JPS63241103A - Method for solidifying powder of metal or the like - Google Patents

Method for solidifying powder of metal or the like

Info

Publication number
JPS63241103A
JPS63241103A JP7569787A JP7569787A JPS63241103A JP S63241103 A JPS63241103 A JP S63241103A JP 7569787 A JP7569787 A JP 7569787A JP 7569787 A JP7569787 A JP 7569787A JP S63241103 A JPS63241103 A JP S63241103A
Authority
JP
Japan
Prior art keywords
powder
piston
metal
pressing
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7569787A
Other languages
Japanese (ja)
Other versions
JPH0617490B2 (en
Inventor
Yuzo Kawamura
雄造 川村
Shigeo Nakagawa
滋夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDEA RES KK
Matsuo Sangyo Co Ltd
Original Assignee
IDEA RES KK
Matsuo Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDEA RES KK, Matsuo Sangyo Co Ltd filed Critical IDEA RES KK
Priority to JP62075697A priority Critical patent/JPH0617490B2/en
Publication of JPS63241103A publication Critical patent/JPS63241103A/en
Publication of JPH0617490B2 publication Critical patent/JPH0617490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To solidity powder of a quickly cooled and solidified metal or the like without impairing the characteristics thereof by pressing the powder of the metal, etc., by using a pressing member and rotating the pressing member around the axis of rotation in the same direction as the powder pressing direction. CONSTITUTION:One open end of a cylinder 2 is hermetically closed by a piston 3 and the powder 4 of the amorphous metal or fine crystalline metal produced by a quick cooling and solidifying method, etc., is packed into the inside space of the cylinder 2 by a piston 3. A piston 1 is then fitted into the cylinder 2 from the open end thereof and the powder 4 is pressed by a pressing face 1' at the front end thereof and is compressed between said face and a receiving face 3' of the piston 3. The piston 1 is rotated around the pressing direction simultaneously with such pressing. The metal powder 4 is, therefore, plastically deformed by the deformation applied from the relative rotation of the receiving face 3' at the front end of the piston 3 while the internal friction heat is generated, by which the powder particles are joined to each other and the powder 4 is solidified at the crystallization temp. or below. The solidification of the powder 4 is thereby permitted without impairing the excellent properties possessed by the powder 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属等の粉体を固形化して製品等を製造する方
法に関し、更に詳しくは急冷凝固粉体等で高温加熱する
と該粉体の持つ特性が失われてしまうような金属等の粉
体を比較的低温条件下で機械的に固形化することにより
該金属粉体のもつ特性を維持して製品化しうるとともに
、性質の異なる異種金属同士の合金や金属とセラミック
材料とを混合してなる複合物の作成をも可能とした金属
等のむ)休園形化方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing products by solidifying powder such as metal. By mechanically solidifying powders such as metals that would otherwise lose their properties under relatively low-temperature conditions, it is possible to maintain the properties of the metal powders and turn them into products. This invention relates to a method for forming metals, etc., which makes it possible to create composites made by mixing alloys of metals and ceramic materials.

〔従来の技術) 急冷凝固方法等による非晶質金属または微結晶金属は耐
熱性、耐摩耗性、表面硬度、引張り強度または磁気特性
等において優れた物性を有することはよく知られており
、これらの金属を製品化すれば非常に広い分野おいて応
用が可能である。ところが、これらの金属は耐熱性に問
題があり、結晶化温度以上、例えばアルミニウムの場合
300℃程度以上に加熱されるとその非晶質構造、また
は微結晶構造が破壊されてしまい、その優れた物性が失
われてしまう。そこで該金属を製品化する際には、一般
の金属製品の製造方法のような加熱を必要とする方法、
例えば熱間ブレスや鋳造等の方法は採用することができ
ない、一般に太陽電池に用いられる薄膜状のアモルファ
スSi金属等はグロー放電法等により作成しうるが、棒
状または板状、更に大きな製品の場合にはこのような方
法では作成することはできない。従って、非晶質金属ま
たは微結晶金属等をその特性を維持したまま製品化する
当たっては該金属の急冷凝固粉末を高温加熱を必要とし
ない機械的手段によりする必要がある。
[Prior art] It is well known that amorphous metals or microcrystalline metals produced by rapid solidification methods have excellent physical properties such as heat resistance, abrasion resistance, surface hardness, tensile strength, and magnetic properties. If this metal is commercialized, it can be applied in a very wide range of fields. However, these metals have problems with heat resistance, and when heated above the crystallization temperature, for example, about 300°C or above in the case of aluminum, the amorphous or microcrystalline structure is destroyed, and the superior properties of these metals are destroyed. Physical properties are lost. Therefore, when making the metal into a product, a method that requires heating like the manufacturing method of general metal products,
For example, methods such as hot pressing or casting cannot be adopted, and thin film-like amorphous Si metals, which are generally used in solar cells, can be created by glow discharge methods, etc., but in the case of rod-shaped, plate-shaped, or even larger products. cannot be created in this way. Therefore, in order to commercialize amorphous metals or microcrystalline metals while maintaining their properties, it is necessary to form rapidly solidified powders of the metals by mechanical means that do not require high-temperature heating.

従来から金属粉末の固形化方法としては、押出し法、圧
延法、更には特公昭57−2441号公報や特公昭60
−14082号公報にみられるような、粉体を固定壁と
駆動壁間に形成した粉体通路を駆動壁の動きにより輸送
して通過させて圧縮して圧粉体を製造する方法等が知ら
れている。
Conventionally, methods for solidifying metal powder include extrusion, rolling, and Japanese Patent Publication No. 57-2441 and Japanese Patent Publication No. 60.
There is a known method of producing green compacts by transporting powder through a powder passage formed between a fixed wall and a driving wall by the movement of the driving wall, and compressing the powder, as shown in Japanese Patent No. 14082. It is being

