊されてしまう。ところが、300℃
以下の温度では押出しが困難で、また粉体粒子間の接着
も不十分なことから成形体の強度が弱くなる。このた
め、従来の押出し法による加工や焼結においては粉体の
接着性を高めるため微細結晶組織を犠牲にして550℃程
度の温度で加工しているのが現状である。Further, in the conventional extrusion method, in order to increase the ability to plastically deform the particles to destroy the oxide film, the ratio of the pressing area and the extrusion area at the time of extrusion, that is, the so-called extrusion ratio is set to be large in the vicinity of the die. The amount of deformation of the powder particles generated may be increased, but when the extrusion ratio is set large in this way, the fluidity of the powder must be increased. Therefore, in the actual extrusion process, the aluminum alloy is heated to around 550 ° C. This is 550 ℃
This is because at the above temperatures, the characteristics of the rapidly solidified powder are lost due to coarsening of precipitates and the like. However, in the case of aluminum, the crystal grains grow at a temperature of about 300 ° C. or higher and the fine crystal structure is destroyed. However, 300 ℃
At the temperatures below, extrusion is difficult and the adhesion between powder particles is insufficient, so the strength of the molded product becomes weak. For this reason, in the conventional processing and sintering by the extrusion method, in order to enhance the adhesiveness of the powder, the processing is performed at a temperature of about 550 ° C. at the sacrifice of the fine crystal structure.
また、前述の特公昭57-2241 号公報および特公昭601408
2 号公報に示された方法も、粉体粒子間の接着は固定壁
および駆動壁と粉体との間に発生する摩擦熱を利用し、
押出しにより粉体を圧縮して圧縮体を製造するものであ
るが、前述の押出し法や圧延法と同様に単に圧縮のみに
よる加工方法では金属粉体の粒子を塑性変形して粉体を
固形化することは困難であり、前記のような問題点は依
然として解決されていない。Further, the above-mentioned Japanese Patent Publication No. 57-2241 and Japanese Patent Publication No. 601408.
In the method disclosed in Japanese Patent Publication No. 2 as well, adhesion between powder particles utilizes frictional heat generated between the fixed wall and the driving wall and the powder,
Although a powder is manufactured by compressing powder by extrusion, the metal powder particles are plastically deformed to solidify the powder by a processing method that merely compresses like the above-mentioned extrusion method and rolling method. However, the above-mentioned problems have not been solved yet.
本発明は上記のような問題点に鑑み、非晶質金属または
微細結晶金属等の加熱により特性が失われやすい金属を
製品化するにあたり、これらの金属の粉体粒子を比較的
低温条件下で塑性変形させ、粒子表面に酸化膜等が形成
されている場合でも、粉体粒子を圧潰して互いに接合、
固着させて固形化することにより、表面強度、耐摩耗
性、引張り強度および耐熱性等の優れた特性を有し、広
く応用しうる金属製品を得ることのできる主として金属
を含む粉体を圧潰・固着させる固形化方法を提供せんと
するものである。In view of the above problems, the present invention produces a metal whose properties are likely to be lost by heating an amorphous metal or a fine crystalline metal, and powder particles of these metals under relatively low temperature conditions. Even when plastically deformed and an oxide film or the like is formed on the particle surface, the powder particles are crushed and bonded to each other,
By fixing and solidifying, it has excellent properties such as surface strength, wear resistance, tensile strength and heat resistance, and it can obtain widely applicable metal products. It is intended to provide a solidification method for fixing.
本発明は、上記の目的を達成するために、押圧部材の端
部押圧面と受け部材の端部受面との間に圧潰できる程度
の主として非晶質金属または微結晶金属を含む粉体を収
容し、押圧部材からの圧潰動を支持しうるように受け部
材を移動規制した状態で、前記粉体を加工温度下での当
該金属粉体粒子の降伏圧力0.7倍以上の圧力により押
圧部材の押圧面で受け部材の受面へ押圧しながら押圧部
材を回転させて、粉体にこれを圧潰しうる程度の押圧力
と剪断力とを同時に付与することにより、これらの金属
の結晶化温度以下の温度で粉体粒子を圧潰して互いに固
着させ固形化させることを特徴とする主として金属を含
む粉体を圧潰・固着させる固形化方法を提供せんとする
ものである。In order to achieve the above object, the present invention provides a powder containing mainly an amorphous metal or a microcrystalline metal to the extent that it can be crushed between the end pressing surface of the pressing member and the end receiving surface of the receiving member. The powder is pressed with a yield pressure of 0.7 times or more of the metal powder particles under the processing temperature while the receiving member is housed and the movement of the receiving member is regulated so as to support the crushing movement from the pressing member. Crystallization of these metals by rotating the pressing member while pressing the receiving surface of the receiving member with the pressing surface of the member, and simultaneously applying a pressing force and a shearing force to the powder to the extent that the powder can be crushed. It is intended to provide a solidification method for crushing and fixing powder containing mainly a metal, which is characterized in that powder particles are crushed at a temperature equal to or lower than a temperature and fixed to each other to be solidified.
