JP4652882B2 - Thin speaker - Google Patents
Thin speaker Download PDFInfo
- Publication number
- JP4652882B2 JP4652882B2 JP2005130872A JP2005130872A JP4652882B2 JP 4652882 B2 JP4652882 B2 JP 4652882B2 JP 2005130872 A JP2005130872 A JP 2005130872A JP 2005130872 A JP2005130872 A JP 2005130872A JP 4652882 B2 JP4652882 B2 JP 4652882B2
- Authority
- JP
- Japan
- Prior art keywords
- thin speaker
- resin
- linear conductor
- coil
- vibration film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Description
本発明は、異音発生が少なく、音圧の大きな薄型スピーカに関する。 The present invention relates to a thin speaker with low noise generation and high sound pressure.
図20に従来の薄型スピーカの一例を示す。このスピーカは、ヨーク50上に複数の棒状磁石52が並列に配置され、これら棒状磁石52の磁極面に対して平行に振動膜54が配置され、棒状磁石52より発生する磁界に直交する方向に電流が流せるように、振動膜54上の棒状磁石52に対向する位置に複数のコイル56が配置されている。そして、これらコイル56の各々に交流電流を流すことにより、コイル56にはコイル56に平行な磁界との間でフレミングの左手の法則に従った力が発生する。その結果、振動膜54が膜面に直交する方向に振動し、電気信号が音響信号に変換される。
FIG. 20 shows an example of a conventional thin speaker. In this speaker, a plurality of
しかし、上記の薄型スピーカでは、棒状磁石に対向したコイルが細長い長方形の形状であり、かつ、棒状磁石の磁極面内に対向した位置にコイルの大部分が配置されていることなどから、振動膜面のコイルに直交する磁界の影響で振動膜面に沿った方向の力が発生して振動膜がよじれ雑音を発生したり、スピーカ形状やコイルのインピーダンスを設計する際の自由度が小さい等の問題点があった。 However, in the above thin speaker, the coil facing the rod-shaped magnet has an elongated rectangular shape, and most of the coil is disposed at a position facing the magnetic pole surface of the rod-shaped magnet. The force in the direction along the diaphragm surface is generated by the influence of the magnetic field perpendicular to the coil on the surface and the diaphragm is kinked to generate noise, and the degree of freedom when designing the speaker shape and coil impedance is small. There was a problem.
また、図20のスピーカの問題点に対して改良を施したものとして、特許文献1に示した図21の構成の薄型スピーカが提唱されている。この構成のスピーカでは、平面状のヨーク60に、隣り合う磁極面が互いに異なるように複数個の磁石62が振動膜64に平行に配置されており、磁石62の磁極面に対向した位置に、磁極面の外縁に対応する部位付近に渦巻きの内周が位置するように複数の渦巻き状コイル66が平面状に配置されている。そして、第1のコイルの第2のコイルに隣接した部分、および前記第2のコイルの前記第1のコイルに隣接した部分に、同じ方向の電流が流れる構成となっている。図中68はダンパを示す。
Further, as an improvement on the problem of the speaker of FIG. 20, a thin speaker having the configuration of FIG. 21 shown in
上述の構成とすることにより、コイルが振動膜を直交する磁界から受ける力が減少し、雑音の発生が減少するとともに、振動膜面に平行な磁界と直交するコイルの面積が増加して音響変換効率が向上し、スピーカ全体の形状設計の自由度についても図20のスピーカより向上する。 With the above configuration, the force that the coil receives from the magnetic field orthogonal to the diaphragm is reduced, noise generation is reduced, and the area of the coil orthogonal to the magnetic field parallel to the diaphragm is increased, resulting in acoustic conversion. The efficiency is improved, and the degree of freedom in designing the shape of the entire speaker is improved as compared with the speaker of FIG.
しかしながら、前述したスピーカはいずれも以下に述べる問題点を有する。すなわち、平面状ヨークの一方の面に複数の磁石が配置され、隣接する磁石の極性は互いに異なっており、かつ磁極面がヨークに対して平行であるため、図22に示すように水平方向の漏れ磁束をフレミングの駆動力として利用している。従って、振動膜が振動するに従って、磁極面に対して平行に配置された振動膜は磁極面との距離が変化し、振動膜が受ける水平磁束が大きく変化する。さらに、振動膜に形成された渦巻き状のコイルも磁極面と平行な位置関係にあり、磁束の強い磁極面に近づけば駆動力は大きくなるが、fo近傍では振幅が大きくなり、振動膜と磁石がぶつかり異音が発生しやすくなる。また、振動膜と磁石とのぶつかりによって大入力に耐えられなかったり、振幅が大きくなる低音再生に限界が生じるという問題点がある。 However, all the above-mentioned speakers have the following problems. That is, since a plurality of magnets are arranged on one surface of the planar yoke, the polarities of adjacent magnets are different from each other, and the magnetic pole surface is parallel to the yoke, the horizontal direction as shown in FIG. Leakage magnetic flux is used as a driving force for framing. Therefore, as the vibration film vibrates, the distance between the vibration film arranged parallel to the magnetic pole surface and the magnetic pole surface changes, and the horizontal magnetic flux received by the vibration film changes greatly. Furthermore, the spiral coil formed on the vibrating membrane is also in a positional relationship parallel to the magnetic pole surface, and the driving force increases when approaching the magnetic pole surface with a strong magnetic flux, but the amplitude increases near the fo, and the vibrating membrane and magnet It becomes easy to generate abnormal noise. In addition, there is a problem in that low-frequency sound reproduction, which cannot withstand a large input due to a collision between the vibration film and the magnet or has a large amplitude, is limited.
図23は上記を説明するための、図22に示す磁石配列とコイル配列に対する静磁場解析の1例である。図23では振動膜の片面(下面)にコイルが配置された事例を示したが、振動膜の両面にコイルが配置された場合も同様である。さらに、コイルの断面は丸形で表示したが、コイル断面が四角形でも良い。ベクトルの長さは磁束の強さを現している。図22のモデルでは、水平方向の磁束が駆動力に寄与するが、水平磁束の最も強い領域は磁極面(磁石の上面)の外縁の近傍にある。磁石の中心付近は垂直方向の磁束が主成分となり、水平磁束の成分は磁極面の外縁に近づくにつれて大きくなる。そして音圧を一層高めるためには、磁極面に近い領域にコイルを配置して磁束密度を高くし、駆動力を増加させる必要がある。ところが、コイルを磁極面に近づけると、振動膜と磁石がぶつかり易くなるために構造上の限界があり、大きな音圧を得ることが困難になる。特に、再生帯域が低くなるに従って振幅が大きくなるため、低音再生に限界が生じる。 FIG. 23 is an example of a static magnetic field analysis for the magnet arrangement and the coil arrangement shown in FIG. 22 for explaining the above. FIG. 23 shows an example in which the coil is disposed on one side (lower surface) of the vibration film, but the same applies to the case where the coil is disposed on both surfaces of the vibration film. Furthermore, although the cross section of the coil is indicated by a round shape, the cross section of the coil may be square. The length of the vector represents the strength of the magnetic flux. In the model of FIG. 22, the horizontal magnetic flux contributes to the driving force, but the strongest region of the horizontal magnetic flux is in the vicinity of the outer edge of the magnetic pole surface (the upper surface of the magnet). Near the center of the magnet, the magnetic flux in the vertical direction is the main component, and the component of the horizontal magnetic flux increases as it approaches the outer edge of the magnetic pole surface. In order to further increase the sound pressure, it is necessary to increase the driving force by increasing the magnetic flux density by arranging a coil in a region close to the magnetic pole surface. However, when the coil is brought close to the magnetic pole surface, the vibration film and the magnet are likely to collide with each other, so there is a structural limit, and it becomes difficult to obtain a large sound pressure. In particular, since the amplitude increases as the playback band becomes lower, there is a limit to bass playback.
一方、特許文献2には、図24、図25および図26に示すように、突出形成された複数の振動素子4aを併設して形成された薄膜体よりなる平面駆動型スピーカの振動膜4の前記各振動素子4a外側面にボイスコイル5を一方側の振動素子4aから順次所望巻数直列に巻回保持されるボイスコイル5の巻構成において、隣接する各振動素子4aに巻回されるボイスコイル5の巻回位置を適宜に変化させ、各振動素子4a間の溝内で一列に巻回配備することを特徴とする、平面駆動型スピーカのボイスコイル巻構成、が開示されている。
On the other hand, as shown in FIG. 24, FIG. 25 and FIG. 26,
図24に示す磁石とボイスコイル配列であれば、水平磁束の大きな領域を使用することが可能となり、図23の磁石とボイスコイル配列よりも音圧や低音再生に有利となる。しかしながら、振動膜4から垂直に突出された振動素子4aの外側面の溝4bにボイスコイル5が1列に多層巻回配備されるため、振動膜4の構造が複雑となり、振動素子4aの巻回部外形と略同一の形状物を用いてボイスコイルの巻き付け工程、分離工程および装填接着工程を行う必要があるなど、製造工程が複雑で、量産に適さないものであった。さらに、振動素子4aが振動膜4から垂直に突出しているため、図27に示すように垂直方向の振動の他に、ボイスコイルに横方向の振動(ビビリ)が発生して音質が劣るという問題がある。
If the magnet and voice coil arrangement shown in FIG. 24 is used, it is possible to use a region having a large horizontal magnetic flux, which is more advantageous for sound pressure and bass reproduction than the magnet and voice coil arrangement shown in FIG. However, since the
本発明は、上記の事情に鑑みてなされたものであり、振動膜の形状設計やインピーダンス設計の自由度が高く、振動膜のインピーダンスばらつきの少ない振動膜を用い、高い音圧と異音発生のない高音質を確保しかつ、量産性を両立させた薄型スピーカを提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a high degree of freedom in shape design and impedance design of the vibration membrane, and uses a vibration membrane with little impedance variation of the vibration membrane. An object of the present invention is to provide a thin speaker that ensures high sound quality and has both mass productivity.
請求項1記載の発明は、平坦部を有するヨーク上に、複数個の同一寸法の磁石を所定の距離を隔て、かつ隣り合う磁石の磁極面が互いに逆になるように格子状に配置するとともに、前記磁石の磁極面から所定の距離を保ち、かつ磁極面に各々対応した箇所に渦巻き状のコイルを配置した粘着剤あるいは接着剤を有する熱可塑性樹脂を基材とする振動膜により構成された薄型スピーカにおいて、前記磁石の磁極面の外縁部に相当する箇所の前記振動膜に成型した凸部の近傍に、あらかじめ絶縁被覆された線状導体をヨークに対して非平面の3次元形状のコイル状に布線して渦巻き状のコイルを形成したもので、さらに前記振動膜は、熱可塑性樹脂のガラス点移転温度以上、かつ、融点以下の温度範囲で、熱成型によって振動膜の凸部を形成すると同時に、振動膜の凸部と渦巻き状コイルの3次元形状を一体に振動膜の凸部外表面に形成し、前記渦巻状コイルに形成された絶縁被覆された線状導体が前記振動膜の前記粘着剤あるいは接着剤層を有する樹脂層と他の樹脂層の間に埋め込められていることを特徴とする。
According to the first aspect of the present invention, on the yoke having a flat portion, a plurality of magnets of the same size are arranged in a lattice shape so as to be spaced apart from each other by a predetermined distance and the magnetic pole surfaces of adjacent magnets are opposite to each other. The vibrating film is made of a thermoplastic resin having a pressure sensitive adhesive or an adhesive having a spiral coil arranged at a position corresponding to each of the magnetic pole faces and a predetermined distance from the magnetic pole face of the magnet. In a thin speaker, a linear conductor coated in advance with an insulation coating in the vicinity of a convex portion formed on the vibrating membrane at a position corresponding to the outer edge of the magnetic pole surface of the magnet is a non-planar three-dimensional coil with respect to the yoke. The vibrating membrane is further formed by forming the convex portion of the vibrating membrane by thermoforming in a temperature range above the glass point transition temperature of the thermoplastic resin and below the melting point. Form At the same time, the convex portion and the spiral three-dimensional shape of the coil is formed in a convex outer surface of the vibrating membrane integrally the insulating coated linear conductor formed in a spiral coil the vibrating membrane vibrating membrane It is characterized by being embedded between a resin layer having an adhesive or adhesive layer and another resin layer .