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の押出し法や圧延法においては、金属
等の粉体粒子同士を加熱および摩擦熱による温度条件下
で加圧、圧縮して密度を大きくすることにより粉体粒子
間を接合しようとするものである。しかし、このような
方法では金属の結晶化温度以下の加工温度では粉体粒子
間を強固に接合することは困難で、硬化が激しく、焼き
なまし等による焼結処理が必要で、非晶質金属や急冷凝
固法による金属の微結晶組織を維持して製品化すること
は不可能である。また、特にアルミニウム等の金属粉体
で粉体粒子表面が強固な酸化膜で覆われているような場
合には密度を大きくするだけでは粒子表面の酸化膜がバ
リヤーとなり、粉体粒子間を強固に接着して固形化する
ことはできない。
In the conventional extrusion and rolling methods described above, powder particles of metal, etc. are bonded together by pressurizing and compressing them under temperature conditions caused by heating and frictional heat to increase their density. That is. However, with this method, it is difficult to firmly bond powder particles at processing temperatures below the metal's crystallization temperature, hardening is severe, sintering treatment such as annealing is required, and amorphous metals and It is impossible to maintain the microcrystalline structure of metals and commercialize them using the rapid solidification method. In addition, especially when the powder particle surface is covered with a strong oxide film such as aluminum powder, simply increasing the density will not allow the oxide film on the particle surface to act as a barrier and strengthen the bond between the powder particles. It cannot be bonded to and solidified.

このように、金属粉体の粒子表面に酸化膜が形成されて
いるような場合には、該粉体粒子を塑性変形して粒子表
面の強固な酸化膜を破壊し、粒子内部の清浄な部分を表
面に露出させて該清浄面により粒子同士を強固に接合す
ることにより固形化しうるのである。しかし、このよう
な金属粒子表面の酸化膜を加圧による圧縮のみにより完
全に破壊することは困難で、たとえ部分的に酸化膜を破
壊出来たとしても残った酸化膜の層が元の粒子の表面に
残れば該表面における接合強度は依然として弱く、成形
後に焼きなましによる焼結処理を行っても表面に残った
酸化膜がバリヤーとなって粉体粒子間の接合を阻害し、
製品全体の強度低下の原因となるのである。
In this way, when an oxide film is formed on the surface of metal powder particles, the powder particles are plastically deformed to destroy the strong oxide film on the particle surface and remove the clean parts inside the particles. The particles can be solidified by exposing them to the surface and firmly bonding the particles together using the clean surface. However, it is difficult to completely destroy such an oxide film on the surface of metal particles by compression alone, and even if the oxide film can be partially destroyed, the remaining oxide film layer will remain on the original particle. If it remains on the surface, the bonding strength on the surface will still be weak, and even if sintering by annealing is performed after molding, the oxide film remaining on the surface will act as a barrier and inhibit the bonding between powder particles.
This causes a decrease in the strength of the entire product.

従来の押出し法においては、粒子を塑性変形して酸化膜
を破壊する能力を増大させるには、押出しの際の押圧面
積と押出し部面積の比、いわゆる押出し比を大きく設定
することによりダイス付近で生ずる粉体粒子の変形量を
増大させればよいのであるが、このように押出し比を太
き(設定したときには粉体の流動性を上げてやらなけれ
ばならない。このため、実際の押出し加工においてはア
ルミニウム合金の場合550℃前後に加熱している。
In conventional extrusion methods, in order to increase the ability to plastically deform particles and destroy oxide films, the ratio of the pressing area to the area of the extruded area during extrusion, the so-called extrusion ratio, is set to a large value. It is possible to increase the amount of deformation of the resulting powder particles, but when the extrusion ratio is set to a large value, the fluidity of the powder must be increased.For this reason, in actual extrusion processing, In the case of aluminum alloy, it is heated to around 550°C.

これは550℃以上の温度では析出物の粗大化等により
急冷凝固粉末の特性が失われてしまうためであるが、ア
ルミニウムの場合約300℃以上の温度で結晶粒が成長
し、微細結晶組織が破壊されてしまうが300℃以下の
温度では押出しが困難で、また粉体粒子間の接着も不十
分なため成形体の強度゛か弱くなるため、上記の如〈従
来の押出し法による加工や焼結においては粉体の接着性
を高めるため微罪結晶組織を犠牲にして550℃程度の
温度で加工しているのである。
This is because at temperatures above 550°C, the properties of rapidly solidified powder are lost due to coarsening of precipitates, etc., but in the case of aluminum, crystal grains grow at temperatures above about 300°C, resulting in a fine crystal structure. However, extrusion is difficult at temperatures below 300°C, and the strength of the compact is weakened due to insufficient adhesion between powder particles. In order to improve the adhesion of the powder, processing is carried out at a temperature of about 550° C. at the expense of the microcrystalline structure.

また、前述の特公昭57−2241号公報および特公昭
6014082号公報における方法においても、粉体粒
子間の接着は固定壁および駆動壁と粉体との間に発生す
る摩擦熱を利用し、押出しによる圧縮により圧粉体を製
造するものであるが、前述の押出し法や圧延法と同様に
このような圧縮による加工方法では金属粉体の粒子を塑
性変形して粉体を固形化することは困難であり、上述し
たような問題点は依然として解決されてはいない。
Furthermore, in the methods described in Japanese Patent Publication No. 57-2241 and Japanese Patent Publication No. 6014082, the adhesion between powder particles is achieved by utilizing the frictional heat generated between the fixed wall and the driving wall and the powder. However, similar to the extrusion method and rolling method described above, this compression processing method does not plastically deform the metal powder particles to solidify the powder. It is difficult, and the problems mentioned above have not yet been solved.