本発明に係る主として金属を含む粉体固形化方法は上記
の通りであり、主として非晶質金属や微結晶金属を含む
粉体を押圧部材の押圧により圧縮して密度を増大させる
と同時にこの押圧部材の回転による剪断力および摩擦熱
により粉体粒子を塑性変形させて圧潰し、粉体粒子を互
いに強固に接合、固着させることにより、非晶質金属の
非晶質構造や急冷凝固金属の微結晶組織を破壊すること
なく結晶化温度以下の温度で粉体を固形化しうる。The method of solidifying powder mainly containing metal according to the present invention is as described above, and the powder mainly containing amorphous metal or microcrystalline metal is compressed by the pressing of the pressing member to increase the density and at the same time press the powder. The powder particles are plastically deformed and crushed by the shearing force and frictional heat generated by the rotation of the members, and the powder particles are firmly bonded and fixed to each other, so that the amorphous structure of the amorphous metal or the fine solidification of the rapidly solidified metal is obtained. The powder can be solidified at a temperature below the crystallization temperature without destroying the crystal structure.
次に本発明を図示した具体例に基づいて更に説明する。 The invention will now be further described on the basis of the illustrated embodiment.
本発明に係る金属等の粉体固形化方法は、例えば第1図
に示したように、両端に開口したシリンダー2の一方の
開口部を受け部材としてのピストン3にて密閉し、シリ
ンダー2の内部に金属粉体、あるいは異種金属粉体混合
物等の固形化すべき粉体4を充填し、他方の開口部から
嵌入した押圧部材としてのピストン1先端の押圧面1′
でピストン3の受け面3′へ押圧することによりシリン
ダー2内部の粉体4が圧縮されるとともに、ピストン1
を回転させることにより粉体4がピストン3の端部受面
3′との間で発生する圧縮状態下での剪断方向の回転に
より加えられる変形により内部摩擦熱を伴いながら塑性
変形して圧潰され、粉体粒子同士が互いに接合、固着さ
れることにより、粉体4が固形化される。As shown in FIG. 1, for example, as shown in FIG. 1, the method for solidifying powder of metal or the like according to the present invention is performed by sealing one opening of the cylinder 2 with a piston 3 as a receiving member to seal the cylinder 2. A pressing surface 1'at the tip of the piston 1 as a pressing member which is filled with a powder 4 to be solidified such as a metal powder or a mixture of different metal powders and is inserted from the other opening.
The powder 4 inside the cylinder 2 is compressed by pressing it against the receiving surface 3'of the piston 3 with the piston 1
The powder 4 is rotated by rotating the end face of the piston 3
3 ′ is deformed by the rotation in the shearing direction under compression and is plastically deformed and crushed with internal frictional heat, and the powder particles are bonded and fixed to each other. The body 4 is solidified.
この場合のピストン1による加圧力としては、粉体4と
押圧面1′との摩擦力を高めて両者間のスリップを防止
し、粉体4へ塑性変形に必要な剪断力を伝達しうる程度
の加圧力が必要である。このような加圧力条件として
は、好ましくは〔用いる金属粉体粒子の加工温度下での
降伏圧力×加圧面積〕以上の圧力が必要であるが、その
0.7倍程度の圧力でも、スリップは発生するものの実
用上、粉体粒子の接着力に問題はない。ここで、金属粉
体粒子の降伏圧力とは、当該金属粉体粒子が圧力を受け
た場合に弾性変形を越えて塑性変形するときの圧力を意
味する。また、この程度の圧力条件下で加工することに
より、普通の状態ではクラックが発生するような応力が
圧粉体内部で生じてもクラックの発生を防止して均一な
固形化物としうる。しかも、アルミニウム等の粒子表面
に酸化膜が形成されている粉体の場合にも、押圧部材と
してのピストン1の回転により押圧面1′から粉体4に
付与される剪断力により粒子表面の強固な酸化膜が破壊
され、粒子内部の清浄な部分が粒子表面に露出して、こ
の清浄部分で粒子同士が強固に接合され、固着されるの
である。The pressure applied by the piston 1 in this case is such that the frictional force between the powder 4 and the pressing surface 1 ′ is increased to prevent slippage between the two and to transmit the shearing force necessary for plastic deformation to the powder 4. Is required. As such a pressing force condition, it is preferable that the pressure is equal to or more than [yield pressure at the processing temperature of the used metal powder particles × pressurized area]. However, in practice, there is no problem with the adhesive strength of the powder particles. Here, the yield pressure of the metal powder particles means the pressure at which the metal powder particles undergo plastic deformation beyond elastic deformation when subjected to pressure. Further, by processing under such a pressure condition, even if a stress that would cause a crack in a normal state occurs inside the green compact, the generation of a crack can be prevented and a uniform solidified product can be obtained. Moreover, even in the case of a powder such as aluminum having an oxide film formed on the surface of the particle, the rotation of the piston 1 as a pressing member causes the shearing force applied to the powder 4 from the pressing surface 1 ′ to strengthen the surface of the particle. The oxide film is destroyed, the clean portion inside the particle is exposed to the surface of the particle, and the particles are firmly bonded and fixed to each other in this clean portion.
尚、この場合の粉体4の粒子の塑性変形はピストン1の
押圧による圧縮のみに頼っているものではなく、ピスト
ン1の押圧力により、シリンダー2の他端を閉鎖してピ
ストン1の圧力に抗して粉体4を支持しているピストン
3先端の受面3′、更にはシリンダー2の内壁2′と粉体
4との摩擦力によっても粉体4に剪断力が与えられるの
で、ピストン1のストロークは粉体4に加わる剪断力と
は直接関係ない。よって、装置の構成によってはピスト
ン1のストロークは短くてよい。Incidentally, the plastic deformation of the particles of the powder 4 in this case does not depend only on the compression by the pressing of the piston 1, but the pressing force of the piston 1 closes the other end of the cylinder 2 to make the pressure of the piston 1 A shear force is applied to the powder 4 by the frictional force between the powder 3 and the receiving surface 3'of the tip of the piston 3 that supports the powder 4 against the powder 4, and the inner wall 2'of the cylinder 2 and the piston 4, The stroke of 1 is not directly related to the shearing force applied to the powder 4. Therefore, the stroke of the piston 1 may be short depending on the configuration of the device.