成形する凸部の形状は四角すい状、台形状、U字状、断面は放物線形状などが好ましく、大きく振幅しても磁極面にぶつからない構成となっている。この結果、水平磁束の高い領域にボイスコイルを配置することが出来るので、大きな駆動力が得られ、薄型スピーカの音圧が高くなる。また、平面状の振動膜に比較して大きな振幅が可能となり、耐入力が大きくなり、さらに低域の再生も可能となる。さらに、振動膜の突起形成に対して、突起形成部品を必要としないので、振動膜の軽量化と音圧レベルの向上が可能となる。
Shape of the convex portion for forming the quadrangular pyramid shape, a trapezoidal shape, U-shaped, cross-section is preferably such parabolic line shape, and has a configuration that does not hit the larger pole face also amplitude. As a result, since the voice coil can be arranged in a region having a high horizontal magnetic flux, a large driving force can be obtained and the sound pressure of the thin speaker is increased. In addition, a larger amplitude is possible compared to a planar diaphragm, input resistance is increased, and low-frequency reproduction is also possible. Furthermore, since no protrusion forming component is required for the formation of the vibration film protrusion, the vibration film can be reduced in weight and the sound pressure level can be improved.
請求項1に記載の薄型スピーカにおいて、前記振動膜は、熱可塑性樹脂を基材とし、熱可塑性樹脂のガラス点移転温度以上、かつ、融点以下の温度範囲で、熱成型によって凸部を形成したことを特徴とする。さらに、具体的には、あらかじめ絶縁被覆された線状導体をヨークに対して非平面の3次元形状のコイル状に布線して渦巻き状のコイルを形成したもので、熱成型によって振動膜の凸部を形成すると同時に、振動膜の凸部と渦巻き状コイルの3次元形状を一体に振動膜の凸部外表面に形成し、前記渦巻状コイルに形成された線状導体が前記振動膜の前記粘着剤あるいは接着剤層を有する樹脂層と他の樹脂層の間に埋め込められているものである。上記のように振動膜に線状導体が埋め込まれることにより、磁石の磁極面の外縁部に相当する箇所の前記振動膜に成型した凸部外表面に3次元的に渦巻き状コイルを配置することが可能となり、高音圧と生産性の向上が図れるものである。
2. The thin speaker according to
請求項1記載の薄型スピーカに用いる熱可塑性樹脂としては、ポリエチレンナフタレート(PEN)、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、アラミド等の耐熱性エンプラが好ましい。これは、ボイスコイルが振動膜面に直接接触し、音声電流のジュール熱が振動膜に直接伝わるためである。このような構成とすることにより、凸部を形成するための部材や接着剤などが不用となり、部品点数を増やして重量を増加させる必要がない。そのため、振動膜を軽量化することが出来るので音圧が高く、低域再生能力が向上した薄型スピーカの量産性が向上する。接着工程が不要となるので生産工程の簡素化が図れる。
The thermoplastic resin used for the thin speaker according to
請求項2記載の発明は、請求項1に記載の薄型スピーカにおいて、前記振動膜の凸部の近傍に配置された渦巻き状コイルの3次元形状は、振動膜の凸部形成、あるいは振動膜基材からなるエッジの形成、あるいは振動膜の剛性を高めるリブの形成と同じ熱成型によって成形したことを特徴とするものである。このように振動膜の凸部に配置された渦巻き状コイルの3次元形状の成形を、振動膜の凸部の成型、リブの成型及びスピーカのエッジの成型を同時に行うことで、製造プロセスの簡略化が図れ、生産性が向上する。振動膜の凸部形成あるいは振動膜基材からなるエッジとすることで、部品点数の削減が可能となり、量産性に優れる。振動膜の剛性を高めるリブと同時に熱成形とすることで、振動膜の重量増加を招かずに振動膜の剛性を上げることが可能となり、薄型スピーカの歪が低減するとともに、薄型スピーカの量産性に優れる。
According to a second aspect of the present invention, in the thin speaker according to the first aspect, the three-dimensional shape of the spiral coil disposed in the vicinity of the convex portion of the vibrating membrane is the convex portion of the vibrating membrane or the vibrating membrane base. It is characterized by being formed by the same thermoforming as the formation of an edge made of a material or the formation of a rib for increasing the rigidity of the vibration film. Thus, the three-dimensional shape of the spiral coil disposed on the convex portion of the diaphragm is simultaneously formed by simultaneously molding the convex portion of the diaphragm, the rib and the speaker edge, thereby simplifying the manufacturing process. To improve productivity. By forming convex portions of the vibration film or using an edge made of the vibration film base material, the number of parts can be reduced and the mass productivity is excellent. By thermoforming at the same time as the ribs that increase the rigidity of the diaphragm, it is possible to increase the rigidity of the diaphragm without increasing the weight of the diaphragm, reducing distortion of the thin speaker and mass production of the thin speaker. Excellent.
請求項3記載の発明は、前記振動膜の凸部は、凸部の先端部分が振動膜側の底部より細く幅狭になっていることを特徴とする。
The invention according to
上記の構成とすることで振動膜の凸部が磁石とぶつかりにくくなり、異音の発生がなくなるとともに、振動膜の組立時の位置ずれによる磁石とのぶつかりを抑制できる効果がある。また、凸部の振動膜側の底部が先端部より広くなっていることから、振動時に横揺れ等に起因するびびりや異常振動が発生しなくなり、異音の発生が抑制できる。さらに、凸部の先端部分が振動膜側の底部より細く幅狭になっているため、熱成形時の金型形状の自由度が高まり、振動膜基材およびボイスコイルの擦り切れや切断が生じにくくなるという効果がある。
With the above configuration, there is an effect that the convex portion of the diaphragm is less likely to collide with the magnet, the generation of abnormal noise is eliminated, and the collision with the magnet due to the positional deviation during assembly of the diaphragm is suppressed. In addition, since the bottom portion of the convex portion on the vibration film side is wider than the tip portion, chatter and abnormal vibration due to rolling or the like do not occur during vibration, and generation of abnormal noise can be suppressed. Furthermore, since the tip of the convex part is narrower and narrower than the bottom part on the diaphragm side, the degree of freedom of the mold shape at the time of thermoforming is increased, and the diaphragm base material and the voice coil are not easily worn or cut. There is an effect of becoming.
振動膜の凸部の形状には、断面形状が台形、略三角形、略半楕円(釣鐘形状)、半楕円、半円、略ガウス曲線形状(西洋式ベル形状)等がある。このうち、台形、略半楕円(釣鐘形状)、半楕円、略ガウス曲線形状(西洋式ベル形状)等は特に好適で、凸部の断面形状は磁石の高さや磁石間隔、振幅および振動膜基材の厚み等により最適形状を選択する。 The shape of the convex part of the diaphragm includes a trapezoidal shape, a substantially triangular shape, a substantially semi-elliptical shape (bell shape), a semi-elliptical shape, a semi-circular shape, a substantially Gaussian curve shape (Western bell shape), and the like. Of these, trapezoidal, approximately semi-ellipse (bell shape), semi-ellipse, approximately Gaussian curve shape (Western bell shape), etc. are particularly suitable, and the cross-sectional shape of the convex portion is the height of the magnet, magnet spacing, amplitude, and vibration membrane base. The optimum shape is selected according to the thickness of the material.
請求項4記載の発明は、請求項1から3に記載の薄型スピーカにおいて、前記振動膜は、少なくとも一方の面に粘接着層を有するシート状基材からなり、あらかじめ絶縁被覆された線状導体が前記粘着層面側の前記シート状基材に布線されていることを特徴とする。
According to a fourth aspect of the present invention, in the thin speaker according to any one of the first to third aspects, the vibration film is formed of a sheet-like base material having an adhesive layer on at least one surface, and is linearly coated in advance. The conductor is wired on the sheet-like substrate on the adhesive layer surface side.
上記の構成とすることにより、線状導体を布線する際に接着工程が不要であり、また、高音圧と生産性の両立が図れる。 By adopting the above-described configuration, no bonding step is required when wiring the linear conductor, and high sound pressure and productivity can be achieved at the same time.
請求項5記載の発明は、請求項4に記載の薄型スピーカにおいて、前記シート状基材の粘接着層は、シリコン系樹脂あるいはアクリル系樹脂からなり、前記粘着層面側の前記シート状基材にあらかじめ絶縁被覆された線状導体を布線したのち、線状導体を振動膜の凸部にエポキシ系樹脂で固着することを特徴とする。
The invention according to
上記のように、線状導体を振動膜の凸部にエポキシ系樹脂で固着するので、複雑な3次元形状に対する量産性を確保することができる。なお、エポキシ系樹脂は形状変更が容易な半硬化状態(Bステージ)で所定の形状に保った後、加熱硬化してもよい。 As described above, since the linear conductor is fixed to the convex portion of the vibration film with an epoxy resin, mass productivity for a complicated three-dimensional shape can be ensured. The epoxy resin may be heat-cured after being kept in a predetermined shape in a semi-cured state (B stage) where the shape can be easily changed.
請求項6記載の発明は、請求項1から5に記載の薄型スピーカにおいて、前記振動膜は、少なくとも振動膜の凸部に半硬化状態の熱硬化性樹脂により、あらかじめ絶縁被覆された線状導体をコイル状に固着することにより前記複数個の渦巻き状コイルを形成したものであることを特徴とする。
According to a sixth aspect of the present invention, in the thin speaker according to any one of the first to fifth aspects, the vibrating membrane is a linear conductor that is pre-insulated with a semi-cured thermosetting resin at least on the convex portion of the vibrating membrane. The plurality of spiral coils are formed by fixing the coil in a coil shape.
上記の構成とすることにより、高音圧と高信頼性の両立を図ることができる。
熱硬化性樹脂はポリイミドの前駆体であるポリアミック酸を加熱半硬化させた状態にコイルを配置した後、さらに高い温度で加熱して完全硬化させても良い。熱硬化性樹脂にはポリアミドイミド樹脂やエポキシ樹脂、不飽和ポリエステル樹脂などが好適である。
With the above configuration, both high sound pressure and high reliability can be achieved.
The thermosetting resin may be completely cured by heating at a higher temperature after placing the coil in a state where the polyamic acid, which is a polyimide precursor, is semi-cured by heating. Polyamideimide resin, epoxy resin, unsaturated polyester resin, etc. are suitable for the thermosetting resin.
請求項7記載の発明は、請求項1から6に記載の薄型スピーカにおいて、前記振動膜の基材が樹脂発泡体であることを特徴とする。
According to a seventh aspect of the present invention, in the thin speaker according to the first to sixth aspects, the base material of the vibration membrane is a resin foam.
上記の構成とすることにより、振動膜基材の軽量高剛性が実現でき、高音質、低歪の薄型スピーカが実現できる。 With the above configuration, the diaphragm base material can be realized with a light weight and high rigidity, and a thin speaker with high sound quality and low distortion can be realized.