本発明は上記のような問題点に鑑み、非晶質金属または
微細結晶金属等の加熱により特性が失われやすい金属を
製品化するに当たり、該金属の粉体を比較的低温条件下
で粉体粒子を塑性変形させることにより、金属粉体の粒
子表面に酸化膜等が形成されている場合においても、該
粒子同士を接合して固形化することにより、表面強度、
耐摩耗性、引張り強度および耐熱性等の優れた物性を有
し、広く応用しうる金属製品を得ることのできる金属等
の粉体面形化方法を提供せんとするものである。
In view of the above-mentioned problems, the present invention aims to produce a product of metals that tend to lose their properties when heated, such as amorphous metals or microcrystalline metals. By plastically deforming the particles, even if an oxide film or the like is formed on the surface of the metal powder particles, the particles can be bonded together and solidified to improve the surface strength and
The object of the present invention is to provide a method for forming a powder surface of metal, etc., which can produce metal products having excellent physical properties such as wear resistance, tensile strength, and heat resistance, and which can be widely applied.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題を解決するために、金属等の粉体を
押圧部材にて押圧するとともに前記押圧部材を粉体押圧
方向と同方向の回転軸の周りで回転させることにより粉
体に剪断力を付与して圧潰することを特徴とする金属等
の粉体固形化方法を提供せんとするものである。
In order to solve the above problems, the present invention presses powder such as metal with a pressing member and rotates the pressing member around a rotation axis in the same direction as the powder pressing direction to shear the powder. It is an object of the present invention to provide a method for solidifying powder of metal or the like, which is characterized by crushing by applying force.

〔作用〕[Effect]

本発明の金属等の粉体固形化方法は上記の通りであり、
金属等の粉体を押圧部材にて押圧することにより圧縮し
、密度を増大するとともに前記押圧部材を押圧方向と同
方向の回転軸の周りで回転させることにより粉体粒子を
剪断力および摩擦熱により塑性変形させて金属等の粉体
粒子間を強固に接着し、非晶質金属または急冷凝固金属
の微結晶組織を破壊することない結晶化温度以下の温度
で粉体を固形化しうるちのである。
The method for solidifying powder such as metal of the present invention is as described above,
Powder such as metal is compressed by pressing it with a pressing member to increase its density, and at the same time, by rotating the pressing member around a rotating shaft in the same direction as the pressing direction, the powder particles are subjected to shearing force and frictional heat. It is possible to plastically deform powder particles such as metals to firmly bond between them, and solidify the powder at a temperature below the crystallization temperature without destroying the microcrystalline structure of amorphous metals or rapidly solidified metals. be.

〔発明の詳説〕[Details of the invention]

次に本発明を図示した具体例に基づいて更に説明する。 Next, the present invention will be further explained based on illustrated concrete examples.

本発明に係る金属等の粉体固形化方法は例えば第1図に
示したように、内部を両端へ開放したシリンダー2の一
方の開放端をピストン3にて密閉してなるシリンダー2
の内部空間に金属等の粉体4または異種金属粉体混合物
を充填し、シリンダー2の開放端から嵌入したピストン
1における先端の押圧面1′にて押圧することにより粉
体4をピストン3の受面3°との間で圧縮するとともに
、ピストン1を押圧方向即ちシリンダー2の長さ方向を
軸として回転させることにより、金属粉体4はピストン
3先端の受面3゛の相対的な回転から加えられる変形に
より内部摩擦熱を伴いながら塑性変形されて粉体粒子同
士が接合し、粉体が固形化されるのである。この場合の
ピストン1による加圧力としては、粉体4と押圧面l°
との摩擦力を高めて両者間のスリップを防止し、粉体4
へ塑性変形に必要な剪断力を伝達しうる程度の加圧力が
必要である。このような加圧力条件としては、好ましく
は〔用いる金属粉体の加工温度下での降伏圧力×加圧面
積〕以上の圧力が必要であるが、該加圧力の0.7倍程
度の圧力でも、スリップは発生するものの粉体粒子の接
着力は実用上問題はない、更には、このような圧力条件
下で加工することにより、普通の状態ではクランクが発
生するような応力が圧粉体内部で生じてもクランクの発
生を防止して均一な固形化物としうるのである。また、
アルミニウム等の粉体で該粉体粒子の表面に酸化膜が形
成されていたとしても、押圧部材としてのピストンlの
回転によりピストン1の押圧面1′から粉体4に付与さ
れる剪断力により粒子表面の強固な酸化膜が破壊され、
粒子内部の清浄な部分が粒子表面に露出して該清浄部分
にて粒子同士が強固に接合されうるのである。また、こ
の場合の粉体4の粒子の塑性変形はピストン1の押圧に
よる圧縮のみに鯨っているものではなく、粉体4に与え
られる剪断力は、ピストン1の押圧力により、シリンダ
ー2の他端を閉鎖してピストン1の圧力に抗して粉体を
保持しているピストン3先端の受面3”およびシリンダ
ー2の内壁2゛と粉体4との摩擦力により与えられるの
で、ピストン1のストロークは粉体に加わる剪断力と直
接関係なく、装置の構成によっては短いストロークでよ
い。
The method for solidifying powder such as metal according to the present invention is, for example, as shown in FIG.
The internal space of the cylinder 2 is filled with powder 4 of metal or a mixture of different metal powders, and the powder 4 is pushed into the piston 3 by pressing it with the pressing surface 1' at the tip of the piston 1 inserted from the open end of the cylinder 2. By compressing the metal powder 4 between the receiving surface 3° and rotating the piston 1 in the pressing direction, that is, the longitudinal direction of the cylinder 2, the metal powder 4 is compressed by the relative rotation of the receiving surface 3° at the tip of the piston 3. Due to the deformation applied from the powder, the powder particles are plastically deformed with internal frictional heat, and the powder particles are bonded to each other, and the powder is solidified. In this case, the pressing force by the piston 1 is between the powder 4 and the pressing surface l°
This increases the frictional force between the two and prevents slippage between the two.
A sufficient pressure is required to transmit the shear force necessary for plastic deformation. As for such pressurizing force conditions, preferably a pressure equal to or higher than [yield pressure of the metal powder used at the processing temperature x pressurized area] is required, but even a pressure of about 0.7 times the pressurizing force may be used. Although slipping occurs, there is no practical problem with the adhesion of the powder particles.Furthermore, by processing under such pressure conditions, the stress that would normally cause cranking is generated inside the powder compact. Even if this occurs, it is possible to prevent the occurrence of cranks and obtain a uniform solidified product. Also,
Even if an oxide film is formed on the surface of the powder particles of aluminum or the like, the shear force applied to the powder 4 from the pressing surface 1' of the piston 1 due to the rotation of the piston 1 as a pressing member The strong oxide film on the particle surface is destroyed,
A clean part inside the particle is exposed on the particle surface, and the particles can be firmly bonded to each other at the clean part. In addition, the plastic deformation of the particles of the powder 4 in this case is not only caused by compression due to the pressure of the piston 1; the shear force applied to the powder 4 is caused by the pressure of the piston 1, This is caused by the frictional force between the powder 4 and the receiving surface 3'' at the tip of the piston 3, which holds the powder against the pressure of the piston 1 with the other end closed, and the inner wall 2'' of the cylinder 2. The stroke 1 is not directly related to the shearing force applied to the powder, and may be a short stroke depending on the configuration of the device.