また、この場合の加工温度条件としては、剪断力により
粉体粒子を塑性変形するのを補助しうる程度でよいので
高温に加熱する必要はないが、用いる粉体の性質によ
り、加熱が可能な場合には適宜加熱することにより金属
の粉体粒子の流動性を上げて効率良く固形化する事がで
き、回転、加圧および温度等の条件を固形化しようとす
る粉体の種類により適宜設定することで種々の金属に応
用することができるのである。Further, the processing temperature condition in this case does not need to be heated to a high temperature because it can assist the plastic deformation of the powder particles by the shearing force, but it can be heated depending on the properties of the powder used. In this case, it is possible to raise the fluidity of the metal powder particles by appropriate heating to solidify them efficiently, and set the conditions such as rotation, pressurization and temperature appropriately according to the type of powder to be solidified. By doing so, it can be applied to various metals.
上記のように、本発明による金属等の粉体固形化方法
は、押圧部材としてのピストン1による加圧により粉体
4を圧縮して単に粉体密度を大きくするだけでなく、ピ
ストン1を押圧方向と同方向に押動するように回転させ
て粉体4に剪断力を与えることによりピストン1の押圧
面1′とピストン3の受面3′との間で粉体粒子が塑性変
形され、粉体粒子表面に酸化膜等が形成されている場合
にも、その酸化膜を破壊して内部の清浄部分を露出して
粉体粒子同士の清浄部分による強硬な接合、固着を可能
とするのである。As described above, the method for solidifying powder of metal or the like according to the present invention not only compresses the powder 4 by pressurizing the piston 1 as a pressing member to increase the powder density but also presses the piston 1. The powder particles are plastically deformed between the pressing surface 1'of the piston 1 and the receiving surface 3'of the piston 3 by applying a shearing force to the powder 4 by rotating so as to push in the same direction. Even if an oxide film etc. is formed on the surface of the powder particles, the oxide film is destroyed to expose the internal clean part, so that the hard part of the powder particles can be firmly bonded and fixed. is there.
更に、上述の如く本発明に係る主として金属を含む粉体
固形化方法は、粉体に一定以上の圧力下で剪断力を与え
ることで粉体粒子を塑性変形させて粒子同士を接合させ
るものであるから、押出し成形する場合にも押出しの際
の流動性を上げるために粉体を高温に加熱する必要はな
く結晶化温度以下の比較的低温条件下で各種押出し成形
が可能となる。Further, as described above, the method for solidifying a powder mainly containing a metal according to the present invention is a method in which a shearing force is applied to a powder under a certain pressure or more to plastically deform the powder particles to bond the particles together. Therefore, even in the case of extrusion molding, it is not necessary to heat the powder to a high temperature in order to improve the fluidity at the time of extrusion, and various extrusion molding can be performed under relatively low temperature conditions below the crystallization temperature.
例えば第2図に示したものは、本発明を利用した押出し
装置の1例である。ここでは、シリンダー13両端の開口
部からピストン11およびピストン12を嵌挿して両ピスト
ンの先端面11′,12′を対面させ、シリンダー13壁面に
はシリンダー13の内部から外部へ連通する粉体供給孔14
を形成している(第2図(イ))。前記ピストン11は後
部を油圧シリンダー(図示せず)に関係付けてシリンダ
ー13内にて加圧移動可能とするとともにプーリーp,ベル
トv等を介してモーター等の駆動手段(図示せず)に関
係付けて回転可能とし、他方ピストン12も油圧シリンダ
ー等(図示せず)に関係付けることによりシリンダー13
内を加圧移動可能としている。For example, the one shown in FIG. 2 is an example of an extrusion apparatus utilizing the present invention. Here, the piston 11 and the piston 12 are fitted through the openings at both ends of the cylinder 13 so that the tip surfaces 11 'and 12' of both pistons face each other, and the powder supply that communicates from the inside of the cylinder 13 to the outside is provided on the wall surface of the cylinder 13. Hole 14
Are formed (Fig. 2 (a)). The piston 11 is associated with a hydraulic cylinder (not shown) at its rear end so as to be capable of pressurizing and moving in the cylinder 13, and is also associated with a driving means (not shown) such as a motor through a pulley p, a belt v, and the like. Cylinder 13 can be rotated by attaching the piston 12 to a hydraulic cylinder or the like (not shown).
The inside can be moved by pressure.