請求項8記載の発明は、請求項7に記載の薄型スピーカにおいて、前記樹脂発泡体の平均気泡径が50μm以下であることを特徴とする。
The invention described in
上記の構成とすることで、厚みが1mm以下の薄型発泡体を均質に製造可能となる。樹脂フィルム基材と樹脂発泡体の単位面積当りの重量が同じ基材を振動膜に用いた場合、発泡体は発泡倍率に応じてみかけの密度が低下し、発泡体の厚みが増加する。基材の厚みが増加すると、板状(あるいは膜状)基材の曲げ剛性は厚みの3乗に比例するため、発泡体基材の振動膜はフィルム基材の振動膜に比べて振動膜の撓み振動が抑制でき、歪が押さえられる。特に振幅の大きな最低共振周波数fo近傍の2次歪と3次歪が大幅に抑制できる。さらに、平均気泡径が50μm以下の微細発泡体は内部に無数の気泡が存在するため、基材の内部損失(tanδ)が向上し、周波数特性が平坦になって音質が向上する。特に中高音域の明瞭性が向上する。 By setting it as said structure, a thin foam with a thickness of 1 mm or less can be manufactured uniformly. When a substrate having the same weight per unit area of the resin film substrate and the resin foam is used for the vibration film, the apparent density of the foam decreases depending on the expansion ratio, and the thickness of the foam increases. As the thickness of the base material increases, the bending rigidity of the plate-like (or film-like) base material is proportional to the cube of the thickness. Bending vibration can be suppressed and distortion can be suppressed. In particular, the secondary distortion and the third distortion near the lowest resonance frequency fo having a large amplitude can be greatly suppressed. Furthermore, since the fine foam having an average cell diameter of 50 μm or less has innumerable bubbles inside, the internal loss (tan δ) of the base material is improved, the frequency characteristics are flattened, and the sound quality is improved. In particular, the clarity of the mid-high range is improved.
請求項9記載の発明は、請求項7または8に記載の薄型スピーカにおいて、前記樹脂発泡体が、少なくとも1種以上の熱可塑性ポリエステル樹脂からなる樹脂発泡シートであることを特徴とする。
The invention according to
上記の構成とすることで、高音圧と量産性の両立が図れる。 With the above configuration, both high sound pressure and mass productivity can be achieved.
請求項10記載の発明は、請求項1から9に記載の薄型スピーカにおいて、前記線状導体が、その表面層に少なくとも1層の絶縁層を有する絶縁被覆導体であり、かつ、断面形状が円形、正方形、長方形、平板状の少なくともひとつ、であることを特徴とする。
According to a tenth aspect of the present invention, in the thin speaker according to the first to ninth aspects, the linear conductor is an insulating coated conductor having at least one insulating layer on a surface layer thereof, and has a circular cross-sectional shape. , At least one of a square, a rectangle, and a flat plate.
上記の構成とすることで、コイルの占積率を自在に選択でき、狭い磁石間の空間でもコイル選択の範囲が向上し、音圧と異音が発生しにくい高信頼性の両立が確保できる。 With the above configuration, the coil space factor can be freely selected, the coil selection range is improved even in a narrow space between magnets, and both high reliability in which sound pressure and abnormal noise are unlikely to be generated can be secured. .
請求項11記載の発明は、請求項1から10に記載の薄型スピーカにおいて、前記線状導体の直径が0.02mm〜0.4mmであることを特徴とする。
An eleventh aspect of the present invention is the thin speaker according to the first to tenth aspects, wherein the linear conductor has a diameter of 0.02 mm to 0.4 mm.
上記の構成とすることで、高範囲の音圧、再生帯域、サイズの薄型スピーカに対応可能となる。線状導体の直径が0.02mm以下の場合は、線材の引張り強度が小さく、僅かな張力で断線が生じて高速での布線が困難となる。線状導体の直径が0.4mm以上のときは、線材が折れ曲がりにくくなり、精度の高いコイル形成が困難になったり、布線装置にコイルの装着が困難になる。したがって、線状導体の直径が0.02mm〜0.4mmである上記の範囲は布線コイルの量産性に優れる。 By adopting the above configuration, it is possible to cope with a thin speaker having a high range of sound pressure, a reproduction band, and a size. When the diameter of the linear conductor is 0.02 mm or less, the tensile strength of the wire is small, breakage occurs with a slight tension, and wiring at high speed becomes difficult. When the diameter of the linear conductor is 0.4 mm or more, the wire rod is difficult to bend, and it is difficult to form a highly accurate coil or to attach the coil to the wiring apparatus. Therefore, the above range in which the diameter of the linear conductor is 0.02 mm to 0.4 mm is excellent in the mass productivity of the wiring coil.
請求項12記載の発明は、請求項1〜11に記載の薄型スピーカにおいて、前記線状導体がリッツ線であることを特徴とする。
A twelfth aspect of the present invention is the thin speaker according to the first to eleventh aspects, wherein the linear conductor is a litz wire.
上記の構成のように線状導体にリッツ線を用いることで、導体断面積が大きくても線状導体が折れ曲がりやすくなり、布線が容易となってコイルの重量を増やすことができ、駆動力を増やすことができる。その結果として高音圧の薄型スピーカを形成することが可能である。リッツ線には公称断面積mm2(構成素線数/素線径mm)として、0.01(4/0.07)、0.02(5/0.07)、0.025(7/0.07)、0.03(8/0.07)、0.035(7/0.08)、0.04(8/0.08)、0.05(10/0.08)、0.10(20/0.08)など各種の断面積や素線数、素線径を選択でき設計の自由度が向上する。 By using a litz wire for the linear conductor as in the above configuration, the linear conductor can be easily bent even if the conductor cross-sectional area is large, the wiring can be facilitated, and the weight of the coil can be increased. Can be increased. As a result, it is possible to form a thin speaker with high sound pressure. Litz wire has a nominal cross-sectional area of mm 2 (number of component wires / wire diameter mm) of 0.01 (4 / 0.07), 0.02 (5 / 0.07), 0.025 (7 / 0.07), 0.03 (8 / 0.07), Various cross-sectional areas such as 0.035 (7 / 0.08), 0.04 (8 / 0.08), 0.05 (10 / 0.08), 0.10 (20 / 0.08), the number of strands, and the wire diameter can be selected to improve design flexibility. .
請求項13記載の発明は、請求項1〜12に記載の薄型スピーカにおいて、前記線状導体の導体が銅、銅合金、アルミニウム、アルミニウム合金、銅クラッドアルミニウム、銅クラッドアルミニウム合金、銅めっきアルミニウム、銅めっきアルミニウム合金のうち少なくとも1つを含むことを特徴とする。
The invention according to
上記の構成とすることで、線状導体の導体材料として最適な線材を選択することができるので、音圧と生産性の両立を図ることができる。線状導体の材質に関して、銅からアルミニウムの組成比率を上げてコイルの軽量化を図ると、振動膜重量の軽量化が図れ、同じ磁気回路を使用しても薄型スピーカの音圧を向上させることが可能となる。さらに、線状導体と錦糸線あるいは端子とのはんだ接合時に、異種金属同士のはんだ接合を回避できるなど、はんだ材質選択の自由度を向上させることが出来、生産性を向上させることが可能となる。 With the above configuration, an optimal wire can be selected as the conductor material of the linear conductor, so that both sound pressure and productivity can be achieved. With regard to the material of the linear conductor, increasing the composition ratio of copper to aluminum to reduce the weight of the coil can reduce the weight of the diaphragm and improve the sound pressure of a thin speaker even if the same magnetic circuit is used. Is possible. Furthermore, when soldering the linear conductor and the tinsel wire or the terminal, it is possible to improve the degree of freedom in selecting the solder material, such as avoiding the soldering of different metals, thereby improving the productivity. .
請求項14記載の発明は、請求項1〜13に記載の薄型スピーカにおいて、前記振動膜の基材は、線状導体が布線される側の面に粘着層を有する耐熱性フィルムあるいは粘着層を有する耐熱性樹脂の発泡体であることを特徴とする。
The invention according to
上記の構成とすることで、振動膜基材にコイルを直接布線することができ、量産性に優れる。そして、コイルを流れる電流のジュール熱が直接振動膜基材に伝導しても熱的に破壊されることがなく、高信頼性の薄型スピーカを形成できる。 By setting it as said structure, a coil can be wired directly to a diaphragm base material, and it is excellent in mass-productivity. And even if the Joule heat of the current flowing through the coil is directly conducted to the diaphragm base material, it is not thermally destroyed, and a highly reliable thin speaker can be formed.
耐熱性樹脂として、ポリエチレンナフタレート(PEN)、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、アラミド等のエンジニアリングプラスチックが好適である。 As heat resistant resins, polyethylene naphthalate (PEN), liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether sulfone (PES), polyimide (PI), polyamideimide (PAI), Engineering plastics such as polyetherimide (PEI) and aramid are preferred.
請求項15記載の発明は、請求項14に記載の薄型スピーカにおいて、前記振動膜の基材の粘着層は、少なくともアクリル系樹脂、シリコン系樹脂、エポキシ系樹脂の1種からなり、絶縁被覆された線状導体を直接布線したことを特徴とする。
According to a fifteenth aspect of the present invention, in the thin speaker according to the fourteenth aspect , the adhesive layer of the base material of the vibration film is made of at least one of an acrylic resin, a silicon resin, and an epoxy resin, and is insulation-coated. The present invention is characterized in that a linear conductor is directly wired.
上記の構成とすることで、粘着層の柔軟性を確保しつつ耐熱性が向上し、上記熱成型時の歪を粘着層のすべりによって吸収し、振動板とコイルの一括成型が適用できるので量産性かつ高信頼性に優れる。 By adopting the above configuration, heat resistance is improved while ensuring the flexibility of the adhesive layer, the strain at the time of thermoforming is absorbed by the slip of the adhesive layer, and mass molding of the diaphragm and coil can be applied. Excellent in reliability and reliability.
請求項16記載の発明は、請求項1〜15に記載の薄型スピーカにおいて、前記振動膜に布線された線状導体と端子とを、フレキシブルワイヤー線(錦糸線、撚り線、編組線)を介してはんだ接合したことを特徴とする。
The invention according to claim 16 is the thin speaker according to any one of
上記の構成とすることで、機械的・電気的接合に関して量産性かつ高信頼性が得られる。 With the above configuration, mass productivity and high reliability can be obtained with respect to mechanical and electrical joining.
請求項17記載の発明は、請求項1〜16に記載の薄型スピーカにおいて、前記振動膜に布線された線状導体とリード線(錦糸線、撚り線、編組線)をはんだ接続し、はんだ接続箇所を樹脂で被覆したことを特徴とする。
According to a seventeenth aspect of the present invention, in the thin speaker according to the first to sixteenth aspects, a linear conductor wired to the vibrating membrane and a lead wire (kinshi wire, stranded wire, braided wire) are connected by solder, The connection location is covered with a resin.
上記の構成とすることで、線状導体の金属(銅、アルミ)の腐食防止、防湿、絶縁信頼性が向上する。 By setting it as said structure, the corrosion prevention of the metal (copper, aluminum) of a linear conductor, moisture prevention, and insulation reliability improve.
本発明に係る薄型スピーカによれば、平坦部を有するヨーク上に、複数個の磁石を所定の距離を隔て、かつ隣り合う磁石の磁極面が互いに逆になるように配置するとともに、前記磁石の磁極面から所定の距離を保ち、かつ磁極面に各々対応した箇所にコイルを配置した振動膜により構成された薄型スピーカにおいて、磁石の磁極面の外縁部に相当する箇所の前記振動膜に成形した凸部の近傍に、線状導体をヨークに対して非平面のコイル状に布線したことを特徴とするので、磁束密度の高い領域にコイルを形成できるので音圧が高い。ボイスコイルはエッチングによる形成ではなく、線状導体を用いるのでインピーダンスのばらつきが少ない。 According to the thin speaker according to the present invention, a plurality of magnets are arranged on a yoke having a flat portion at a predetermined distance so that the magnetic pole surfaces of adjacent magnets are opposite to each other. In a thin speaker constituted by a vibrating membrane that maintains a predetermined distance from the magnetic pole surface and has coils arranged at locations corresponding to the magnetic pole surface, the vibrating membrane is molded at the location corresponding to the outer edge of the magnetic pole surface of the magnet. Since the linear conductor is laid out in the vicinity of the convex portion in a non-planar coil shape with respect to the yoke, the coil can be formed in a region where the magnetic flux density is high, so that the sound pressure is high. Since the voice coil is not formed by etching but uses a linear conductor, there is little variation in impedance.