上記のように、本発明の金属等の粉体固形化方法は押圧
部材としてのピストン1による加圧により粉体4を圧縮
して密度を高くするだけでな(、ピストン1を押圧方向
と同軸上で回転させて粉体4に剪断力を与えることによ
りピストン1の押圧面l°とピストン3の受面3′との
間で粉体粒子が塑性変形され、粉体粒子の表面に酸化膜
等が形成されている場合にも該酸化膜を破壊して内部の
清浄部分を露出して該清浄面による強硬な接合を可能と
するのである。また、この場合の温度条件としては、剪
断力により粉体粒子を塑性変形するのを補助しうる程度
でよいので高温に加熱する必要はないが、用いる粉体の
性質により、加熱が可能な場合には適宜加熱することに
より金属の粉体粒子の流動性を上げて効率良く固形化す
る事ができ、回転、加圧および温度等の条件を固形化し
ようとする粉体の種類により適宜設定することで種々の
金属に応用することができるのである。
As described above, the method for solidifying powder such as metal of the present invention not only compresses the powder 4 and increases its density by applying pressure with the piston 1 as a pressing member (but also uses the piston 1 coaxially with the pressing direction). By applying shear force to the powder 4 by rotating the powder 4, the powder particles are plastically deformed between the pressing surface 1° of the piston 1 and the receiving surface 3' of the piston 3, and an oxide film is formed on the surface of the powder particles. Even when the oxide film is formed, the oxide film is destroyed and the internal clean part is exposed to enable strong bonding using the clean surface.In addition, the temperature conditions in this case include the shear force There is no need to heat the metal powder particles to a high temperature as it can assist in plastic deformation of the powder particles. It is possible to increase the fluidity of powder and solidify it efficiently, and it can be applied to various metals by appropriately setting conditions such as rotation, pressure, and temperature depending on the type of powder to be solidified. be.

更に、上述の如く本発明に係る金属等の粉体固形化方法
は粉体に一定以上の圧力下で剪断力を与えることで粉体
粒子を塑性変形させて粒子同士を接合させるものである
ので、押出し成形する場合にも押出しの際の流動性を上
げるために粉体を高温に加熱する必要はなく比較的低温
条件下で各種押出し成形が可能となる。例えば第2図に
示した押出し装置の例は、シリンダー13の内部空間の
両・ 端からピストン11およびピストン12を嵌挿し
て両ピストンの先端面11’、12’を対面させ、シリ
ンダ−13壁面にはシリンダ−13内部空間から外部へ
連通する開孔を形成して粉体供給孔14としている(第
2図(イ))。前記ピストン11は後部を油圧シリンダ
ー(図示せず)に関係付けてシリンダー13内にて加圧
移動可能とするとともに該ピストン11はプーリーp、
ベルトV等を介してモーター等の駆動手段(図示せず)
に関係付けて回転可能とし、他方ピストン12も油圧シ
リンダー等(図示せず)に関係付けることによりシリン
ダー13内を加圧移動しうるようになしている。該装置
を用いて粉体を固形化するには、まずシリンダー13内
おいてピストン11とピストン12とをその先端面11
’、12”同士をシリンダー13に設けた粉体供給孔1
4部分に内部空間Sを残して対面するように位置設定し
、粉体供給孔14から金属等の粉体15をシリンダー1
3内に充填する。次に、ピストン11をピストン12方
向へ押圧するとともに駆動手段にて回転させる(第2図
(イ))ことによりピストン11とピストン12との間
で粉体15が圧縮されるとともにピストン11の回転に
より粉体15に剪断力が付与され、粉体粒子が塑性変形
されることにより粉体15が固形化されるのである。こ
の固形化の段階ではピストン12には該ピストン12に
関係付けた油圧シリンダーによりピストン11の押圧力
に対向して粉体15をシリンダー13内で圧縮しうる圧
力がかけられているが、ピストン12の圧力をピストン
11による圧力より若干弱くすれば、粉体の固形化とと
もにピストン11の押圧面11° とピストン12の受
面12° との間で固形化しつつある粉体15を挟持し
た状態でピストン12方向へ移動させ、粉体15の固形
化が終了した時点で該固形化物15゛ の押圧面11゛
側端面がシリンダー13における粉体供給孔14位置よ
りもピストン12よりに位置する (第2図(ハ))。
Furthermore, as mentioned above, the method for solidifying powder such as metal according to the present invention involves applying shearing force to the powder under pressure above a certain level to plastically deform the powder particles and bonding the particles together. Even in the case of extrusion molding, there is no need to heat the powder to a high temperature to improve fluidity during extrusion, and various extrusion moldings can be performed under relatively low temperature conditions. For example, the example of the extrusion device shown in FIG. An opening communicating from the internal space of the cylinder 13 to the outside is formed in the cylinder 13 to serve as a powder supply hole 14 (FIG. 2(A)). The piston 11 has its rear end connected to a hydraulic cylinder (not shown) so that it can be moved under pressure within the cylinder 13, and the piston 11 is connected to a pulley p,
Drive means such as a motor (not shown) via a belt V etc.
The piston 12 is also connected to a hydraulic cylinder (not shown) so that it can be moved under pressure within the cylinder 13. To solidify powder using this device, first place the pistons 11 and 12 in the cylinder 13 so that their tip surfaces 11
', 12'' are provided in the cylinder 13. Powder supply hole 1
Powder 15 such as metal is fed into cylinder 1 from powder supply hole 14 by leaving an internal space S between 4 parts and facing each other.
Fill it within 3. Next, the piston 11 is pressed in the direction of the piston 12 and rotated by the driving means (FIG. 2 (a)), thereby compressing the powder 15 between the piston 11 and the piston 12 and rotating the piston 11. As a result, a shearing force is applied to the powder 15, and the powder particles are plastically deformed, thereby solidifying the powder 15. At this stage of solidification, pressure is applied to the piston 12 by a hydraulic cylinder associated with the piston 12 in opposition to the pressing force of the piston 11 to compress the powder 15 within the cylinder 13. If the pressure is made slightly lower than the pressure exerted by the piston 11, the powder will solidify and the solidifying powder 15 will be held between the pressing surface 11° of the piston 11 and the receiving surface 12° of the piston 12. When the powder 15 is solidified by moving it in the direction of the piston 12, the end face of the solidified material 15 on the pressing surface 11' side is located closer to the piston 12 than the position of the powder supply hole 14 in the cylinder 13. Figure 2 (c)).