この装置を用いて粉体を固形化するには、まずシリンダ
ー13内においてピストン11とピストン12との先端面1
1′,12′同士を粉体供給孔14を挟んで内部に空間sを残
して互いに対面するように位置させ、粉体供給孔14から
固形化すべき金属等の粉体15をシリンダー13内へ供給す
る。次に、ピストン12を移動規制した状態でピストン11
にて粉体15をピストン12方向へ押圧するとともにピスト
ン11を回転させる(第2図(ロ))ことにより、ピスト
ン11とピストン12との間で粉体15が圧縮されるとともに
ピストン11の回転により粉体15に剪断力が付与され、粉
体粒子が塑性変形して圧潰され、粒子同士が互いに接
合、固着して粉体15が固形化される。この固形化の段階
ではピストン12には該ピストン12に関係付けた油圧シリ
ンダーによりピストン11の押圧力に対向して粉体15をシ
リンダー13内で圧縮しうる圧力がかけられる。このピス
トン12の圧力は、ピストン11との間で粉体15を圧潰しう
る程度以上であるが、このピストン12の圧力をピストン
11による圧力より若干弱くしておくと、粉体15の固形化
とともにピストン11の押圧面11′とピストン12の受面1
2′との間で固形化しつつある粉体15がピストン12方向
へ移動し、粉体15の固形化が終了した時点で該固形化物
15′をシリンダー13の粉体供給孔14よりもピストン12寄
りに位置させることができる。この状態でピストン11を
粉体供給孔14よりも後方へ後退させると固形化した粉体
15′とピストン11の押圧面11′間に形成される空間s′
には供給孔14からシリンダー13内に更に粉体を供給する
ことができる(第2図(ハ))。このようにして前記の
操作を再度行うことにより(第2図(ニ)(ホ))、既
に固形化せしめた粉体15′の後端面へ新たに供給した粉
体15を連続して一体に固形化することができる。しかも
前回固形化分15′と今回固形化分15とは同時にピストン
11の回転により剪断力を付与されて混錬され、両者は完
全に一体のものとして成形される。このような操作を順
次繰り返すことにより粉体15を連続した長尺物として成
形することが可能である(第2図(ヘ))。In order to solidify the powder using this device, first, the tip surface 1 of the piston 11 and the piston 12 in the cylinder 13
The 1 ', 12' are positioned so as to face each other with the space s left inside with the powder supply hole 14 interposed therebetween, and the powder 15 such as metal to be solidified from the powder supply hole 14 into the cylinder 13. Supply. Next, with the movement of the piston 12 regulated, the piston 11
By pressing the powder 15 toward the piston 12 and rotating the piston 11 (Fig. 2 (b)), the powder 15 is compressed between the piston 11 and the piston 11, and the piston 11 rotates. Thereby, a shearing force is applied to the powder 15, the powder particles are plastically deformed and crushed, the particles are bonded and fixed to each other, and the powder 15 is solidified. At this solidification stage, the piston 12 is pressed by the hydraulic cylinder associated with the piston 12 against the pressing force of the piston 11 to compress the powder 15 in the cylinder 13. The pressure of the piston 12 is higher than the pressure at which the powder 15 can be crushed between the piston 12 and the piston 12.
If the pressure is made slightly weaker than the pressure generated by 11, the pressing surface 11 ′ of the piston 11 and the receiving surface 1 of the piston 12 as the powder 15 solidifies.
The powder 15 that is solidifying between 2'moves in the direction of the piston 12, and when the solidification of the powder 15 is completed, the solidified product
15 'can be positioned closer to the piston 12 than the powder supply hole 14 of the cylinder 13. In this state, when the piston 11 is retracted rearward from the powder supply hole 14, the solidified powder
Space s' formed between 15 'and the pressing surface 11' of the piston 11
Further, powder can be further supplied into the cylinder 13 from the supply hole 14 (Fig. 2 (C)). By repeating the above-mentioned operation in this way (FIG. 2 (d) (e)), the powder 15 newly supplied to the rear end surface of the powder 15 'which has already been solidified is continuously integrated. It can be solidified. Moreover, the previously solidified portion 15 ′ and the currently solidified portion 15 are pistons at the same time.
A shearing force is applied by the rotation of 11, and they are kneaded, and both are molded as a completely integrated body. By repeating such an operation in sequence, the powder 15 can be molded as a continuous long product (Fig. 2 (f)).
また、本発明の主として金属を含む粉体固形化方法は粉
体に押圧力による圧縮を与えるとともに押圧部材の回転
により粉体に剪断力を与えるものであるが、受側は必ず
しも第2図のようにピストン12で完全に閉鎖する必要は
ない。即ち、当初の固形化段階が終了した次の段階で
は、例えば第3図に示したように受側のピストン12の代
わりにシリンダー13の端部に該シリンダー13の内径より
小さな出口eを有するノズル16を設けておき、出口e付
近における固形化粉体15′の抗変応力および摩擦力によ
りピストン11の押圧および回転力に対向せしめ、先の固
形化粉体15′を受け部材として粉体に加圧力と剪断力を
同時に与えて固形化し、これを通常の押出し成形の如く
連続した固形化物15′として製造することも可能であ
る。Further, the method of solidifying powder mainly containing metal of the present invention applies compression to the powder by pressing force and applies shear force to the powder by rotation of the pressing member, but the receiving side is not necessarily shown in FIG. It is not necessary to completely close the piston 12 as. That is, at the next stage after the completion of the initial solidification stage, for example, as shown in FIG. 3, a nozzle having an outlet e smaller than the inner diameter of the cylinder 13 at the end of the cylinder 13 instead of the receiving piston 12 is provided. 16 is provided so as to oppose the pressing force and rotational force of the piston 11 by the anti-variation stress and frictional force of the solidified powder 15 ′ near the outlet e, and the solidified powder 15 ′ is used as a powder for the receiving member. It is also possible to apply a pressing force and a shearing force at the same time to solidify, and to manufacture this as a continuous solidified product 15 'as in ordinary extrusion molding.