また、コイルが磁束密度の高い領域から磁束密度の低い領域にかけて振動膜が連続的に曲面を描いて形成されるのでボイスコイルのビビリが発生しにくく、かつ、振動膜と磁石とがぶつかりにくいために耐入力が大きい。また、大きな振幅が確保できるので、低音の再生帯域が広い。 In addition, since the vibration film is continuously formed in a curved surface from the high magnetic flux density region to the low magnetic flux density region, chatter of the voice coil is difficult to occur and the vibration film and the magnet do not collide with each other. The input resistance is large. In addition, since a large amplitude can be secured, the bass reproduction band is wide.
本発明に係る薄型スピーカを分りやすく説明するために、まず従来モデルの図22と磁極面と振動膜4の位置関係が同じ構成となる断面図を図1に示した。薄型スピーカの構造は図1のように、所定の距離を隔て、かつ、隣り合う磁石2の磁極面が互いに逆になるように配置された複数個の磁石2、磁石2の磁極面の外縁部に相当する部位にボイスコイル5を形成した振動膜4、磁石2を配置しヨークを兼ねるフレーム1、フレーム1には背圧を調整する放音孔3、振動膜4と磁極面の距離を振動可能な状態で一定に保つエッジ9とから構成されている。
In order to explain the thin speaker according to the present invention in an easy-to-understand manner, FIG. 1 is a cross-sectional view in which the positional relationship between the magnetic pole surface and the vibrating
ボイスコイル5はN極とS極が交互に配置された磁石2からの漏れ磁束を電流の流れの直角方向から受けて、フレミングの駆動力を発生し、振動膜4が振動膜の厚み方向に振動して音圧を発生する。また、ボイスコイル5は磁石2の磁極面の外縁部に相当する部位に、ボイスコイル5が受ける水平磁束密度ができるだけ多くなるように、渦巻き状に振動膜4の面に形成されている。
The
フレミングの駆動力は、ボイスコイル5を流れる電流やコイルの長さ、ボイスコイル5を直角に交差する磁束密度に比例して大きくなる。音圧を大きくするには、振動膜4と磁石2との距離(ギャップ)を小さくして磁束密度を上げればよいが、振動膜4と磁石2がぶつかって異音が発生しやすくなる。特に、最低共振周波数fo近傍の周波数では、振幅が大きくなってぶつかりが発生しやすくなり、ぶつかりを回避するために耐入力や低音再生帯域を制限せざるを得ないことがある。
The driving force for framing increases in proportion to the current flowing through the
本発明は薄型スピーカに関して、高い磁束を利用して音圧向上を図ることと、磁極面と振動膜4のぶつかりによる異音発生の抑制を両立させたものである。図2のように、磁石2の磁極面の外縁部に相当する部位に振動膜4に突起(凸部10)を設け、凸部10を形成した近傍にヨークに対して非平面のコイル状に布線されたボイスコイル5を設けることで、磁束密度の高い領域にボイスコイル5を配置する。そして、振動に伴って振幅が大きくなっても振動膜4と磁石2がぶつかりにくくするため、振動膜4に3次元に、すなわち、布線されるコイルがヨークに対して非平面的になるように凸部を形成することが特徴である。さらに、振動膜4に凸部10を設けることによって、振動膜4の表面積が増加し、インピーダンスが同じであっても導体断面積の大きな線状導体を使用して、コイルの長さを図1の従来モデルより長くすることができ、フレミングの駆動力が増加して音圧が高くなる。
The present invention relates to a thin speaker in which sound pressure is improved by using a high magnetic flux, and generation of abnormal noise due to a collision between the magnetic pole surface and the
本発明により音圧が高くなる理由は2つある。第1の理由は、ボイスコイル5を振動膜4の凸部10の近傍に配置し、磁極面に近い位置の水平磁束の高い領域に、振動膜4と磁石2がぶつからない状態で配置するためである。第2の理由は、水平磁束を補足するために水平に平らな振動膜4に配置した従来のコイルに比べて、本発明は所望の形状で3次元的に凸部10を形成した部位にコイルを配置するため、振動膜4の表面積が大きくなり、長いコイルを配置することが出来るからである。フレミングの駆動力FはF=(音声電流i)×(磁束密度B)×(コイル長L)であるので、前記理由は独立した原因による。すなわち、第1の理由は磁束密度Bを大きくし、第2の理由はコイル長を長く設定するためである。さらに、振動膜4のコイル部分の表面積が大きくなると、音声電流から発生するジュール熱の放熱効率が上がり、耐入力を大きく設定できるという効果がある。以上を模式的に説明すると次のようになる。
There are two reasons why the sound pressure is increased by the present invention. The first reason is that the
説明の便宜上、従来のモデルについて図3を参照しながら説明する。これを従来モデル1とする。振動膜4に配置されたコイルと磁石2の位置関係に関して、図20、図21、図22、図23および図1は従来モデル1と同等であり、コイルの配置が振動膜4の片面あるいは両面にかかわらず、磁極面とコイル面が略平面で平行であることが共通点である。従来モデル1の問題点は、コイルの位置が磁極面から離れているために、コイルが受ける水平磁束密度は磁極面近傍に比べて低くなり、大きな駆動力が得られず、音圧が低い。音圧を高めようとして振動膜4と磁極面とのギャップを小さくすると、振動膜4と磁石2がぶつかって異音が発生しやすくなる。また、振幅が大きくなる低域の再生が困難になり、耐入力も大きく取ることが出来ないという問題がある。
For convenience of explanation, a conventional model will be described with reference to FIG. This is referred to as a
そして、従来の図24、図25、図26、および図27に相当するモデルについて図4を参照しながら説明する。これを従来モデル2とする。従来モデル2では、コイルを振動膜4の振動方向に一列に巻き回したものであり、水平磁束密度の高い磁極面近傍にコイルを配置することが可能となり、従来モデル1より音圧が高くなる。しかしながら、上下一列に並んだコイルが上下方向に激しく振動するため、コイルの横揺れに起因する歪や異音が発生しやすくなるという問題がある。
A conventional model corresponding to FIGS. 24, 25, 26, and 27 will be described with reference to FIG. This is referred to as the
従来モデル2を改良したモデルとして、従来モデル3がある。従来モデル3については図5を参照しながら説明する。すなわち、従来モデル3では振動膜4の振動方向と一致する方向をなすコイル保持部品にコイルを巻回したものであり、従来モデル1や2に比較して大きな駆動力を発生させることは可能である。しかし、追加のコイル保持部品11の重量が増加して、効果的に音圧を上げることが出来ないという問題がある。さらに、振動膜4に垂直にコイル保持部品11を形成するためには接着が一般的であるが、薄肉で軽量化を図ることが困難であり、コイルを低コストで形成することも困難である。
As a model obtained by improving the
本発明は従来モデル1、2、3の問題点を解決したものである。本発明の基本的なモデルを本発明モデル1とし、図6(a)を参照しながら説明する。すなわち、本発明モデル1では、平坦部を有するヨーク上に、複数個の磁石2を所定の距離を隔て、かつ隣り合う磁石2の磁極面が互いに逆になるように配置されている。そして、磁極面の外縁部に対応した箇所にコイルを配置した振動膜4が、配置された磁石2の磁極面から所定の距離を保って配置されている。振動膜4には、磁石2の磁極面の外縁部に相当する箇所に凸部10を成形し、その凸部10の近傍に、線状導体をヨークに対して非平面のコイル状に布線している。
The present invention solves the problems of the
コイル状の布線には、例えば磁石配列が3列×5行(15個)の場合、図10(b)のように全ての磁石の磁極面を構成する四角形の辺の近傍を渦巻き状にコイルを形成する場合と、図10(c)のように部分的に渦巻き状にコイルを形成しても良い。また、コイルは渦巻き状のループを形成しない、例えば、参考例として、階段形状やミアンダ(蛇行)形状(図10(c)の1部)のものを示す。階段形状やミアンダ(蛇行)形状(図10(c)の1部)ものは本発明には含まない。コイルの巻き方は、電流の流れる方向と水平磁界の方向が常に一定の関係を保っておけば、線状導体に発生するフレミングの駆動力の方向が一致して振動の打ち消し合いを回避できる。コイルに流れる電流の方向に関しては、特許文献1や特許文献2に公開されている。
For example, when the magnet arrangement is 3 columns × 5 rows (15 pieces), the vicinity of the sides of the quadrangle constituting the magnetic pole surface of all the magnets is spirally formed as shown in FIG. In the case of forming a coil, the coil may be partially formed in a spiral shape as shown in FIG. The coil does not form a spiral loop. For example, as a reference example , a coil having a staircase shape or a meandering shape (part of FIG. 10C) is shown. Stepped shapes and meandering (meandering) shapes (part of FIG. 10C) are not included in the present invention. As for the winding method of the coil, if the current flowing direction and the horizontal magnetic field direction always maintain a constant relationship, the direction of the driving force of the framing generated in the linear conductor can be matched to avoid the cancellation of vibration. The direction of the current flowing through the coil is disclosed in
本発明モデル1では、振動膜4の凸部10を形成した近傍にコイルを配置したため、後で説明する図11で示すように、水平磁束密度がより高い領域を使用することが可能となり、大きな駆動力を得るとともにコイル保持部品が不用であるため重量増加を招くことがなく、音圧が高くなる。また、振動膜4の凸部10は先端が細くなっているため、コイルに上下方向の振動が加わっても横揺れ等による異音の発生が抑制される。凸部10の形状を工夫することで、振動膜4と磁石2のぶつかりを回避して振幅を大きく取ることが可能になり、低音再生帯域を広げたり、耐入力を増加させたりすることが可能となる。さらに、凸部10の形状は先端が細くなっているため、凸型・凹型の金型で振動膜4を挟み込んで熱成形で行うので量産性に優れるという効果がある。
In the
一方、振動膜4の凸部10を成形ではなく突起部品11の接着等によって形成したものを比較モデルとして図6(b)に示した。比較モデルであっても、図6(a)に示した本発明モデル1と発生するフレミングの駆動力は同等のものが得られるが、突起部品11の重量や接着剤の重量が余分にかかるため、十分に音圧を上げることが出来ないという問題がある。
On the other hand, what formed the
振動膜4の凸部10形状として、図7に示したような半円あるいは半楕円形状のものを本発明モデル2として挙げることができる。図8(a)に示したような本発明モデル3は、凸部10の先端が細くなっており、振動膜4の水平部分に近づくにつれて凸部10の形状が広くなっているものであり、発明モデル1や2と同等の効果が得られる。振動膜4の凸部10の形状は、振動膜4の厚みや、磁石2間の距離、コイル径、磁極面と振動膜4とのギャップ等によって、適時選択することができる。本発明モデル3は凸部10の先端が細くなっているので、コイルの先端が磁極面の高さより下方に振幅した場合でも、コイルと磁石2がぶつかりにくいという特徴があり、水平方向の位置精度がラフになるという製造上のメリットを有する。
As the shape of the
なお、図2のように、ボイスコイル5は振動膜4に突起(凸部10)を設け、凸部10を成形した近傍にヨークに対して非平面のコイル状に布線されたものからなっている。また、振動膜4は熱成形ができるように、熱可塑性を有する素材とするのが望ましい。振動膜4の基材として熱可塑性を有する素材とした場合、その基材は、絶縁ベースフィルムとなる。ボイスコイル5は、絶縁ベースフィルムの片面(図2において、凸部10の山部又は谷部)だけでなく、両面(図2において、凸部10の山部と谷部の両方)に形成してもよい。