この状態でピストン11を粉体供給孔14位置よりも後
方へ後退させれば固形化した粉体15”とピストン11
の押圧面11’間に形成される空間S゛には供給孔14
からシリンダー13内に更に粉体を供給することができ
る。
In this state, if the piston 11 is moved backward from the position of the powder supply hole 14, the solidified powder 15" and the piston 11
A supply hole 14 is provided in the space S' formed between the pressing surfaces 11'.
Further powder can be fed into the cylinder 13 from.

前記の操作を再度行うことにより (第2図(ニ)(ホ
))、既に固形化した粉体15゛の後端に新たに供給し
た粉体15を連続して固形化することができ、しかも前
回固形化分15”と今回固形化分15とは同時にピスト
ン11の回転により剪断力を付与されて混錬されるので
一体のものとして成形されるのである。以上の操作を順
次繰り返すことにより粉体15を連続した長尺物として
成形することが可能である (第2図(へ))。
By repeating the above operations (FIG. 2 (d) and (e)), the newly supplied powder 15 can be continuously solidified at the rear end of the already solidified powder 15. Moreover, the previously solidified portion 15" and the current solidified portion 15" are simultaneously kneaded with shearing force applied by the rotation of the piston 11, so that they are molded as one piece.By repeating the above operations in sequence, It is possible to form the powder 15 into a continuous long object (FIG. 2(f)).

また、本発明の金属等の粉体固形化方法は粉体に押圧力
による圧縮を与えるとともに剪断力を与えるものである
ので、受側は必ずしも第2図のようにピストン12で閉
鎖する必要はなく、当初の固形化段階の終了後、次の段
階では第3図に示したように受側のピストン12の代わ
りにシリンダー13の端部に該シリンダー13の内径よ
り縮径した形状の出口eを有するノズル16を設けるこ
とにより該出口e付近における固形化粉体15”の抗変
応力および摩擦力によりピストン11の押圧および回転
力に対向するようにしておけば受用ピストン12を用い
ることなしに粉体に剪断力を与えて固形化可能とし、通
常の押出し成形の如く連続した固形化物15°を製造し
うるのである。また、第4図の如く、ノズル16の内部
を二段階のテーパー面に形成して、第一のテーパー面A
で粉体を塑性変形し、第二のテーパー面Bにて押出すよ
うにしてもよい。上記第3図または第4図のような場合
にはノズル16の出口eの形状を所望の製品形状とする
ことができる。また、本発明によれば、粉体を圧縮する
とともに剪断力を付与することにより粉体粒子同士を接
合するので、押出し成形する場合にもシリンダー11の
内断面積と出口の断面積との押出し比はピストン11の
加圧により粉体4とピストン11の押圧面11°との間
の摩擦力を高めて両者間のスリップを防止して粉体4に
塑性変形に必要な剪断力を付与することにより、粉体表
面に酸化膜等が形成されているような粉体の場合でも容
易に塑性変形して粉体粒子を接合することにより固形化
し、また通常の方法ではクラックが発生するような応力
が粉体内部に生じてもクランクが発生するのを防止しう
るのである。
Furthermore, since the method for solidifying powder such as metal of the present invention applies compression by pressing force to the powder as well as shearing force, the receiving side does not necessarily need to be closed with the piston 12 as shown in FIG. Instead, after the initial solidification stage is completed, in the next stage, as shown in FIG. By providing a nozzle 16 having a diameter of 15 mm, the pressure and rotational force of the piston 11 can be countered by the anti-deformation force and frictional force of the solidified powder 15'' near the outlet e, thereby eliminating the need for the receiving piston 12. By applying shear force to the powder, it is possible to solidify the powder, and it is possible to produce a continuous solidified product of 15 degrees as in ordinary extrusion molding.Also, as shown in Fig. 4, the inside of the nozzle 16 is formed with a two-stage tapered surface. and the first tapered surface A
The powder may be plastically deformed and extruded from the second tapered surface B. In the case shown in FIG. 3 or 4 above, the shape of the outlet e of the nozzle 16 can be made into a desired product shape. Furthermore, according to the present invention, powder particles are joined together by compressing the powder and applying shearing force, so that even when extrusion molding is performed, the internal cross-sectional area of the cylinder 11 and the cross-sectional area of the outlet are The ratio increases the frictional force between the powder 4 and the pressing surface 11° of the piston 11 by pressurizing the piston 11, prevents slipping between them, and provides the powder 4 with the shearing force necessary for plastic deformation. As a result, even if the powder has an oxide film formed on its surface, it can easily be plastically deformed and solidified by joining the powder particles, and it can also be hardened by bonding the powder particles, which would otherwise cause cracks. Even if stress is generated inside the powder, it is possible to prevent the occurrence of cranks.

上記ノズル16の代わりに第5図に示した如くシリンダ
ー13の出口の外に固形化して押出された粉体固形物を
挟持すべくローラー17.17を設けて固形化物にブレ
ーキをかけることによってピストン12の代用とするこ
とも可能である。
Instead of the nozzle 16, as shown in FIG. 5, rollers 17 and 17 are provided to clamp the solidified powder solidified and extruded out of the outlet of the cylinder 13, and by applying a brake to the solidified material, the piston It is also possible to substitute 12.