また前記の場合、第4図に示す如くノズル16の内部を二
段階のテーパー面に形成しておき、第一のテーパー面A
で粉体を塑性変形させた後、第二のテーパー面Bにて押
出すようにしてもよい。この第3図または第4図のよう
な場合にはノズル16の出口eの形状を所望の製品断面形
状とする。また、本発明によれば、粉体を圧縮するとと
もに粉体粒子に剪断力を付与してこれを圧潰することに
より粉体粒子同士を互いに接合、固着させるものである
から、ピストン11の加圧により粉体15とピストン11の押
圧面11′との間の摩擦力を高めて両者間のスリップを防
止して粉体4に塑性変形に必要な剪断力を付与すること
ができ、粉体表面に酸化膜等が形成されているような場
合でも容易に塑性変形して酸化膜を破壊して内部の清浄
部分により粉体粒子を強固に接合、固着させることによ
り固形化でき、押出し成形する場合にもシリンダー13の
内断面積と出口eの断面積との押出し比が通常の方法で
はクラックが発生するような応力が粉体内部に生ずる場
合でもクラックの発生を防止しうる。In the above case, the inside of the nozzle 16 is formed into a two-step tapered surface as shown in FIG.
Alternatively, the powder may be plastically deformed and then extruded on the second tapered surface B. In the case of FIG. 3 or FIG. 4, the shape of the outlet e of the nozzle 16 is set to a desired product sectional shape. Further, according to the present invention, since the powder particles are bonded and fixed to each other by compressing the powder and applying a shearing force to the powder particles to crush the powder particles, the piston 11 is pressed. The frictional force between the powder 15 and the pressing surface 11 'of the piston 11 can be increased by this to prevent slippage between them and to give the powder 4 the shearing force necessary for plastic deformation. Even if an oxide film is formed on the surface, it can be easily plastically deformed to destroy the oxide film and firmly bond and fix the powder particles to the inner clean part to solidify it. In addition, even if the extrusion ratio of the inner cross-sectional area of the cylinder 13 and the cross-sectional area of the outlet e is such that cracks are generated inside the powder in the usual method, the generation of cracks can be prevented.
第5図に示したものは、上記ノズル16の代わりにシリン
ダー13の出口の外に固形化して押出された粉体固形物を
挟持すべくローラー17,17を設けて固形化物にブレーキ
をかけることによってピストン12の代用とした例であ
る。As shown in FIG. 5, instead of the nozzle 16, rollers 17 and 17 are provided outside the exit of the cylinder 13 to hold solidified and extruded powder solid matter, and brake the solidified matter. This is an example in which the piston 12 is substituted by.
第6図に示したものは、シリンダー13の出口に回転ダイ
ス18を設け、その回転により粉体15を圧縮するとともに
剪断力を付与して押出し成形するものであり、固形化粉
体に回転ダイス18の回転により出口付近で非常に大きな
変形を与え、強固な固形物として押出すことができる。The one shown in FIG. 6 is one in which a rotary die 18 is provided at the outlet of the cylinder 13, the powder 15 is compressed by the rotation and a shearing force is applied, and extrusion molding is carried out. The rotation of 18 gives a very large deformation in the vicinity of the outlet, and it can be extruded as a solid solid material.
更に、第7図に示したものは、ダイス18内部に二段のテ
ーパー面A、Bを形成することにより出口eからA部分
における加圧力が外部へ逃げるのを防止してなるもので
ある。Further, as shown in FIG. 7, the two-step tapered surfaces A and B are formed inside the die 18 to prevent the pressing force at the portion A from the outlet e from escaping to the outside.
尚、上記第3図〜第7図に示した方法では、固形化の当
初においてはノズル16または回転ダイス18の出口を適宜
手段で閉鎖しておけばよい。In the method shown in FIGS. 3 to 7, the outlet of the nozzle 16 or the rotary die 18 may be closed by an appropriate means at the beginning of solidification.
そして、第8図に示したものは回転ダイス18の先端部へ
静水圧による加圧を加えることによりA部分にかかる加
圧力が外部に逃げるのを防止する方法である。Then, the method shown in FIG. 8 is a method for preventing the pressure applied to the portion A from escaping to the outside by applying hydrostatic pressure to the tip of the rotary die 18.
尚、上記の固形化操作中における摩擦熱または加熱によ
る粉体の温度は用いる金属粉体により適宜制御して結晶
化温度以下の温度に保つことが望ましく、特に温度によ
り物性が大きく変化してしまう非晶質金属のような金属
の場合には、この加工時の温度制御は重要である。The temperature of the powder due to frictional heat or heating during the above solidifying operation is preferably controlled at a temperature not higher than the crystallization temperature by appropriately controlling it according to the metal powder used, and in particular the physical properties greatly change depending on the temperature. In the case of a metal such as an amorphous metal, temperature control during this processing is important.