As shown in FIG. 2, the
さらに、ボイスコイル5は、振動膜4の凸部10の底部や振動膜4の平坦部分の一部に配線されていても良い。
本発明モデル4は、図8(b)に示すように振動膜4の凸部のみに渦巻き状のコイルが形成されている。このモデルは、水平磁束密度が最も高い磁石2の上面の高さ近傍にコイルを配置することが出来る。ただし、隣接する磁石2の間隔が広くなり過ぎると、磁束密度の低下を招く。図8(c)は磁石2の上面にプレート21を配置したもので、磁束の分布を調節することが出来る。
Furthermore, the
In the
振動膜4の剛性を確保する目的で、図8(d)に示すように、ボイスコイル5が配置されていない平坦部分にリブ41を設けたり、平坦部分をなくして緩やかな曲面を形成しても良い。さらに、リブの形状を変化させたり、振動膜の平坦部分に緩やかな曲面を設けることで、振動膜のスチフネスをコントロールすることが可能となり、振動膜の重量を増加させることなくfoをコントロールすることが出来る。さらに、熱可塑性樹脂を基材とした振動膜4の熱成形によって、エッジ9を振動膜基材と一体化させたフィクスドエッジ(図8(d)の9)にすることも可能である。このように、エッジ9やリブ41を3次元コイルと一体成形すれば、量産性が飛躍的に向上する。
For the purpose of ensuring the rigidity of the
図8(e)は振動膜の外周にリブ41を設けた一例である。振動膜の剛性は、振動膜を構成するシート基材12や押さえフィルム13の材料物性、特にヤング率や材料の厚みによって大きく影響を受ける。振動膜を構成するシート基材12や押さえフィルム13の厚みが過剰に薄いと、振動膜の剛性が不足してfo近傍で歪が大きくなることがあるが、このような場合は、振動膜の外周部や平坦部にリブ41を設けることにより、振動膜の重量を増加させることなく振動膜の剛性を高めることが可能になる。このように、コイルの3次元化とともに、振動膜の一体熱成形により、リブ41の位置や形状を適時選択することで音圧低下を招くことなく、foをコントロールしたり、歪を低下させることが出来る。
FIG. 8E shows an example in which ribs 41 are provided on the outer periphery of the vibration film. The rigidity of the vibration film is greatly influenced by the material properties of the
図15〜17の(a)、(b)は、振動膜に布線された線状導体と端子とを電気的に接合するリード線の固定方法を示している。リード線は振動に対して断線しないように、錦糸線、撚り線あるいは編組線を用い、材料は銅、銅合金、アルミニウム、アルミニウム合金、銅クラッドアルミニウム、銅クラッドアルミニウム合金、銅めっきアルミニウム、銅めっきアルミニウム合金などを用いる。 FIGS. 15 to 17 (a) and (b) show a method of fixing a lead wire for electrically joining a linear conductor and a terminal wired on a vibration membrane. The lead wire is made of tinsel wire, stranded wire or braided wire so as not to break against vibration, and the material is copper, copper alloy, aluminum, aluminum alloy, copper clad aluminum, copper clad aluminum alloy, copper plated aluminum, copper plated An aluminum alloy or the like is used.
線状導体よりなるボイスコイル5はリード線(主に錦糸線17)と、はんだ19接合し、接合部全体を接着剤等の樹脂18で完全に被覆することで、金属(銅、アルミ)の腐食防止や絶縁信頼性を確保することが出来る。また、はんだ19接合部を樹脂18で被覆することで、振動の影響を緩和し、金属疲労による断線を防止する効果がある。
The
図15(a)はボイスコイル5と錦糸線17の突合せによる重なり部分をはんだ19で接合し、はんだ接合部全体を樹脂18で被覆した状態の上面図であり、図15(b)は、振動膜4を含めた断面図を示している。図16(a)は、はんだ19接合の作業性や信頼性を上げるために、銅箔20を用いてはんだ接合させた場合の上面図であり、図16(b)はその断面図である。さらに、図17(a)は、ボイスコイル5を錦糸線17に絡げて、絡げ部分をはんだ19接合した状態の断面図である。はんだ19接合部は接着剤等の樹脂18で部分的に被覆する代わりに、振動膜を構成する押さえフィルム13や粘接着剤16でシート基材12との間に埋めこんでも良い。
FIG. 15A is a top view of a state in which the overlapping portion of the
図17(b)は、はんだ19接合部分と振動膜全体の位置関係を示した上面図であり、ボイスコイル5と錦糸線17のはんだ接合の作業性を確保するために生じたボイスコイル5の余長処理として、ボイスコイル5にループ22を形成させた一例である。図10(b)の振動膜の上面図は、図16(a)と図16(b)に示したような銅箔20を用いてはんだ接合させた場合の一例である。
FIG. 17B is a top view showing the positional relationship between the
(実施例1)
厚み0.8mmの軟鉄(SPCC)よりなる平坦なヨーク上に横7mm×縦7mm×厚さ2.5mmのネオジウム磁石2を2列×4行(8個)に配置し、磁石2に対向する位置に振動膜4を配置して薄型スピーカを作成した(図2参照)。薄型スピーカの外形サイズは、40mm×78mm×厚み8mmとし、フレーム1とヨークは軟鉄のプレス成型によって一体加工し、ヨーク上の磁石2と磁石2との間にはφ4mmの放音孔3を設けた。
Example 1
振動膜4は、耐熱性のある厚み25μmのPENフィルム(帝人デュポン製、Q83−25)をシート基材12とし、その表面にシリコン系樹脂からなる粘着剤(ダウコーニングアジア製DKQ9−9001)を塗布し、この粘着剤が塗布された側のシート基材12の面に銅クラッドアルミ線を線状導体としてコイル状に布線した。
The
線状導体を布線する場合は、特開2001−126942号公報に開示されている布線装置を用いる。そして、上記装置により、線状導体をシート基材12に布線して2次元の渦巻状のボイスコイル5のコイルパターンを形成する(図9(a)参照)。布線に使用した線状導体は、導体径0.19mmの銅クラッドアルミ線からなる心線をポリウレタン樹脂の絶縁体で被覆した直径0.21mmの断面形状が円形をなす線材を用いた。振動膜基材はシリコン粘着剤を塗布した粘着剤付の耐熱発泡体を振動膜基材とした。耐熱発泡体はPENシートを、平均気泡径が10μm以下で、2倍発泡(古河電気工業製、超微細発泡シート)させた厚み0.2mmのPEN発泡体を用いた。図12に独立気泡より構成される、PEN発泡体の断面写真を示す。振動膜は粘着剤付発泡体よりなる振動膜基材に、あらかじめ線状導体を布線したPENフィルムよりなるシート基材のシリコン粘着剤面を貼り合せる形で、真空熱圧着により積層して作製した。振動膜の製法として、上記はPENフィルム基材に線状導体を布線する方法を示したが、シリコン粘着剤付のPEN発泡体に線状導体を布線(図9(a)参照)して、シリコン粘着剤付のPENフィルムを貼り合せ、真空プレスで脱気密着させて作製しても良い(図9(b)参照)。
When wiring a linear conductor, a wiring device disclosed in Japanese Patent Laid-Open No. 2001-126942 is used. And by the said apparatus, a linear conductor is wired to the sheet |
ここで、コイルパターンが形成されたシート基材12の平面図を図10に示した。図10(a)では、複数個形成されたコイルのうち、各コイルは渦巻き状をなしている。渦巻きの巻き数は、線状導体の導体断面積やインピーダンス、振動膜面積やコイル数によって最適数を選ぶことが出来る。そして、蛇行した線状導体によって、各コイル同士が導通している。図10(a)では、一部のコイル間をつなぐ蛇行した線状導体の位置(例えば図10(a)におけるb、c、およびe、fがコイルの中央部を通過しているが、これは各コイルにおける電流の流れる方向を矢印で分りやすく表現するためであり、実際は該当する渦巻きに隣接して布線されている。図1に相当する比較例1のユニットは、ボイスコイルを配置した平面状の振動膜を発泡ウレタン(ブリジストン製DZ−X)製のロールエッジ(図1の符号9)にて、磁石(図1の符号2)であるネオジウム磁石(NEOMAX製)と所定のギャップを確保して、接着剤にてフレーム(図2の符号1)に貼り合せて組立てた。
Here, the top view of the sheet |
次に、実施例の凸部を有する振動膜(図2の符号10)の製法について説明する。上記の構成の振動膜を模式的に表示すると図13のように、ボイスコイル5となる線状導体がそれぞれ厚み50μmのシリコン粘接着剤16を有するPENフィルムとPEN発泡体に挟みこまれる状態で、積層される。線状導体を布線する粘着剤付のシート基材12はPENフィルムとPEN発泡体のどちらか一方で良く、真空プレスで脱気密着させると、PENフィルムあるいはPEN発泡体に布線した場合もともに図14に示すように密着性が確保できる。振動膜に凸部を形成する条件は、熱可塑性樹脂であるPENのガラス転位点温度(Tg=116℃)以上、融点(mp=266〜273℃)以下である金型14の温度が200℃、5秒で行った(図9(c))。
Next, the manufacturing method of the diaphragm (
このようにして振動膜4には、突起(凸部10)が上記熱成形により形成され(図9(d))、凸部10を形成した近傍にヨークに対して非平面のコイル状に布線されたボイスコイル5が設けられる。凸部の最大高さは1.5mmとして、図2の10に記載の振動膜を作製し、発泡ウレタン製のロールエッジを使用して実施例のユニットを作成した。コイル上に布線した線状導体は図11に示すように、コイルを流れる電流と水平磁束密度が最大限直交する磁石の磁極面の外縁部に相当する箇所に配置した。コイルの巻き数は、線状導体の断面積やインピーダンス、振動膜面積、コイル数、コイル重量および振幅と関係が深い再生帯域などに依存するため、渦巻き状のコイルの内周部は、磁石上面の周縁部から内側を含む部分の対向する位置に配置しても良い。
In this way, the protrusion (convex portion 10) is formed on the vibrating
ここで、振動膜4に布線された1本の線状導体(ボイスコイル5)の両端がフレキシブルワイヤー線(本実施例では錦糸線17)に半田接合されている。そして、半田接合した箇所が絶縁と防湿の目的からなる樹脂18(接着剤DB1600B)で被覆されている(図15参照)。以下の実施例も本実施例1と同様に、線状導体の両端を錦糸線と半田接合し、半田接合した箇所を樹脂で完全に被覆する。
Here, both ends of one linear conductor (voice coil 5) wired on the
音圧周波数特性の測定はユニットをJIS C 5532に規定の標準バッフルに装着して、エタニ電機(株)製のASA‐2システムを用いて、20Hz〜20kHzの範囲で測定した。その結果を図18(a)に示す。全周波数にわたって平坦な周波数特性が得られたが、実施例は比較例に比べて平均音圧が約6dB増加した。実施例1aと比較例1aの振動膜面積や振動膜重量は同じであり、また、同じ磁石配置および個数(2×4配列)の磁気回路を用いているため、実施例1aの音圧が大きくなったのは図2に示すように、振動膜の凸部にボイスコイルを配置したために実施例1aの水平磁束密度が比較例1aのそれより大きくなり、駆動力が増加したためである。 The sound pressure frequency characteristic was measured in the range of 20 Hz to 20 kHz using an ASA-2 system manufactured by Etani Electric Co., Ltd. with the unit mounted on a standard baffle defined in JIS C5532. The result is shown in FIG. Although a flat frequency characteristic was obtained over the entire frequency, the average sound pressure in the example increased by about 6 dB compared to the comparative example. The diaphragm area and diaphragm weight of Example 1a and Comparative Example 1a are the same, and since the same magnet arrangement and number (2 × 4 arrangement) of magnetic circuits are used, the sound pressure of Example 1a is large. This is because, as shown in FIG. 2, the voice coil is arranged on the convex portion of the diaphragm, so that the horizontal magnetic flux density of Example 1a is larger than that of Comparative Example 1a, and the driving force is increased.