第6図に示したものは、シリンダー13の出口に回転ダ
イス18を設け、該回転ダイス18の回転により粉体1
5を圧縮するとともに剪断力を付与して押出し成形すれ
ば、固形化粉体に回転ダイス18の回転により出口付近
で非常に大きな変形を与え、強固な固形物として押出す
ことができ、更には第7図の如くノズル16の内部に二
段のテーパー面A1Bを形成することにより出口eから
A部分における加圧力が外部へ逃げるのを防止しうるち
のである。上記第3図〜第7図の方法では、固形化の当
初においてはノズル16または回転ダイス18の出口を
適宜手段で閉鎖しておけばよい。
In the case shown in FIG. 6, a rotating die 18 is provided at the outlet of the cylinder 13, and the rotation of the rotating die 18 causes the powder to be
5 is compressed and extruded by applying shear force, the solidified powder is given a very large deformation near the exit by the rotation of the rotating die 18, and can be extruded as a strong solid. By forming the two-step tapered surface A1B inside the nozzle 16 as shown in FIG. 7, it is possible to prevent the pressurizing force at the portion A from escaping from the outlet e to the outside. In the method shown in FIGS. 3 to 7, the outlet of the nozzle 16 or the rotary die 18 may be closed by appropriate means at the beginning of solidification.

第8図に示したものは回転ダイス18の先端部へ静水圧
による加圧を加えることによりA部分にかかる加圧力が
外部に逃げるのを防止する方法である。
The method shown in FIG. 8 is a method of applying hydrostatic pressure to the tip of the rotary die 18 to prevent the pressure applied to the portion A from escaping to the outside.

尚、上記の操作中における摩擦熱または加熱による粉体
の温度は用いる金属粉体により適宜制御しうるようにす
るのが望ましく、特に温度により特性が大きく変化して
しまうような非晶質金属等の場合には温度制御は重要で
ある。
In addition, it is desirable to be able to control the temperature of the powder due to frictional heat or heating during the above operation depending on the metal powder used, especially for amorphous metals whose properties change greatly depending on temperature. Temperature control is important in these cases.

去立拠 エアーアトマイズ法により製造された250メツシュ以
上を95%含む純度99.9%の純アルミニウムを原料
粉として第1図に示した方法で固形物サンプルを作成し
た。押圧部材による加圧は約10t/etaであり、加
圧力を保持したまま非加熱状態で直径25m、肉厚1鶴
について約3回転の回転剪断力を加えて肉厚5日のアル
ミニウムの固形物を作成した。
A solid sample was prepared by the method shown in FIG. 1 using pure aluminum with a purity of 99.9% and containing 95% of 250 meshes or more produced by the air atomization method as a raw material powder. The pressure applied by the pressing member was approximately 10 t/eta, and a solid aluminum material with a diameter of 25 m and a thickness of 5 days was applied by applying rotational shearing force of approximately 3 rotations per crane in an unheated state while maintaining the pressure. It was created.

このようにして得られたサンプル固形物の物性試験をし
た結果、引張り強度60.6kg/m” 、 ビッカー
ス硬度はHν135という高い値を示した。
As a result of physical property tests of the solid sample thus obtained, it showed a tensile strength of 60.6 kg/m'' and a high Vickers hardness of Hv135.

比較のため従来からの一般的な粉末冶金の方法をアルミ
ニウムに用いてサンプルを作成し、物性試験を行った。
For comparison, samples were prepared using conventional powder metallurgy methods for aluminum, and physical property tests were conducted.

即ち、エアーアトマイズ法により製造された純アルミニ
ウムの粉体を約20t/−の圧力で加圧し、これを51
0℃、窒素ガス流中で2時間焼結した。このものの引張
り強度は約4.3kgA1であった。またエアーアトマ
イズ法により製造されたアルミ合金2014を同様の方
法で作成加工したものの引張り強度を測定したところ5
.2に+r/l、2であった。
That is, pure aluminum powder produced by the air atomization method is pressurized at a pressure of about 20 tons/-, and
Sintering was carried out at 0° C. in a nitrogen gas stream for 2 hours. The tensile strength of this product was approximately 4.3 kgA1. In addition, when we measured the tensile strength of aluminum alloy 2014 manufactured by the air atomization method and processed it using the same method, it was 5.
.. 2 +r/l, 2.

上記の如く、従来からの一般的な粉末冶金の方法により
作成したものは非常に脆い物性を示したが、その原因は
これらの破断面の状態を観察した結果、粉体粒子同士の
接着が接着面積、接着強度ともに低いのが原因と推測さ
れた。
As mentioned above, those made using conventional powder metallurgy methods exhibited extremely brittle physical properties, but as a result of observing the state of these fractured surfaces, the cause of this was found to be due to the adhesion between powder particles. It was assumed that this was due to the low area and adhesive strength.

この結果からあきらかなように、従来からの一般的な粉
末冶金の方法では、アルミニウム系材料の場合、粉体の
接着という基本的な問題があるが、本発明の固形化方法
によればこのような問題は解決され、粉体粒子間は強度
に接着されるのである。
As is clear from these results, conventional general powder metallurgy methods have a basic problem of adhesion of powder in the case of aluminum-based materials, but the solidification method of the present invention solves this problem. This problem is solved, and the powder particles are strongly bonded.

上記実施例においては、加工中のサンプルからは摩擦熱
が発生するが、300℃以上には昇温していないと推測
された。上記の摩擦による発熱は押圧部材の回転速度に
より制御することができる。
In the above example, although frictional heat was generated from the sample during processing, it was assumed that the temperature did not rise above 300°C. The heat generated by the friction described above can be controlled by the rotational speed of the pressing member.

また、原料粉の粒子に与えられる変形は、加圧力、回転
速度、回転時間により左右されるが、理想的な条件であ
れば押圧部材と原料粉との間にスリップの発生はなく押
圧部材により与えられる回転がそのまま粒子の変形に消
耗される。また、前記実施例条件下のシリンダー内にお
ける外周部分の粒子は約160倍に引き延ばされている
と考えられ、粉体粒子の表面は実質的に酸化膜の無い、
清浄な面になっている。本材料の強化機構は前述の如く
急冷凝固で得られた粉末の微細結晶によりもたらされる
材料強化に加えて、強度の変形により与えられた加工強
化、および粉体粒子表面を構成していた酸化膜即ち酸化
アルミニウムが基地中に分散したことにより得られた分
散強化である。特に結晶組織については、結晶粒径1μ
鶴以下の均一な超微細結晶粒からなりたっているのが観
測された。
In addition, the deformation given to the particles of raw material powder depends on the pressing force, rotation speed, and rotation time, but under ideal conditions, there will be no slip between the pressing member and the raw material powder, and the pressing member will The applied rotation is directly consumed by the deformation of the particles. Furthermore, it is thought that the particles at the outer periphery in the cylinder under the conditions of the above-mentioned example were elongated by about 160 times, and the surface of the powder particles was substantially free of oxide film.
It has a clean surface. The strengthening mechanism of this material is, as mentioned above, in addition to the material strengthening brought about by the fine crystals of the powder obtained by rapid solidification, processing strengthening provided by the deformation of the strength, and the oxide film that formed the surface of the powder particles. That is, this is dispersion strengthening obtained by dispersing aluminum oxide in the matrix. Especially regarding the crystal structure, the crystal grain size is 1 μm.
It was observed that it consisted of uniform ultrafine crystal grains smaller than a crane.

また、粒体の粒界は破断面を観測した限りでは全・く認
められず、原料粉の接着は完全におこわれでいることが
確認された。更に、粉体粒子間の空孔も全く存在せず、
本方法において原料粉が粉体としての挙動を示すのは加
工の初期段階だけで、ある程度固形化した後は一種のメ
タルフローのような状態と考えられ、強度−の変形を受
けて流動する粉体粒子が空孔を埋めつくしたと考えられ
る。
In addition, no grain boundaries of the granules were observed at all when the fracture surface was observed, and it was confirmed that the adhesion of the raw material powder had completely failed. Furthermore, there are no pores between powder particles,
In this method, the raw material powder behaves as a powder only at the initial stage of processing, and after solidifying to a certain extent, it is considered to be in a kind of metal flow state, and the powder behaves like a powder that flows due to the deformation of the strength. It is thought that the body particles completely filled the pores.

以上の如く、本方法によれば合金化によらない金属の強
化も可能となるのである。
As described above, according to this method, metals can be strengthened without alloying.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る金属等の粉体固形化方法は
、金属等の粉体を押圧部材にて押圧するとともに前記押
圧部材を粉体押圧方向と同方向の回転軸の周りで回転さ
せることにより粉体を圧潰することを特徴とし、上述し
た急冷凝固粉末等のように加熱による結晶構造の変化に
より特性が失われてしまうような非晶質金属または微結
晶金属等を製品化するにあたって、摩擦熱または低温加
熱等の温度条件下で該金属粉体粒子を混錬、圧接するこ
とにより、粉体粒子の表面に強固な酸化膜が形成された
アルミニウム合金等の場合においても粒子を塑性変形さ
せて表面酸化膜を破壊し、内部の清浄面により粒子間を
接着するので粒子同士が強固に接合した合金を作成する
ことが可能であり、また上記のような非晶質金属または
微結晶金属等以外の金属の場合でも、例えばリチウム等
の融点が低く合金作成時に高温に加熱出来ない金属の場
合にも、各金属の粉体を低温で混錬して固形化すること
により作成航空機材料として有用なリチウム合金等を作
成可能である。また、融点、比重等の性質が異なるため
共存させることが困難な異種金属同士や、または金属と
セラミックとの合成物等の作成も可能であり、例えば、
Al−Pe合金等の耐熱、軽量化合金やアルミニウムと
シリカ。
As described above, in the method for solidifying powder such as metal according to the present invention, powder such as metal is pressed by a pressing member, and the pressing member is rotated around a rotation axis in the same direction as the powder pressing direction. It is characterized by crushing the powder by crushing the powder, and commercializes amorphous metals or microcrystalline metals whose properties are lost due to changes in the crystal structure due to heating, such as the rapidly solidified powders mentioned above. In this process, the metal powder particles are kneaded and pressure-welded under temperature conditions such as frictional heat or low-temperature heating. The surface oxide film is destroyed by plastic deformation, and the particles are bonded by the internal clean surface, so it is possible to create an alloy in which the particles are firmly bonded to each other. Even in the case of metals other than crystalline metals, such as lithium, which has a low melting point and cannot be heated to high temperatures during alloy creation, aircraft can be created by kneading the powder of each metal at low temperatures and solidifying it. It is possible to create lithium alloys etc. that are useful as materials. It is also possible to create composites of dissimilar metals that are difficult to coexist due to their different melting points, specific gravity, etc., or of metals and ceramics. For example,
Heat-resistant, lightweight alloys such as Al-Pe alloys, aluminum and silica.

アルミナ等のセラミックとの複合物等の作成も可能であ
る。
It is also possible to create composites with ceramics such as alumina.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属等の粉体固形化方法の一実施
例を示す装置の説明図、第2図(イ°)〜(へ)は前記
固形化方法により連続的に固形化する方法を示す説明図
、第3図〜第8図は本発明方法を用いた他の装置例を示
す説明図である。 1:ピストン、2ニジリンダ−13:ピストン、4:粉
体、11:ピストン、12:ピストン、13ニジリンダ
−114:粉体供給孔、15:粉体、16:ノズル、1
7:ロール、18:回転ダイス、V:ベルト、p:プー
リー、 e:出口、S:空間。 特 許 出 願 人  有限会社イデアリサーチ第6図 第7図 第8図 第3図 第4図
Fig. 1 is an explanatory diagram of an apparatus showing an embodiment of the method for solidifying powder of metal, etc. according to the present invention, and Fig. 2 (a) to (e) show continuous solidification by the above-mentioned solidification method. Explanatory drawings showing the method, FIGS. 3 to 8 are explanatory drawings showing other examples of apparatuses using the method of the present invention. 1: Piston, 2 Niji cylinder - 13: Piston, 4: Powder, 11: Piston, 12: Piston, 13 Niji cylinder - 114: Powder supply hole, 15: Powder, 16: Nozzle, 1
7: Roll, 18: Rotating die, V: Belt, p: Pulley, e: Exit, S: Space. Patent applicant Idea Research Ltd. Figure 6 Figure 7 Figure 8 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)金属等の粉体を押圧部材にて押圧するとともに前記
押圧部材を粉体押圧方向と同方向の回転軸の周りで回転
させることにより粉体に剪断力を付与して圧潰すること
を特徴とする金属等の粉体固形化方法。
1) Powder such as metal is pressed by a pressing member and the pressing member is rotated around a rotating shaft in the same direction as the powder pressing direction to apply shear force to the powder and crush it. A method for solidifying powder such as metals.
JP62075697A 1987-03-27 1987-03-27 Solidification method of crushing / fixing powder containing mainly metal Expired - Lifetime JPH0617490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075697A JPH0617490B2 (en) 1987-03-27 1987-03-27 Solidification method of crushing / fixing powder containing mainly metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075697A JPH0617490B2 (en) 1987-03-27 1987-03-27 Solidification method of crushing / fixing powder containing mainly metal

Publications (2)

Publication Number Publication Date
JPS63241103A true JPS63241103A (en) 1988-10-06
JPH0617490B2 JPH0617490B2 (en) 1994-03-09

Family

ID=13583666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075697A Expired - Lifetime JPH0617490B2 (en) 1987-03-27 1987-03-27 Solidification method of crushing / fixing powder containing mainly metal

Country Status (1)

Country Link
JP (1) JPH0617490B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289597A (en) * 1988-09-27 1990-03-29 Idea Res:Kk Manufacture of high density green compact
JPH0289599A (en) * 1988-09-27 1990-03-29 Idea Res:Kk Method for strengthening metal material or synthetic resin material or the like
JP2006090626A (en) * 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology Sintering device, and method of manufacturing sintered body
JP2006299355A (en) * 2005-04-21 2006-11-02 Toyota Boshoku Corp Method and device for extruding metal material, and method and device for recycling metal
JP2008144208A (en) * 2006-12-07 2008-06-26 Kyushu Univ Fullerene composite and method for manufacturing the same
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
JP2019115909A (en) * 2017-12-26 2019-07-18 株式会社Uacj Extrusion composite material and its manufacturing method
CN117380955A (en) * 2023-12-13 2024-01-12 合肥工业大学 Forming device and method for cylindrical part made of composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085234A (en) * 2007-09-27 2009-04-23 Ntn Corp Plain bearing and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932521A (en) * 1982-08-13 1984-02-22 Nippon Denso Co Ltd Car sunroof
JPS62287002A (en) * 1986-06-05 1987-12-12 Ishikawajima Harima Heavy Ind Co Ltd Powder molding method
JPS634003A (en) * 1986-06-24 1988-01-09 Ishikawajima Harima Heavy Ind Co Ltd Powder extruding method
JPS63169301A (en) * 1986-12-29 1988-07-13 Kubota Ltd Method for crushing and molding quickly cooled and solidified powder essentially consisting of al

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932521A (en) * 1982-08-13 1984-02-22 Nippon Denso Co Ltd Car sunroof
JPS62287002A (en) * 1986-06-05 1987-12-12 Ishikawajima Harima Heavy Ind Co Ltd Powder molding method
JPS634003A (en) * 1986-06-24 1988-01-09 Ishikawajima Harima Heavy Ind Co Ltd Powder extruding method
JPS63169301A (en) * 1986-12-29 1988-07-13 Kubota Ltd Method for crushing and molding quickly cooled and solidified powder essentially consisting of al

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289597A (en) * 1988-09-27 1990-03-29 Idea Res:Kk Manufacture of high density green compact
JPH0289599A (en) * 1988-09-27 1990-03-29 Idea Res:Kk Method for strengthening metal material or synthetic resin material or the like
JP2006090626A (en) * 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology Sintering device, and method of manufacturing sintered body
JP2006299355A (en) * 2005-04-21 2006-11-02 Toyota Boshoku Corp Method and device for extruding metal material, and method and device for recycling metal
JP2008144208A (en) * 2006-12-07 2008-06-26 Kyushu Univ Fullerene composite and method for manufacturing the same
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
JP2019115909A (en) * 2017-12-26 2019-07-18 株式会社Uacj Extrusion composite material and its manufacturing method
CN117380955A (en) * 2023-12-13 2024-01-12 合肥工业大学 Forming device and method for cylindrical part made of composite material
CN117380955B (en) * 2023-12-13 2024-02-23 合肥工业大学 Forming device and method for cylindrical part made of composite material

Also Published As

Publication number Publication date
JPH0617490B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4915605A (en) Method of consolidation of powder aluminum and aluminum alloys
JPS63241103A (en) Method for solidifying powder of metal or the like
JPH0159343B2 (en)
US5632827A (en) Aluminum alloy and process for producing the same
KR101802798B1 (en) Brazing filler metal formed by high pressure torsion and mathod for manufacturing the same
RU2298450C2 (en) Method for producing cermet powder materials
JP4691735B2 (en) Grain refiner for casting and method for producing the same
JPH0289599A (en) Method for strengthening metal material or synthetic resin material or the like
US5494541A (en) Production of aluminum alloy
WO2005068106A1 (en) Method for manufacturing formed article made from metal based composite material
JPH04107231A (en) Manufacture of zn-22al superplastic powder-potassium titanate composite
JPS6360265A (en) Production of aluminum alloy member
JP2837630B2 (en) Method and apparatus for manufacturing press-formed product
JP2843644B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JP3133262B2 (en) Composite material molding method
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JPH03122201A (en) Aluminum cmosite powder green compact and manufacture thereof
CN1560312A (en) Semi-solid deforming alloy
JP2003328054A (en) Method for manufacturing aluminum based alloy member
JP3860825B2 (en) Magnesium alloy powder grain refiner
JP2024510615A (en) Metal matrix polymer-derived ceramic composites, their production methods and uses
JPS63252613A (en) Manufacture of metal based composite material
JPH10245642A (en) Production of aluminum base hyperfine grained oxide composite material
JPH028301A (en) Manufacture of metal material by powder canning process
JPS63227730A (en) Manufacture of high-density amorphous compact