実施例 エアーアトマイズ法により製造された250メッシュ以上
を95%含む純度99.9%の純アルミニウムを原料粉として
第1図に示した方法で固形化物サンプルを作成した。押
圧部材による加圧は約10t/cm2であり、加圧力を保持し
たまま非加熱状態で直径25mm、肉圧1mmについて約3回
転の回転剪断力を加えて肉圧5mmのアルミニウムの固形
物を作成した。このようにして得られたサンプル固形物
の物性試験をした結果、引張り強度60.6kg/mm2,ビッ
カース硬度はHv135という高い値を示した。Example A solidified material sample was prepared by the method shown in FIG. 1 using pure aluminum having a purity of 99.9% containing 95% of 250 mesh or more produced by the air atomization method as a raw material powder. The pressure applied by the pressing member is about 10 t / cm 2 , and while maintaining the applied pressure, a rotary shearing force of about 3 rotations is applied for a diameter of 25 mm and a meat pressure of 1 mm to a solid aluminum product having a meat pressure of 5 mm. Created. As a result of the physical property test of the sample solid thus obtained, the tensile strength was 60.6 kg / mm 2 , and the Vickers hardness was a high value of Hv135.
比較例 比較のため従来からの一般的な粉末冶金の方法をアルミ
ニウムに用いてサンプルを作成し、物性試験を行った。
即ち、エアーアトマイズ法により製造された純アルミニ
ウムの粉体を約20t/cm2の圧力で加圧し、これを510
℃、窒素ガス流中で2時間焼結した。このものの引張り
強度は約4.3kg/mm2であった。またエアーアトマイズ法
により製造されたアルミ合金2014を同様の方法で作成加
工したものの引張り強度を測定したところ5.2kg/mm2で
あった。Comparative Example For comparison, a conventional general powder metallurgy method was used for aluminum to prepare a sample, and a physical property test was performed.
That is, a powder of pure aluminum produced by the air atomizing method is pressed at a pressure of about 20 t / cm 2 , and 510
Sintering was carried out in a nitrogen gas flow at 2 ° C for 2 hours. The tensile strength of this product was about 4.3 kg / mm 2 . Further, the tensile strength of an aluminum alloy 2014 manufactured by the air atomizing method prepared and processed by the same method was measured and found to be 5.2 kg / mm 2 .
上記の如く、従来からの一般的な粉末冶金の方法により
作成したものは非常に脆い物性を示したが、その原因は
これらの破断面の状態を観察した結果、粉体粒子同士の
接着が接着面積、接着強度ともに低いのが原因と推測さ
れた。As described above, the materials prepared by the conventional general powder metallurgy method showed very brittle physical properties. The cause is that the adhesion of the powder particles to each other was observed as a result of observing the state of these fracture surfaces. It was speculated that the area and adhesive strength were both low.
この結果からあきらかなように、従来からの一般的な粉
末冶金の方法では、アルミニウム系材料の場合、粉体の
接着という基本的な問題があるが、本発明の固形化方法
によればこのような問題は解決され、粉体粒子間は強度
に接着されるのである。As is clear from this result, the conventional general method of powder metallurgy has a basic problem of adhesion of powder in the case of aluminum-based material, but according to the solidification method of the present invention, This problem is solved and the powder particles are strongly bonded together.
尚、上記実施例においては、加工中のサンプルからは摩
擦熱が発生するが、300℃以上には昇温していないと推
測された。この摩擦による発熱は押圧部材の回転速度に
より制御することができる。また、原料粉の粒子に与え
られる変形は、加圧力、回転速度、回転時間により左右
されるが、理想的な条件であれば押圧部材と原料粉との
間にスリップの発生はなく押圧部材により与えられる回
転がそのまま粒子の変形に消耗される。また、前記実施
例条件下のシリンダー内における外周部分の粒子は約16
0倍に引き延ばされていると考えられ、粉体粒子の表面
は実質的に酸化膜の無い、清浄な面になっている。本材
料の強化機構は前述の如く急冷凝固で得られた粉末の微
細結晶によりもたらされる材料強化に加えて、強度の変
形により与えられた加工強度、および粉体粒子面を構成
していた酸化膜即ち酸化アルミニウムが基地中に分散し
たことにより得られた分散強化である。特に結晶組織に
ついては、結晶粒径1μmm以下の均一な超微細結晶粒か
らなりたっているのが観測された。また、粒体の粒界は
破断面を観測した限りでは全く認められず、原料粉の接
着は完全に行われていることが確認された。更に、粉体
粒子間の空孔も全く存在せず、本方法において原料粉が
粉体としての挙動を示すのは加工の初期段階だけで、あ
る程度固形化した後は一種のメタルフローのような状態
と考えられ、強度の変形を受けて流動する粉体粒子が空
孔を埋めつくしたと考えられる。In the above examples, it was estimated that frictional heat was generated from the sample during processing, but the temperature did not rise above 300 ° C. The heat generated by this friction can be controlled by the rotation speed of the pressing member. Further, the deformation imparted to the particles of the raw material powder depends on the pressing force, the rotation speed, and the rotation time, but under ideal conditions, no slip occurs between the pressing member and the raw material powder, and The given rotation is consumed by the deformation of the particles. Further, the particles in the outer peripheral portion in the cylinder under the conditions of the above-mentioned example are about 16
It is considered that the powder particles have been stretched to 0 times, and the surface of the powder particles is a clean surface with substantially no oxide film. The strengthening mechanism of this material is, in addition to the material strengthening brought about by the fine crystals of the powder obtained by rapid solidification as described above, the processing strength given by the deformation of the strength and the oxide film constituting the powder particle surface. That is, it is dispersion strengthening obtained by dispersing aluminum oxide in the matrix. In particular, it was observed that the crystal structure consisted of uniform ultrafine crystal grains with a grain size of 1 μm or less. Further, no grain boundaries of the granules were observed at all as long as the fracture surface was observed, and it was confirmed that the raw material powder was completely adhered. Furthermore, there are no pores between the powder particles at all, and in this method, the raw material powder behaves as a powder only in the initial stage of processing, and after solidification to some extent, it seems to be a kind of metal flow. It is considered that this is a state, and it is considered that the powder particles, which flow due to the strong deformation, fill the pores.
以上の如く、本方法によれば合金化によらない金属の強
化も可能となるのである。As described above, according to this method, it is possible to strengthen the metal not by alloying.
以上のように、本発明に係る粉体の固形化方法は、主と
して非晶質金属または微結晶金属を含む粉体を押圧部材
にて所定の圧力以上の圧力により押圧するとともにこの
押圧部材を回転させることにより、金属粉体粒子を圧潰
して互いに接合、固着させることを特徴とし、急冷凝固
粉末等のように加熱により結晶構造が変化してその特性
が失われてしまうような非晶質金属または微結晶金属を
製品化するにあたって、摩擦熱または低温加熱等の結晶
化温度以下の温度条件下で金属粉体粒子を混錬、圧接す
ることにより、粉体粒子の表面に強固な酸化膜が形成さ
れたアルミニウム合金等の場合においても粒子を塑性変
形させて表面酸化膜を破壊し、内部の清浄面により粒子
間を接合、固着するので粒子同士が強固に接合した合金
を作成することが可能である。更に、本発明方法によれ
ば、融点、比重等の性質が異なるため共存させることが
困難な異種金属同士や、または金属とセラミックとの合
成物等の作成も可能で、例えば、Al-Fe合金等の耐熱、
軽量化合金やアルミニウムとシリカ、アルミナ等のセラ
ミックとの複合物等も作成可能である。As described above, the method for solidifying powder according to the present invention is performed by pressing powder containing mainly amorphous metal or microcrystalline metal with a pressing member at a pressure higher than a predetermined pressure and rotating the pressing member. By crushing, the metal powder particles are crushed to be bonded and fixed to each other. An amorphous metal whose crystal structure is changed by heating and loses its characteristics such as rapidly solidified powder. Alternatively, in producing a microcrystalline metal as a product, a strong oxide film is formed on the surface of the powder particles by kneading and pressure-contacting the metal powder particles under a temperature condition equal to or lower than the crystallization temperature such as frictional heat or low temperature heating. Even in the case of the formed aluminum alloy, the particles are plastically deformed to destroy the surface oxide film, and the internal clean surface bonds and fixes the particles, so that an alloy in which the particles are strongly bonded can be created. It is a function. Furthermore, according to the method of the present invention, it is possible to prepare different metals which are difficult to coexist because of different properties such as melting point and specific gravity, or a composite of a metal and a ceramic, for example, an Al-Fe alloy. Heat resistance, etc.
It is also possible to make a lightweight alloy or a composite of aluminum and a ceramic such as silica or alumina.
第1図は本発明に係る金属等の粉体固形化方法の一実施
例を示す装置の説明図、第2図(イ)〜(ヘ)は前記固
形化方法により連続的に固形化する方法を示す説明図、
第3図〜第8図は本発明方法を用いた他の装置例を示す
説明図である。 1:ピストン、2:シリンダー、3:ピストン、 4:粉体、11:ピストン、12:ピストン、 13:シリンダー、14:粉体供給孔、15:粉体、 16:ノズル、17:ロール、18:回転ダイス、 v:ベルト、p:プーリー、 e:出口、s:空間。FIG. 1 is an explanatory view of an apparatus showing one embodiment of a method for solidifying powder of metal or the like according to the present invention, and FIGS. 2 (a) to (f) are methods for continuously solidifying by the solidifying method. An explanatory diagram showing
3 to 8 are explanatory views showing another example of the apparatus using the method of the present invention. 1: Piston, 2: Cylinder, 3: Piston, 4: Powder, 11: Piston, 12: Piston, 13: Cylinder, 14: Powder Supply Hole, 15: Powder, 16: Nozzle, 17: Roll, 18 : Rotary die, v: belt, p: pulley, e: exit, s: space.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−4003(JP,A) 特開 昭63−169301(JP,A) 実開 昭62−287002(JP,U) 特公 昭59−32521(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-4003 (JP, A) JP-A-63-169301 (JP, A) Actually opened 62-287002 (JP, U) JP-B-59- 32521 (JP, B2)
Claims (1)
面との間に圧潰できる程度の主として非晶質金属または
微結晶金属を含む粉体を収容し、押圧部材からの圧潰動
を支持しうるように受け部材を移動規制した状態で、前
記粉体を加工温度下での当該金属粉体粒子の降伏圧力の
0.7倍以上の圧力により押圧部材の押圧面で受け部材
の受面へ押圧しながら押圧部材を回転させて、粉体にこ
れを圧潰しうる程度の押圧力と剪断力とを同時に付与す
ることにより、これらの金属の結晶化温度以下の温度で
粉体粒子を圧潰して互いに固着させ固形化させることを
特徴とする主として金属を含む粉体を圧潰・固着させる
固形化方法。Claim: What is claimed is: 1. A crushing method for crushing a powder containing mainly an amorphous metal or a microcrystalline metal to such a degree that it can be crushed is contained between the end pressing surface of the pressing member and the end receiving surface of the receiving member. With the movement of the receiving member restricted so as to be able to support the movement, the receiving member is pressed by the pressing surface of the pressing member by a pressure of 0.7 times or more the yield pressure of the metal powder particles at the processing temperature of the powder. The pressing member is rotated while being pressed against the receiving surface of the powder, and the pressing force and the shearing force that are capable of crushing the powder are simultaneously applied to the powder, so that the powder is heated at a temperature not higher than the crystallization temperature of these metals. A solidification method of crushing and fixing powder containing mainly metal, characterized by crushing particles and fixing them to solidify each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62075697A JPH0617490B2 (en) | 1987-03-27 | 1987-03-27 | Solidification method of crushing / fixing powder containing mainly metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62075697A JPH0617490B2 (en) | 1987-03-27 | 1987-03-27 | Solidification method of crushing / fixing powder containing mainly metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63241103A JPS63241103A (en) | 1988-10-06 |
JPH0617490B2 true JPH0617490B2 (en) | 1994-03-09 |
Family
ID=13583666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62075697A Expired - Lifetime JPH0617490B2 (en) | 1987-03-27 | 1987-03-27 | Solidification method of crushing / fixing powder containing mainly metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617490B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009085234A (en) * | 2007-09-27 | 2009-04-23 | Ntn Corp | Plain bearing and method for manufacturing same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0289597A (en) * | 1988-09-27 | 1990-03-29 | Idea Res:Kk | Manufacture of high density green compact |
JPH0289599A (en) * | 1988-09-27 | 1990-03-29 | Idea Res:Kk | Method for strengthening metal material or synthetic resin material or the like |
JP2006090626A (en) * | 2004-09-24 | 2006-04-06 | National Institute Of Advanced Industrial & Technology | Sintering device, and method of manufacturing sintered body |
JP2006299355A (en) * | 2005-04-21 | 2006-11-02 | Toyota Boshoku Corp | Method and device for extruding metal material, and method and device for recycling metal |
JP2008144208A (en) * | 2006-12-07 | 2008-06-26 | Kyushu Univ | Fullerene composite and method for manufacturing the same |
WO2010016269A1 (en) | 2008-08-08 | 2010-02-11 | 学校法人日本大学 | Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method |
JP5881148B2 (en) * | 2011-10-07 | 2016-03-09 | 国立大学法人群馬大学 | Porous metal manufacturing method |
JP7008391B2 (en) * | 2017-12-26 | 2022-02-10 | 株式会社Uacj | Manufacturing method of extruded composite material |
CN117380955B (en) * | 2023-12-13 | 2024-02-23 | 合肥工业大学 | Forming device and method for cylindrical part made of composite material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5932521A (en) * | 1982-08-13 | 1984-02-22 | Nippon Denso Co Ltd | Car sunroof |
JPS62287002A (en) * | 1986-06-05 | 1987-12-12 | Ishikawajima Harima Heavy Ind Co Ltd | Powder molding method |
JPS634003A (en) * | 1986-06-24 | 1988-01-09 | Ishikawajima Harima Heavy Ind Co Ltd | Powder extruding method |
JPS63169301A (en) * | 1986-12-29 | 1988-07-13 | Kubota Ltd | Method for crushing and molding quickly cooled and solidified powder essentially consisting of al |
-
1987
- 1987-03-27 JP JP62075697A patent/JPH0617490B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009085234A (en) * | 2007-09-27 | 2009-04-23 | Ntn Corp | Plain bearing and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JPS63241103A (en) | 1988-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4915605A (en) | Method of consolidation of powder aluminum and aluminum alloys | |
JPH0617490B2 (en) | Solidification method of crushing / fixing powder containing mainly metal | |
JP4323339B2 (en) | Brake drum and manufacturing method thereof | |
US5632827A (en) | Aluminum alloy and process for producing the same | |
JP4391999B2 (en) | Method for producing composite metal molding material and method for producing composite metal molded product | |
US4562951A (en) | Method of making metallic glass-metal matrix composites | |
KR101802798B1 (en) | Brazing filler metal formed by high pressure torsion and mathod for manufacturing the same | |
US8012275B2 (en) | Method for manufacturing material for forming composite metal and method for manufacturing article formed from composite metal | |
KR102219180B1 (en) | Method for manufacturing an aluminum alloys clad section member, and an aluminum alloys clad section member manufactured by using the same | |
JPH0289599A (en) | Method for strengthening metal material or synthetic resin material or the like | |
JP3884741B2 (en) | Method for producing magnesium alloy granular powder raw material | |
JP2003073787A (en) | Method and apparatus for refining crystal grain of metallic material | |
JP4691735B2 (en) | Grain refiner for casting and method for producing the same | |
RU2298450C2 (en) | Method for producing cermet powder materials | |
US5494541A (en) | Production of aluminum alloy | |
US5571348A (en) | Method and apparatus for improving alloy property and product produced thereby | |
JP3388476B2 (en) | Aluminum-based composite sliding material and method for producing the same | |
WO2005068106A1 (en) | Method for manufacturing formed article made from metal based composite material | |
JPH04107231A (en) | Manufacture of zn-22al superplastic powder-potassium titanate composite | |
JPS59157201A (en) | Manufacture of molded body of zinc-aluminum alloy powder | |
JP2837630B2 (en) | Method and apparatus for manufacturing press-formed product | |
JPS62287002A (en) | Powder molding method | |
JP3860825B2 (en) | Magnesium alloy powder grain refiner | |
JP2005068538A (en) | Method for compacting metal and apparatus therefor | |
CN1560312A (en) | Semi-solid deforming alloy |