(実施例2)
布線する基材として実施例1と同じシリコン粘着剤を用い、PENフィルム(押さえフィルム13)に布線した場合とPEN発泡体基材(シート基材12)に布線した場合について、コイルとの複合体を各種の方法で熱成形(図9(c)参照)した。熱成形の手段には真空成形法、圧空成形法、マッチフォーミング法があり、それぞれ標準的な条件で行ったところ、音圧周波数特性は布線する基材の条件や熱成形の手段にかかわらず、実施例1に記載の実施例1aと同様の結果が得られた。
(Example 2)
The same silicon adhesive as in Example 1 was used as the base material to be wired, and the case of wiring to the PEN film (pressing film 13) and the case of wiring to the PEN foam base material (sheet base material 12) The composite was thermoformed by various methods (see FIG. 9C). There are vacuum forming method, pressure forming method, and match forming method as thermoforming means, and when performed under standard conditions, the sound pressure frequency characteristics are independent of the conditions of the substrate to be wired and the means of thermoforming. The same results as in Example 1a described in Example 1 were obtained.
真空成形法にはストレート成形、ドレープ法、プラグアシスト法、プラグアシストリバースドロー法、エアスリップ法がある。圧空成形法には真空・圧空法と圧空成形法がある。また、マッチフォーミング法には金型加熱冷却法、フィルム加熱(プレヒート)法の各種派生した方式がある。いずれの方法においても、熱可塑性樹脂のガラス転位点温度以上、かつ、融点以下の温度で金型を使って振動膜のボイスコイル部を凸部に成型すれば音圧上昇の効果が得られる。 Vacuum forming methods include straight forming, drape method, plug assist method, plug assist reverse draw method, and air slip method. There are two types of pressure forming methods: vacuum / pressure forming and pressure forming. The match forming method includes various methods derived from a mold heating / cooling method and a film heating (preheating) method. In any method, if the voice coil portion of the vibration film is molded into a convex portion using a mold at a temperature not lower than the glass transition point temperature of the thermoplastic resin and not higher than the melting point, an effect of increasing sound pressure can be obtained.
(参考例1)
厚み0.5mmのPEN発泡体(シート基材12)に厚み50μmのアクリル粘着剤(東洋インキ製造(株)、ダブルフェースR390)を貼り合せた後、離型紙を貼り合せた状態で実施例1の真空プレス条件で(図19(a))の形状の凸部10を形成した。図19(b)の凸部10が形成された状態で離型紙を剥がし、アクリル粘着剤が図19(c)の状態で表向き(下向き)になるようにオス金型に固定した。一方、厚み25μmのPENフィルム(シート15)に前記アクリル粘着剤を貼り合せ、実施例1と同じ銅クラッドアルミ線を用いて2×4配列のボイスコイル5を布線した。ボイスコイル5を形成したPENフィルムのアクリル粘着剤の面が上面になるように、図19(c)のメス金型に固定した。図19(c)のように、布線されたボイスコイルをPEN発泡体の突起部に対向させて、金型温度130℃で真空プレスにより脱気圧着させて振動膜(図19(d))を製作した。
(Reference Example 1)
Example 1 in which a release paper was bonded after a 50 μm thick acrylic adhesive (Toyo Ink Co., Ltd., Double Face R390) was bonded to a 0.5 mm thick PEN foam (sheet substrate 12). The
参考例1の振動膜(図19(d))は実施例1の振動膜(図9(d))と外形サイズは同じで、粘着剤がシリコンとアクリルの違いのみで厚みが同じであるので、振動膜の総重量はほぼ同じである。実施例3のアクリル粘着剤で密着させた振動膜を用いてユニットを組立てた。実施例3のユニットを、実施例1に記載の条件で音圧周波数特性を測定したところ、実施例1とほとんど同じ音圧周波数特性が得られ、実施例1に記載の従来例より平均音圧が約6dB高かった。
The diaphragm of Reference Example 1 (FIG. 19 (d)) has the same outer size as the diaphragm of Example 1 (FIG. 9 (d)), and the thickness is the same only in the difference between silicone and acrylic. The total weight of the vibrating membrane is almost the same. A unit was assembled using the vibrating membrane adhered with the acrylic adhesive of Example 3. When the sound pressure frequency characteristics of the unit of Example 3 were measured under the conditions described in Example 1, almost the same sound pressure frequency characteristics as in Example 1 were obtained, and the average sound pressure was higher than that of the conventional example described in Example 1. Was about 6 dB higher.
参考例1の粘着剤の選択に関して、通常は一般的なアクリル粘着剤を用い、高耐入力が要求される場合は熱安定性の高いシリコン粘着剤を選択すれば良い。シリコン粘着剤は前記ダウコーニングアジア製DKQ9−9001のほかにさらに耐熱性を確保するには、例えば、東レ・ダウコーニング・シリコーン製のSD4560やSD4580を選択すると、ボイスコイル温度が140℃から180℃等の高温になる場合にも安定した粘着力を確保できる。
Regarding the selection of the pressure-sensitive adhesive of Reference Example 1, a general acrylic pressure-sensitive adhesive is usually used, and when a high input resistance is required, a silicon pressure-sensitive adhesive having a high thermal stability may be selected. In addition to the above-mentioned DKQ9-9001 made by Dow Corning Asia, in order to secure further heat resistance, for example, when SD4560 or SD4580 made by Toray Dow Corning Silicone is selected, the voice coil temperature is 140 ° C to 180 ° C. A stable adhesive force can be secured even when the temperature is high.
(参考例2)
振動膜の突起形成に関して、高さ1.2mmの突起部品を作製し、接着剤にて厚み0.5mmのPEN発泡体基材に貼り合せた。図5に記載の長方形と図6(b)に記載の台形の突起部品(参考例2(b))を、厚み1.2mmのガラスエポキシ基板から井桁形状にそれぞれ切り出して作製した。ボイスコイルの貼り合せは、実施例2に記載の条件で行い、実施例1と同様にユニットを作製して音圧周波数特性を測定した。その結果、図5のモデル(参考例2(a))および図6(b)のモデル(参考例2(b))は実施例1の比較例とほとんど同じ周波数特性を示し、音圧の上昇は確認できなかった。振動膜に関して、図5のモデル(参考例2(a))および図6(b)のモデル(参考例2(b))は、図9(d)や参考例1の図19(d)のモデルより振動膜の重量が突起部品と接着剤の分だけ増加し、振動膜の重量がほぼ2倍になっていた。
( Reference Example 2 )
With respect to the formation of the vibration film protrusion, a protrusion part having a height of 1.2 mm was prepared and bonded to a PEN foam substrate having a thickness of 0.5 mm with an adhesive. The rectangular shape shown in FIG. 5 and the trapezoidal protruding component shown in FIG. 6B ( Reference Example 2 (b)) were respectively cut out from a glass epoxy substrate having a thickness of 1.2 mm into a cross-beam shape. The bonding of the voice coil was performed under the conditions described in Example 2, and a unit was produced in the same manner as in Example 1 and the sound pressure frequency characteristics were measured. As a result, the model of FIG. 5 ( Reference Example 2 (a)) and the model of FIG. 6 (b) ( Reference Example 2 (b)) show almost the same frequency characteristics as the comparative example of Example 1, and the sound pressure rises. Could not be confirmed. Regarding the vibration membrane, the model of FIG. 5 ( Reference Example 2 (a)) and the model of FIG. 6 (b) ( Reference Example 2 (b)) are the same as those of FIG. 9D and FIG. 19D of Reference Example 1 . From the model, the weight of the vibration film increased by the amount of the protruding parts and the adhesive, and the weight of the vibration film almost doubled.
(参考例3)
参考例2で使用した突起形状の材質をガラスエポキシ基板から、PEN発泡体とポリプロピレン(PP)発泡体(古河電気工業製、エフセル)に切替えて軽量化を図り、形状サイズは同一に製作して評価を行った。ボイスコイルの貼り合せは、実施例2に記載の条件で行い、実施例1と同様にユニットを作製して音圧周波数特性を測定した。その結果、全周波数帯域で本願実施例1とほとんど同じパターンの周波数特性を示したが、平均音圧が本願実施例1より約4dB低く、実施例1の比較例より約2dB高い結果が得られた。これは、PEN発泡体とPP発泡体で作製した突起部品はともに、ガラスエポキシ基板で作製した突起部品に比べて重量が約1/4と軽くなったために、ガラスエポキシ基板の突起部品を使用した薄型スピーカユニットの音圧より約2dB高くなったものである。このように突起部品を使用する場合は、たとえ発泡体を使用して部品の軽量化を図ったとしても、突起部品を振動膜に固定する際に使用する接着剤の重量も無視できないため音圧の向上は限定的である。
(Reference Example 3 )
The protrusion-shaped material used in Reference Example 2 is switched from a glass epoxy substrate to a PEN foam and a polypropylene (PP) foam (Fcel, manufactured by Furukawa Electric Co., Ltd.) to reduce the weight, and the shape size is the same. Evaluation was performed. The bonding of the voice coil was performed under the conditions described in Example 2, and a unit was produced in the same manner as in Example 1 and the sound pressure frequency characteristics were measured. As a result, the frequency characteristics of almost the same pattern as Example 1 of the present application were shown in all frequency bands, but the average sound pressure was about 4 dB lower than Example 1 of the present application and about 2 dB higher than the comparative example of Example 1. It was. This is because the protruding parts made of PEN foam and PP foam are both about 1/4 lighter than the protruding parts made of glass epoxy board, so the protruding parts of glass epoxy board were used. This is about 2 dB higher than the sound pressure of the thin speaker unit. When using protruding parts in this way, the weight of the adhesive used to fix the protruding parts to the diaphragm is not negligible even if foam is used to reduce the weight of the parts. The improvement is limited.
さらに、耐入力試験で15Wを入力したところ、PEN発泡体の突起部品は異常が見られなかったが、PP発泡体の突起部品を用いた振動膜は変形が発生した。変形が生じた突起部分の断面を顕微鏡で観察したところ、PP発泡体の一部が溶けて発泡体の気泡がつぶれていることが分った。PP発泡体の変わりにポリエチレン(PE)発泡体(古河電気工業製、フォームエース)を使用して確認したところ、PP発泡体と同様に15Wの耐入力試験で異常が発生した。突起部品にはボイスコイルに電流が流れる場合に生じるジュール熱が直接伝わるため、PPやPEの耐熱レベルでは耐えられないことが分った。 Further, when 15 W was input in the input resistance test, no abnormality was found in the protruding parts of the PEN foam, but the vibration film using the protruding parts of the PP foam was deformed. When the cross section of the deformed protrusion portion was observed with a microscope, it was found that a part of the PP foam was melted and the bubbles of the foam were crushed. When confirmed by using a polyethylene (PE) foam (Furukawa Electric Co., Ltd., Foam Ace) instead of the PP foam, an abnormality occurred in the 15 W input resistance test as with the PP foam. It has been found that since the Joule heat generated when a current flows through the voice coil is directly transmitted to the projecting part, it cannot withstand the heat resistance level of PP or PE.
振動膜基材についてもボイスコイルからのジュール熱が直接伝わるため、振動膜基材の材質についても実験で確認した。各種の樹脂を用いて振動膜基材の試作を行った。その結果、振動膜基材はフィルムや発泡体の形状に関わらず、ポリエチレンナフタレート(PEN)、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、アラミド、エポキシ樹脂等の耐熱性エンジニアリングプラスチックを使用すれば、熱による変形や溶解が避けられることを確認した。ただし、PIやエポキシ樹脂は加熱により硬化させるので、熱成形で所定の形状に成形するときには、半硬化状態(Bステージ)のフィルム状樹脂基材を用いる。当然ながら、基材の耐熱性は基本的に樹脂素材自身の物性に依存し、フィルムや発泡体の他、不職布や布のように形態が変わっても振動膜基材は耐熱性能の優れる素材が好ましく、耐熱性能が高いほど耐入力が高くなる傾向がある。 Since the Joule heat from the voice coil is directly transmitted to the diaphragm base, the material of the diaphragm base was also confirmed by experiments. Prototypes of diaphragm base materials were made using various resins. As a result, the diaphragm base material is polyethylene naphthalate (PEN), liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether sulfone (PES) regardless of the shape of the film or foam. ), Polyimide (PI), polyamide imide (PAI), polyether imide (PEI), aramid, epoxy resin and other heat resistant engineering plastics were used, it was confirmed that deformation and dissolution due to heat could be avoided. However, since PI and epoxy resin are cured by heating, a film-shaped resin base material in a semi-cured state (B stage) is used when forming into a predetermined shape by thermoforming. Of course, the heat resistance of the substrate basically depends on the physical properties of the resin material itself, and in addition to films and foams, the diaphragm substrate is excellent in heat resistance even if the form changes, such as unemployed cloth or cloth. The material is preferable, and the higher the heat resistance, the higher the input resistance tends to be.
(実施例3)
実施例1のプロセスで、突起の形状を図7の略楕円形状と、図8(a)の逆ガウス分布形状に変化させてユニットを作製した。音圧周波数特性は実施例1に記載の条件で測定した。その結果、振動膜の突起形状が略楕円形状(図7)の実施例と逆ガウス分布形状(図8(a))の実施例の音圧周波数特性は上記実施例1の実施例(図9(d)、図6(a))とほぼ同じ結果を示し、比較例1に比べて平均音圧が約6dB高かった。振動膜の突起の形状に関して、先端部分が振動膜近傍の底部より細くなっていれば磁石とのぶつかりが回避でき、ユニット組立て時の位置ずれ公差に対しても設計上の自由度が高まる。また、振動膜の突起形状の側面に先端部が細くなるような傾斜を設けることで、熱成形時の振動膜基材やボイスコイルにかかる寸法変化率を抑制でき、ボイスコイルの擦れや切断が回避できる。
(Example 3 )
In the process of Example 1, the shape of the protrusions was changed to a substantially elliptical shape in FIG. 7 and an inverse Gaussian distribution shape in FIG. The sound pressure frequency characteristics were measured under the conditions described in Example 1. As a result, the sound pressure frequency characteristics of the embodiment in which the protrusion shape of the vibration film is substantially elliptical (FIG. 7) and the embodiment having the inverse Gaussian distribution shape (FIG. 8A) are the same as those in the embodiment 1 (FIG. 9). (D), almost the same results as in FIG. 6 (a)) were shown, and the average sound pressure was about 6 dB higher than that of Comparative Example 1. With respect to the shape of the projection of the diaphragm, if the tip is thinner than the bottom near the diaphragm, collision with the magnet can be avoided, and the degree of freedom in design is increased with respect to positional deviation tolerance when the unit is assembled. In addition, by providing a slope that makes the tip narrow on the side surface of the projection of the diaphragm, the rate of dimensional change on the diaphragm substrate and voice coil during thermoforming can be suppressed, and the voice coil can be rubbed or cut. Can be avoided.
(実施例4)
振動膜の凸部形状に関して、各種の形状とそれを用いた薄型スピーカの音圧および、15W入力におけるサイン波スイープ信号による異音発生頻度を調べた。平均音圧は500Hz、600Hz、800Hzおよび1kHzにおける1W/1mの平均値で算出した。スイープ試験はオンソク製スピーカ試験用発信器OG−423を用いた。薄型スピーカは実施例1と同サイズのユニットを各10個作製した。
(Example 4 )
Regarding the convex shape of the vibrating membrane, various shapes and the sound pressure of a thin speaker using the same, and the frequency of abnormal noise generated by a sine wave sweep signal at 15 W input were investigated. The average sound pressure was calculated as an average value of 1 W / 1 m at 500 Hz, 600 Hz, 800 Hz, and 1 kHz. For the sweep test, Onsoku speaker test transmitter OG-423 was used. For the thin speaker, 10 units each having the same size as in Example 1 were produced.
以上の実施例1〜4、参考例1〜3の結果をまとめたものを以下の表1に示した。
The results of Examples 1 to 4 and Reference Examples 1 to 3 are summarized in Table 1 below.
以上の表1の結果、1の突起なしは従来品の比較例で、実験結果の中で音圧73と最も低い。2の長方形は、振動膜の熱成型時に深絞り加工となり、振動膜の引裂きや断線が発生して量産性に問題がある。さらに、凸部の先端が幅広いので、磁石とのぶつかりが発生して半数のユニットに異音が生じた。3の台形は、音圧は従来品より6dB高く、異音の発生や量産性に問題はなかった。4の逆台形は、凸部先端が広がっているのでオス・メス金型による熱成型加工が出来なかった。5の三角形は水平磁束密度の高い凸部先端部に配置できるボイスコイル巻数が少ないために、台形に比べて音圧が3dB低下した。また、凸部先端は振動膜が破損しやすいので丸みをつける必要があった。6の略半楕円は、音圧は従来品より6dB高く、異音の発生や量産性に問題はなかった。7の半円は、突起部の高さを確保すると略半楕円に比べて、低部が過剰に広がり音圧は略半楕円に比べて1dB低下し、しかも磁石とのぶつかりによって異音が発生した。磁石間の距離は必要以上に広げると水平磁束密度が低下するので、7の半円は6の略半楕円より明らかに不利であることが分った。8の逆ガウス曲線形状は6の略半楕円に近く、結果は従来品より6dB高く、異音の発生や量産性に問題なかった。8の逆ガウス曲線形状と6の略半楕円の違いは、凸部低部における金型のクリアランスの設定が異なるのみであった。
As a result of Table 1 above, no
以上の結果より、振動膜の凸部の形状は台形、略半楕円、逆ガウス曲線形状が好適なことが判明した。これらの本願発明実施例の形状は、逆釣鐘形状などと同じく、凸部の先端が底部より細くなった形状である必要がある。 From the above results, it was found that the shape of the convex portion of the diaphragm is preferably a trapezoidal shape, a substantially semi-elliptical shape, and an inverted Gaussian curve shape. The shape of these embodiments of the present invention needs to be a shape in which the tip of the convex portion is narrower than the bottom, like the inverted bell shape.
(実施例5)
厚み1mmの軟鉄(SPCC)よりなる平坦なヨーク上に横7mm×縦7mm×厚さ2.5mmのネオジウム磁石を3列×5行(15個)に配置し、磁石2に対向する位置に振動膜4を配置して薄型スピーカを作成した(断面図は図2参照)。薄型スピーカの外形サイズは、50mm×90mm×厚み8mmとし、フレーム1とヨークは軟鉄のプレス成型によって一体加工し、ヨーク上の磁石と磁石との間にはφ4mmの放音孔3を設けた。
(Example 5 )
7 mm wide x 7 mm long x 2.5 mm thick neodymium magnets are arranged in 3 rows x 5 rows (15 pieces) on a flat yoke made of soft iron (SPCC) with a thickness of 1 mm and vibrate at a position facing the
振動膜4は、耐熱性のある厚み25μmのLCPフィルム(クラレ製、CT−X100)をシート基材12とし、その表面にシリコン系樹脂からなる厚み50μmの粘着剤(東方産業製S-9019)シートを貼り合せ、この粘着剤シート基材12の面にアルミ線(東京特殊電線製、2UEALW)を線状導体としてコイル状に布線した(図9(a)参照)。
The
線状導体を布線する場合は、特開2001−126942号公報に開示されている布線装置を用いた。そして、上記装置により、シート基材12に線状導体を布線して2次元の渦巻状のコイルパターンからなるボイスコイル5を形成した(図9(a)参照)。布線に使用した線状導体は、導体径0.19mmのアルミ線からなる心線をポリウレタン樹脂の絶縁体で被覆した直径0.21mmの断面形状が円形をなす線材を用いた。振動膜基材はシリコン粘着剤シートを貼り合せた粘着剤付の耐熱発泡体を振動膜基材とした。耐熱発泡体はPENシートを平均気泡径3μmとし、4倍発泡(古河電気工業製、超微細発泡シート)させた厚み0.5mmのPEN発泡体を用いた。ユニットのインピーダンスは4Ωとした。
When wiring the linear conductor, a wiring device disclosed in Japanese Patent Application Laid-Open No. 2001-126942 was used. And by the said apparatus, the
比較例5−1のユニット(断面は図1の構成と同じ)は実施例1に記載のPENフィルムがLCPフィルムに代わったのみで、同様の方法で組立てた。
実施例5−1の振動膜の製法は以下の通りである。シリコン粘着剤付きのLCPフィルムに線状導体を布線し、同じシリコン粘着剤付きのPEN発泡体を、シリコン粘着面を貼り合せるように積層させて、図9(c)の構成で一括して熱成形した。成形条件は熱可塑性樹脂であるPENのガラス転位点温度(Tg=116℃)以上、融点(mp=266〜273℃)以下である120℃、5秒で行った。
音圧測定は実施例1に記載の条件で行い、図18(b)に比較例5‐1(振動膜は図3に記載の平坦な形状)と実施例5−1(振動膜は図9(d))を比較した。その結果、ほぼ全周波数帯域にわたって平坦な音圧周波数特性が得られ、実施例5−1の平均音圧は、比較例5‐1より6dB大きかった。
Unit of Comparative Example 5-1 (cross section of the configuration same as FIG. 1) PEN film described in Example 1 only was handed to LCP films were assembled in the same way.
Preparation of the vibrating film of Example 5-1 is as follows. A linear conductor is laid out on an LCP film with a silicone adhesive, and the same PEN foam with a silicone adhesive is laminated so that the silicon adhesive surface is bonded together, and collectively in the configuration of FIG. 9 (c). Thermoformed. The molding conditions were 120 ° C. and 5 seconds, which are not less than the glass transition point temperature (Tg = 116 ° C.) and not more than the melting point (mp = 266 to 273 ° C.) of PEN which is a thermoplastic resin.
Sound pressure measurements are carried out under the conditions described in Example 1, the (flat shape according to the vibration film 3) of Example 5-1 (vibrating film Comparative Example 5-1 in FIG. 18 (b) Fig. 9 (D)) was compared. As a result, a flat sound pressure frequency characteristic is obtained over substantially the entire frequency band, the average sound pressure in Example 5 -1 was 6dB greater than that of Comparative Example 5-1.
次に100μFのバイポーラコンデンサを薄型スピーカに直列に接続し、6時間毎にJIS信号の入力電圧を上昇させて、薄型スピーカが破壊するまで入力電圧を上昇させるという耐入力試験を各N=3で行った。バイポーラコンデンサを使用するのは、大入力により約200Hzのfo(最低共振周波数)近傍で振動膜と磁石がぶつかりやすくなるので、入力信号の低域をカットするためである。その結果、平面の振動膜を有する図1(振動膜は図3)の構成の比較例5は、平均45Wの入力でPEN発泡体の気泡がつぶれ、振動膜が破壊した。この時のボイスコイルの最大温度は、スピーカボイスコイル温度計(オンソク)OMT−205で測定した結果210℃となっていた。一方、振動膜の凸部近傍にコイルを非平面に形成した図2の構成の実施例5−1は、平均53Wの入力でPEN発泡体の気泡がつぶれ、振動膜が破壊した。この時のボイスコイルの最大温度は比較例5‐1と同じほぼ210℃であった。このように、振動膜に突起を有する実施例5−1は、平面の振動膜より表面積が増加して放熱効率が向上し、耐入力が上がった。
Next, a 100 μF bipolar capacitor is connected in series to the thin speaker, and the input voltage of the JIS signal is increased every 6 hours to increase the input voltage until the thin speaker breaks. went. The bipolar capacitor is used because the diaphragm and the magnet are likely to collide with each other in the vicinity of fo (minimum resonance frequency) of about 200 Hz due to a large input, so that the low range of the input signal is cut. As a result, in Comparative Example 5 having the structure of FIG. 1 having the planar vibration film (the vibration film is FIG. 3), the bubbles of the PEN foam collapsed with an average of 45 W input, and the vibration film was destroyed. The maximum temperature of the voice coil at this time was 210 ° C. as a result of measurement with a speaker voice coil thermometer (ONSOKU) OMT-205. On the other hand, Example 5-1 of the structure of Figure 2 forming a coil in a non-planar near the convex portion of the vibrating membrane, bubbles PEN foam at the input of the average 53W collapses, the vibration film was destroyed. Maximum temperature at this time the voice coil was the same approximately 210 ° C. Comparative Example 5-1. Thus, the embodiment 5-1 having the projections on the vibrating membrane, the heat radiation efficiency is improved by increasing the surface area than the vibrating film plane, power handling rose.
また、シリコン粘着剤シートを貼り合せた粘着剤付のPEN発泡体に線状導体を直接布線しボイスコイル5を形成した後、粘着剤シート面を重ねる形でLCPフィルム(押さえフィルム13)を図9(b)のように積層させた。その後、図9(c)の構成で一括成型して実施例5−2の振動膜を作製した。上記と同様の方法でユニット組立を行い、上記に記載の音圧測定および耐入力試験を行った。その結果、実施例5−2は実施例5−1とほぼ同じ音圧を示し、比較例5‐1に比較して平均音圧が6dB上昇した。さらに、耐入力試験も実施例5−1と同様に、平均53Wの入力でPEN発泡体の気泡がつぶれ、振動膜が破壊した。この時のボイスコイルの最大温度は比較例5‐1と同じほぼ210℃であった。このように、振動膜に突起を有する実施例5−2は、平面の振動膜より表面積が増加して放熱効率が向上し、耐入力が上がった。
Further, after forming a
以上のように、線状導体を布線する振動膜基材は、PENやLCPのように樹脂材料が異なるフィルムでも発泡体でもどちらでも同じ結果が得られ、量産工程の自由度が高いことが確認できた。さらに、振動膜の成形条件は厚みが厚くて剛性の高い、発泡体の成型条件に合わせれば良い。 As described above, the same results can be obtained for the diaphragm base material for laying the linear conductors for both films and foams of different resin materials such as PEN and LCP, and the degree of freedom in mass production is high. It could be confirmed. Furthermore, the molding conditions of the vibration film may be matched with the molding conditions of the foam having a large thickness and high rigidity.
再生帯域が5kHz以上のツイーターの場合は、振動膜の振幅は小さくなり、耐熱樹脂よりなるフィルムとフィルムの間にボイスコイルを形成することで、エッジと一体化して成型することが出来る。ツイーターや携帯電話などの小型の薄型スピーカ向けに対しては、本願発明の方法により、部品点数を削減できて組立プロセスが簡単になり、量産性に優れることは言うまでもない。また、必要に応じて、コイルのないところにも、振動膜に凸部を設けることで振動膜の剛性が向上し、異常振動が抑制できて低歪の薄型スピーカを構成できる。
以上、実施例では限られた樹脂材料や粘着剤について記載したが、本願発明はこれらの条件に限定されるものでないことはもちろんのことである。
In the case of a tweeter having a reproduction band of 5 kHz or more, the amplitude of the vibration film is reduced, and by forming a voice coil between films made of heat-resistant resin, it can be molded integrally with the edge. Needless to say, for a small thin speaker such as a tweeter or a mobile phone, the method of the present invention can reduce the number of parts, simplify the assembly process, and excel in mass productivity. Further, if necessary, by providing a convex portion on the vibrating membrane even in a place without a coil, the rigidity of the vibrating membrane can be improved, abnormal vibration can be suppressed, and a low distortion thin speaker can be configured.
As mentioned above, although the resin material and the adhesive which were limited were described in the Example, it cannot be overemphasized that this invention is not limited to these conditions.
1 フレーム
2 磁石
3 放音孔
4 振動膜
5 ボイスコイル
9 エッジ
10 凸部
11 部品
12 シート基材
13 押さえフィルム
14 金型
15 シート
16 粘接着剤
17 錦糸線
18 樹脂
19 はんだ
20 銅箔
21 プレート
22 余長(ループ)
41 リブ
DESCRIPTION OF
41 Ribs
Claims (17)
The vibrating membrane laid by linear conductor and the lead wire (tinsel wires, twisted, braided wire) connecting solder, the solder connection portion of claim 1-16, characterized in that coated with a resin Thin speaker.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005130872A JP4652882B2 (en) | 2005-03-29 | 2005-04-28 | Thin speaker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005094378 | 2005-03-29 | ||
JP2005130872A JP4652882B2 (en) | 2005-03-29 | 2005-04-28 | Thin speaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006311174A JP2006311174A (en) | 2006-11-09 |
JP4652882B2 true JP4652882B2 (en) | 2011-03-16 |
Family
ID=37477545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005130872A Expired - Fee Related JP4652882B2 (en) | 2005-03-29 | 2005-04-28 | Thin speaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4652882B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018110128B4 (en) | 2017-05-11 | 2024-10-10 | Tymphany Acoustic Technology (Huizhou) Co., Ltd. | Planar magnetic foil loudspeaker |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY168564A (en) * | 2014-05-20 | 2018-11-13 | Univ Kebangsaan Malaysia Ukm | Electrodynamics (mems) micro speaker |
KR101645127B1 (en) * | 2015-02-16 | 2016-08-02 | 부전전자 주식회사 | Flat speaker having suspension unified voice coil |
CN106454659A (en) * | 2016-10-31 | 2017-02-22 | 歌尔股份有限公司 | Sound production apparatus and manufacturing method thereof |
WO2023092510A1 (en) * | 2021-11-26 | 2023-06-01 | 深圳市韶音科技有限公司 | Vibration assembly and loudspeaker |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59501091A (en) * | 1982-06-17 | 1984-06-21 | ラ−スン,デイビツド エイ. | Electroacoustic transducer with diaphragm and blank for diaphragm |
JP2002084595A (en) * | 2000-09-08 | 2002-03-22 | Alpine Electronics Inc | Speaker |
JP2003163989A (en) * | 2001-11-28 | 2003-06-06 | Onkyo Corp | Speaker and method for manufacturing the same |
WO2003073787A1 (en) * | 2002-02-28 | 2003-09-04 | The Furukawa Electric Co., Ltd. | Planar speaker |
JP2004328795A (en) * | 1999-03-03 | 2004-11-18 | Onkyo Corp | Speaker member and its manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123227A (en) * | 1976-04-08 | 1977-10-17 | Sharp Corp | Speaker |
JPS581035Y2 (en) * | 1978-01-13 | 1983-01-08 | パイオニア株式会社 | electroacoustic transducer |
JPS57178496A (en) * | 1981-04-10 | 1982-11-02 | Torowaaa Aaru E Akusuteitsuku | Dynamic speaker |
JPS5890798U (en) * | 1981-12-14 | 1983-06-20 | 澤藤 正 | Planar drive speaker |
JPS5929899U (en) * | 1982-08-18 | 1984-02-24 | 日産車体株式会社 | Voice coil extraction structure of flat speaker |
JPS60186791U (en) * | 1984-05-22 | 1985-12-11 | フオスタ−電機株式会社 | flat speaker |
JP3021058B2 (en) * | 1991-01-14 | 2000-03-15 | パイオニア株式会社 | Dome speaker |
JPH06133392A (en) * | 1992-10-20 | 1994-05-13 | Sharp Corp | Manufacture of diaphragm for speaker |
JP3616591B2 (en) * | 2001-09-06 | 2005-02-02 | 独立行政法人科学技術振興機構 | Crystal grain refinement method and grain refiner for metal material |
-
2005
- 2005-04-28 JP JP2005130872A patent/JP4652882B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59501091A (en) * | 1982-06-17 | 1984-06-21 | ラ−スン,デイビツド エイ. | Electroacoustic transducer with diaphragm and blank for diaphragm |
JP2004328795A (en) * | 1999-03-03 | 2004-11-18 | Onkyo Corp | Speaker member and its manufacturing method |
JP2002084595A (en) * | 2000-09-08 | 2002-03-22 | Alpine Electronics Inc | Speaker |
JP2003163989A (en) * | 2001-11-28 | 2003-06-06 | Onkyo Corp | Speaker and method for manufacturing the same |
WO2003073787A1 (en) * | 2002-02-28 | 2003-09-04 | The Furukawa Electric Co., Ltd. | Planar speaker |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018110128B4 (en) | 2017-05-11 | 2024-10-10 | Tymphany Acoustic Technology (Huizhou) Co., Ltd. | Planar magnetic foil loudspeaker |
Also Published As
Publication number | Publication date |
---|---|
JP2006311174A (en) | 2006-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108566606B (en) | Sound production device and portable terminal | |
US8144918B2 (en) | Diaphragm for planar speaker and planar speaker | |
JP5184127B2 (en) | Flat speaker | |
US8447063B2 (en) | Flat thin dynamic speaker | |
US8131001B2 (en) | Speaker diaphragm and electrodynamic loudspeaker using the same | |
JP2005286984A (en) | Speaker for mobile terminal and its manufacturing method | |
JP4652882B2 (en) | Thin speaker | |
JP2007251516A (en) | Speaker | |
JP2016140060A (en) | Universal speaker | |
JP2010268033A (en) | Loudspeaker diaphragm, and electrodynamic loudspeaker using the same | |
JP2014090311A (en) | Damper for speaker and speaker | |
KR101033867B1 (en) | Diaphrahm for sound converter | |
US20060062418A1 (en) | Printed circuit board for speaker and speaker with the same, and method of manufacturing the same | |
US7146017B2 (en) | Electrical connectors for electro-dynamic loudspeakers | |
JP3456819B2 (en) | Speaker and method of manufacturing the same | |
JP2010268032A (en) | Voice coil, and electrodynamic loudspeaker using the same | |
JP2009260672A (en) | Voice coil, motor-driven speaker employing the same and method of manufacturing the same | |
US20180317013A1 (en) | Inverted dome for speaker drivers | |
JP2015088825A (en) | Voice coil, electrodynamic speaker, method of manufacturing voice coil, and method of manufacturing electrodynamic speaker | |
JP3491569B2 (en) | Conductive damper and conductive damper type speaker | |
CN219876075U (en) | Sound production device and electronic equipment | |
WO2016117665A1 (en) | Voice coil, magnetic circuit, actuator, and universal speaker | |
CN218387874U (en) | Voice coil and sound production device using same | |
JP2009232049A (en) | Voice coil, electrodynamic loudspeaker using the same, and method for manufacturing the same coil | |
TWM656393U (en) | Acoustic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |