JPH0293031A - Manufacture of fiber reinforced composite material - Google Patents
Manufacture of fiber reinforced composite materialInfo
- Publication number
- JPH0293031A JPH0293031A JP24336188A JP24336188A JPH0293031A JP H0293031 A JPH0293031 A JP H0293031A JP 24336188 A JP24336188 A JP 24336188A JP 24336188 A JP24336188 A JP 24336188A JP H0293031 A JPH0293031 A JP H0293031A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- fiber
- fibers
- reinforced composite
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 181
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000010008 shearing Methods 0.000 claims abstract description 25
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 24
- 239000011343 solid material Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 abstract description 59
- 238000003825 pressing Methods 0.000 abstract description 3
- 239000010953 base metal Substances 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 7
- 239000000057 synthetic resin Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- -1 titanium Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012210 heat-resistant fiber Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属又は合成樹脂等の基材に繊維を混入して
なる繊維強化複合材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a fiber-reinforced composite material in which fibers are mixed into a base material such as metal or synthetic resin.
繊維強化複合材は、金属又は合成樹脂等を基材とし、こ
れに強化材として強さや剛性の高い繊維を混入させ、材
料に作用する力を繊維に受は持たせることにより基材単
体の場合には得られない優れた機械的性質を得ることを
目的とするものであり、繊維に軽量、高弾性、高強度の
ものを用いることにより、大きな比弾性率、比強さを有
する材料が得られ、又、耐熱性を有する繊維を用いるこ
とにより高温下でも優れた特性を有する材料を得ること
が可能である。Fiber-reinforced composites are made of metal or synthetic resin as a base material, and by mixing fibers with high strength and rigidity as reinforcing materials, making the fibers bear the force that acts on the material. The purpose is to obtain excellent mechanical properties that cannot be obtained from other materials, and by using lightweight, high elasticity, and high strength fibers, materials with high specific modulus and specific strength can be obtained. Furthermore, by using heat-resistant fibers, it is possible to obtain materials that have excellent properties even at high temperatures.
前記基材に混入される繊維には、長繊維(連続繊維)と
短繊維(不連続繊維)とがあり、長繊維を用いた場合に
は該繊維の長さ方向における材料の機械的性質が改善さ
れるものであり、又、短繊維を用いるときには、基材中
の繊維を特定方向へ配向させることにより、この繊維が
配向した方向における材料の機械的性質の向上を達成す
ることができる。このように、複合材中の短繊維を特定
方向へ配向させる方法としては、例えば第12図に示し
た押出法による線材の製法や、又は第13図に示した圧
延法によりシート材を製造する方法が知られている。The fibers mixed into the base material include long fibers (continuous fibers) and short fibers (discontinuous fibers), and when long fibers are used, the mechanical properties of the material in the length direction of the fibers are Furthermore, when short fibers are used, by orienting the fibers in the base material in a specific direction, it is possible to achieve an improvement in the mechanical properties of the material in the direction in which the fibers are oriented. As described above, methods for orienting short fibers in a composite material in a specific direction include, for example, the extrusion method shown in FIG. 12 to produce a wire rod, or the rolling method shown in FIG. 13 to produce a sheet material. method is known.
しかし、上記の押出法や圧延法においては、基材M中に
混入される繊維fは、押出ロイから線状に押し出される
基材Mや圧延ロールロ、口開から送出されるシート状基
材Mの長さ方向にのみ配向されるものであり、その他の
方向へ繊維を配向させて材料の強化を図ることはできな
い。However, in the above extrusion method or rolling method, the fibers f mixed into the base material M are the base material M linearly extruded from the extrusion roll, the sheet-like base material M sent out from the rolling roll, or the opening. The fibers are oriented only in the longitudinal direction of the material, and the material cannot be strengthened by orienting the fibers in other directions.
又、特に基材として金属材料を用いた繊維強化金属の場
合、金属基材中に繊維を混入させるために基材を高温に
加熱したり、又は溶融状態とした場合に、基材と混入す
べき繊維との界面において反応が起こり、繊維の強度低
下を招いたり、又は高温で極めて活性なチタン金属や又
はアルミニウム等の空気中の酸素により酸化されやすい
金属の場合には、これら金属基材自身の化学的変化によ
り、材料強度が低下する、といった問題があり、例えば
AlとSiCとの組み合わせでは高温(溶融状態)で反
応し、両者の界面に化合物を生成する為、複合材の強度
低下をおこし、このため従来法においてはSiCに表面
処理を施す必要があった。In addition, especially in the case of fiber-reinforced metals that use metal materials as the base material, when the base material is heated to a high temperature or molten in order to mix fibers into the metal base material, fibers may be mixed with the base material. In the case of metals such as titanium, which is extremely active at high temperatures, or metals that are easily oxidized by oxygen in the air, such as aluminum, these metal substrates themselves may cause a reaction at the interface with the fibers, resulting in a decrease in the strength of the fibers. There is a problem in that the strength of the material decreases due to chemical changes in the material. For example, the combination of Al and SiC reacts at high temperatures (in a molten state) and forms a compound at the interface between the two, resulting in a decrease in the strength of the composite material. Therefore, in the conventional method, it was necessary to subject SiC to surface treatment.
本発明は上記の問題点に鑑み、基材中に短繊維を特定方
向に配向させてなる繊維強化複合材において、基材中の
繊維を複合材の長さ方向以外の方向、即ち回転体形状の
複合材における回転方向に配向させることにより、材料
の径方向及び円周方向の機械的性質の向上を可能とする
とともに、基材中への繊維の混合、配向時に基材を高温
に加熱したり、又は基材を溶融状態とすることなく機械
的に加工を行うことにより、基材や繊維、又は両者間の
化学反応等による材料強度の低下を防止し、基材と繊維
との結合による優れた物理的及び機械的性質を有する繊
維強化複合材を得ることを目的とするものである。In view of the above-mentioned problems, the present invention provides a fiber-reinforced composite material in which short fibers are oriented in a specific direction in a base material. By orienting the fibers in the direction of rotation in the composite material, it is possible to improve the mechanical properties of the material in the radial and circumferential directions. By mechanically processing the base material without making it into a molten state, it is possible to prevent material strength from decreasing due to chemical reactions between the base material, fibers, or the two. The objective is to obtain a fiber-reinforced composite material with excellent physical and mechanical properties.
本発明は上記の目的を達成するために、基材と強化繊維
とからなる素材を加圧シリンダー容器内で加圧した状態
でシリンダー容器内面における素材との接触面を回転さ
せて加圧状態下の素材へ回転方向の剪断力を付与するこ
とにより、強化繊維を基材中で回転方向へ配向させてな
ることを特徴とするものである。In order to achieve the above object, the present invention has been developed by rotating a contact surface with the material on the inner surface of the cylinder container while pressurizing a material consisting of a base material and reinforcing fibers in a pressurized cylinder container. The reinforcing fibers are oriented in the rotational direction in the base material by applying a shearing force in the rotational direction to the material.
前記した素材への剪断力の付与は、加圧シリンダー容器
内面の素材に接する側端面を回転させて加圧状態の材料
へその端面から回転方向の剪断力を付与し、又は加圧シ
リンダー容器の素材に接する内周面を回転させて加圧状
態の素材へその外周面から回転方向の剪断力を付与した
り、更には加圧シリンダー容器の回転面をこれと接する
素材に対してその長さ方向に移動させて材料に剪断力を
付与する、等の各種方法が採用されうる。The application of shearing force to the material described above can be achieved by rotating the side end surface of the inner surface of the pressurized cylinder container that is in contact with the material and applying shearing force in the rotational direction to the pressurized material from that end surface, or by rotating the side end surface of the pressurized cylinder container that is in contact with the material. By rotating the inner circumferential surface in contact with the material, applying a shearing force in the rotational direction from the outer circumferential surface to the pressurized material, and further changing the length of the rotating surface of the pressurized cylinder container relative to the material in contact with it. Various methods may be employed, such as applying shear force to the material by moving it in the direction.
そして、素材としては基材中に強化繊維を混入してなる
固形材料、粉末状態の基材と強化繊維を混合したもの、
溶融状態の基材中に強化繊維を混入させたもの、又は強
化繊維に基材をコーティングしてなるもの、更には、薄
層状の材料を多数積層して基材とし、この基材の各層間
に強化繊維を介在させて混入したもの等、種々の態様の
材料を用いることができるのである。The materials include a solid material made by mixing reinforcing fibers into a base material, a mixture of a powdered base material and reinforcing fibers,
A base material made by mixing reinforcing fibers into a base material in a molten state, or a base material coated with a reinforcing fiber, or a base material made by laminating a large number of thin layered materials, and forming a base material between each layer of this base material. Various types of materials can be used, such as those in which reinforcing fibers are interposed and mixed.
本発明は上記の如く構成してなり、繊維を含んだ基材が
容器内で加圧された状態で回転方向の剪断力を付与され
ることにより素材内部で回転方向に塑性流動し、この基
材の塑性流動に伴って該基材に混入されている繊維が回
転方向、即ち円周方向に配向されるとともに、基材の結
晶粒子の塑性変形、微細化、及び基材内部組織の均質化
等の作用により、基材自身も強化される。そしてこの加
圧操作は加圧容器内で行われるため、素材に付与される
回転方向の剪断力が確実に素材に作用するとともに、素
材として固形材を用いた場合にも基材にクランク等が発
生することを防止して内部で塑性流動させて繊維を配向
するとともに素材自体の強化も効果的に行われるのであ
る。又、基材として粉体材料を用いた場合にも、基材の
粉体粒子が加圧、剪断により塑性変形されることにより
接着するとともに、結晶粒子の微細化、均質化等の作用
により基材が固形化されて複合材となしうるのである。The present invention is constructed as described above, and a base material containing fibers is subjected to a shearing force in the rotational direction while being pressurized in a container, so that the base material flows plastically in the rotational direction inside the material. With the plastic flow of the material, the fibers mixed in the base material are oriented in the rotation direction, that is, the circumferential direction, and the crystal grains of the base material are plastically deformed and refined, and the internal structure of the base material is homogenized. Due to these effects, the base material itself is also strengthened. Since this pressurizing operation is performed in a pressurized container, the shearing force in the rotational direction applied to the material is reliably applied to the material, and even if solid material is used as the material, cranks etc. This prevents this from occurring and causes the fibers to flow internally to orient the fibers, while also effectively strengthening the material itself. In addition, even when a powder material is used as a base material, the powder particles of the base material are plastically deformed by pressure and shearing, resulting in adhesion, and the crystal grains are made finer and more homogenized. The material can be solidified and made into a composite material.
以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.
本発明によって製造される繊維強化複合材には、基材と
して金属材料を用いた繊維強化金属と、基材として合成
樹脂を用いてなる繊維強化プラスチックスとがある。The fiber-reinforced composite materials produced according to the present invention include fiber-reinforced metals using a metal material as a base material and fiber-reinforced plastics using a synthetic resin as a base material.
前記繊維強化金属の場合における基材としては、例えば
Mg、、Al、Ti等、又はFe5Ni基合金等がある
。これらに混入される強化繊維としては、例えば、炭化
珪素繊維、炭素繊維、アルミナ繊維、ボロン繊維、又は
ウィスカーとしての5iCSSi3N4、Aj2203
等がある。又、繊維強化プラスチックスにおける基材と
しては、不飽和ポリエステル樹脂、エポキシ樹脂、フェ
ノール樹脂等の熱硬化性樹脂やポリエチレン樹脂、ポリ
プロピレン樹脂、ナイロン、ポリスチレン樹脂等の熱可
塑性樹脂等があり、これらの基材に混入される繊維とし
ては、炭素繊維、ガラス繊維、アラミド繊維、金属繊維
等がある。In the case of the fiber-reinforced metal, the base material includes, for example, Mg, Al, Ti, or a Fe5Ni-based alloy. Examples of reinforcing fibers mixed in these include silicon carbide fibers, carbon fibers, alumina fibers, boron fibers, or 5iCSSi3N4 and Aj2203 as whiskers.
etc. In addition, base materials for fiber-reinforced plastics include thermosetting resins such as unsaturated polyester resins, epoxy resins, and phenol resins, and thermoplastic resins such as polyethylene resins, polypropylene resins, nylon, and polystyrene resins. Examples of the fibers mixed into the base material include carbon fibers, glass fibers, aramid fibers, and metal fibers.
本発明においては、上記の金属又は合成樹脂等の基材と
強化繊維とからなる素材に加圧状態で回転方向の剪断力
を付与することにより、基材内部で塑性流動を発生させ
ることにより繊維を配向させると同時に基材の強化をも
行うものである。In the present invention, by applying a shearing force in the rotational direction under pressure to a material consisting of a base material such as metal or synthetic resin and reinforcing fibers, plastic flow is generated inside the base material. At the same time, it also strengthens the base material.
前記素材は、基材中に強化繊維を混入してなる固形材料
、粉末状態の基材と強化繊維を混合したもの、溶融状態
の基材中に強化繊維を混入させたもの、更には強化繊維
に基材をコーティングしてなるもの、又は薄層状に形成
した基材を多層に積層して各層間に強化繊維を挟み込み
、例えばロール状に巻回したようなもの等、種々の態様
の材料を用いることができる。又、固形又は粉体状態の
基材を用いた場合には、加圧、剪断加工時の摩擦熱の発
生により基材が溶融状態となることもある。The above-mentioned materials include solid materials obtained by mixing reinforcing fibers into a base material, materials obtained by mixing a powdered base material and reinforcing fibers, materials obtained by mixing reinforcing fibers into a molten base material, and even reinforcing fibers. Various types of materials can be used, such as those made by coating a base material on the base material, or those made by laminating multiple layers of thin base materials and sandwiching reinforcing fibers between each layer and winding them into a roll shape. Can be used. Furthermore, when a solid or powder base material is used, the base material may become molten due to generation of frictional heat during pressurization and shearing.
又、加圧、剪断加工時に必要に応じて固体又は粉体状の
素材を加熱したり、又、加工後に得られた複合材料を冷
却することも考慮されるのである。It is also considered to heat the solid or powdered material as necessary during pressurization and shear processing, and to cool the composite material obtained after processing.
更には、素材状態で予め溶融状態又はそれに近い状態と
して供給し、加圧、剪断加工の最中に降温させて加工終
了時に再結晶温度以下となるように材料温度を調節して
もよい。Furthermore, the material temperature may be adjusted by supplying the material in advance as a molten state or a state close to it, and lowering the temperature during pressurization and shearing so that the material temperature becomes equal to or lower than the recrystallization temperature at the end of the processing.
以下、添付図面に基づき説明すると、
第1図及び第2図に示したものは、本発明の1実施態様
を示すものであり、有底のシリンダー1と、加圧ピスト
ン2とにより加圧シリンダー容器3を構成し、前記シリ
ンダー1の内部に加圧ピストン2との間で形成される円
柱状内部空間に、基材M中に繊維fを混入してなる素材
4を装填し、加圧、剪断加工するものである。The following will be explained based on the attached drawings. What is shown in FIGS. A material 4 made of a base material M mixed with fibers F is loaded into a cylindrical internal space that constitutes a container 3 and is formed between the cylinder 1 and the pressurizing piston 2, and pressurized. It is used for shearing.
前記シリンダー容器3の加圧ピストン2はシリンダ−1
開口端から内部へ摺動、且つ軸回りで回転可能に嵌挿し
てなり、容器3内部に装填した素材4を該ピストン2に
てシリンダー1の底面1a方向へ押圧することにより加
圧するとともに、この加圧状態で加圧ピストン2をその
軸回りで回転させて、加圧ピストン端面2aから該端面
と接触している素材4の端面に対して剪断力を付与する
ことにより、素材4内部の基材Mを塑性流動させ、繊維
fをこの基材Mの流動に伴って配向させるのである。こ
のとき、第3図の如く、シリンダー1の内周面1bに摩
擦係数の小さな合成樹脂等の被膜7を形成したり、又は
素材4との間に摺動リング等を介装しておくことにより
、該内周面1bとこれに接触する素材4との間に発生す
る摩擦力を軽減し、前記加圧ピストン2の回転により材
料4へ付与される剪断力がシリンダー1の内周面1bと
の摩擦力により素材4の下部への伝達を阻害されること
なく、加圧ピストン2の回転による剪断力により、素材
4は加圧ピストン端面2aとシリンダー底面1aとの間
で加圧された状態でその内部にて基材Mが回転方向に塑
性流動する。第4図に示したものは、このときの素材4
中の基材Mの塑性流動に伴う繊維fの配向の様子を表す
ものであり、第4図(イ)の如く円柱形状の素材4は、
その上下両端面から加圧Pされた状態でピストン2の回
転により上端面4aに回転方向の剪断力が加えられ、素
材4における基材Mは回転方向に塑性流動することによ
り、該基材M中に混入された繊維fが基材Mの流動方向
、即ち回転方向に配向され、最終的には第4図(ハ)の
如く殆ど全ての繊維fが複合材中において円周方向へ配
向した状態となる。第5図に示したものは上記の方法で
得られる複合材と従来の方法で得られる複合材をそれぞ
れ円柱状に成形した場合の繊維fの配向の状態を比較し
たものであり、本発明方法によるもの(第5図(イ))
においては、円柱形状の基材Mで繊維fが円周方向へ配
向しているのに対し、押出法によるもの(第5図(ロ)
)は円柱形状の軸に平行な方向に配向する。又、延伸法
によるもの(第5図(ハ))では、繊維fは軸に対して
直交する方向に配向されており、本発明方法における複
合材中の繊維fの配向は従来のものに較べてその方向を
全く異にするものであり、例えば円板状又はリング状製
品のように円周方向の強度を要求される複合材として好
ましい繊維配向を有するものである。The pressurizing piston 2 of the cylinder container 3 is the cylinder 1
It is inserted so that it can slide inward from the open end and rotate around the axis, and pressurizes the material 4 loaded inside the container 3 by pressing it toward the bottom surface 1a of the cylinder 1 with the piston 2. By rotating the pressure piston 2 around its axis in a pressurized state and applying shearing force from the end surface 2a of the pressure piston to the end surface of the material 4 that is in contact with the end surface, the base material inside the material 4 is removed. The material M is caused to flow plastically, and the fibers f are oriented as the base material M flows. At this time, as shown in FIG. 3, a coating 7 made of synthetic resin or the like with a small coefficient of friction may be formed on the inner circumferential surface 1b of the cylinder 1, or a sliding ring or the like may be interposed between it and the material 4. This reduces the frictional force generated between the inner circumferential surface 1b and the material 4 in contact with it, and the shearing force applied to the material 4 due to the rotation of the pressure piston 2 is reduced to the inner circumferential surface 1b of the cylinder 1. The material 4 was pressurized between the pressure piston end surface 2a and the cylinder bottom surface 1a by the shear force caused by the rotation of the pressure piston 2, without inhibiting the transmission of the material 4 to the lower part due to the frictional force between the pressure piston 2 and the cylinder bottom surface 1a. In this state, the base material M plastically flows in the rotating direction. What is shown in Fig. 4 is the material 4 at this time.
This shows the orientation of the fibers f due to the plastic flow of the base material M inside, and as shown in FIG. 4(a), the cylindrical material 4 is
The rotation of the piston 2 applies a shearing force in the rotational direction to the upper end surface 4a under pressure P from both the upper and lower end surfaces, and the base material M in the material 4 plastically flows in the rotational direction. The fibers f mixed therein were oriented in the flow direction of the base material M, that is, in the rotating direction, and finally, as shown in FIG. 4 (c), almost all the fibers f were oriented in the circumferential direction in the composite material. state. What is shown in FIG. 5 is a comparison of the state of orientation of fibers f when a composite material obtained by the above method and a composite material obtained by a conventional method are respectively formed into a cylindrical shape. (Figure 5 (a))
In contrast to the cylindrical base material M in which the fibers f are oriented in the circumferential direction, the extrusion method (Fig. 5 (b)
) are oriented in a direction parallel to the axis of the cylindrical shape. In addition, in the drawing method (Fig. 5 (c)), the fibers f are oriented in a direction perpendicular to the axis, and the orientation of the fibers f in the composite material in the method of the present invention is different from that in the conventional method. The fiber orientation is preferable for composite materials that require strength in the circumferential direction, such as disk-shaped or ring-shaped products, for example.
次に、第6図に示したものはリング状の繊維強化複合材
を作成するための装置であり、有底のシリンダー1と加
圧ピストン2とによりシリンダー容器3を構成し、前記
シリンダー1の底面中央に設けた貫通孔5に加圧ピスト
ン2の先端に突設した突軸6を挿入してシリンダー1と
加圧ピストン2とにより形成されるリング状空間内に素
材4を装填し、これを加圧ピストン2にて加圧するとと
もに、該加圧ピストン2をその軸回りで回転させること
により、加圧ピストン2の下端面2a及び突軸6の外周
面6aから素材4に対して回転方向の剪断力が付与され
るのである。このとき、第7図に示したように、シリン
ダー底面1a及び加圧ピストン下端面2aを摩擦係数の
小さな合成樹脂等の被膜にて被覆するか又は素材4との
間に摺動リング8を介装しておくことにより、突軸外周
面6aのみからリング状の素材4の外周方向に向かって
回転方向の剪断力を伝達するのである。このときの素材
4中の繊維fは、第8図に示す如くリング状の基材M中
で円周方向に配向され、リング状製品において要求され
る円周方向における機械的強度が向上する。Next, what is shown in FIG. 6 is an apparatus for producing a ring-shaped fiber-reinforced composite material, in which a cylinder container 3 is constituted by a cylinder 1 with a bottom and a pressurizing piston 2. A protruding shaft 6 protruding from the tip of the pressure piston 2 is inserted into the through hole 5 provided at the center of the bottom surface, and the material 4 is loaded into the ring-shaped space formed by the cylinder 1 and the pressure piston 2. By applying pressure with the pressurizing piston 2 and rotating the pressurizing piston 2 around its axis, the rotational direction relative to the material 4 is generated from the lower end surface 2a of the pressurizing piston 2 and the outer circumferential surface 6a of the protruding shaft 6. This results in a shearing force of . At this time, as shown in FIG. 7, the cylinder bottom surface 1a and the lower end surface 2a of the pressurizing piston are coated with a film made of synthetic resin or the like having a small coefficient of friction, or a sliding ring 8 is interposed between them and the material 4. By so doing, shearing force in the rotational direction is transmitted from only the protruding shaft outer circumferential surface 6a toward the outer circumferential direction of the ring-shaped material 4. At this time, the fibers f in the material 4 are oriented in the circumferential direction in the ring-shaped base material M as shown in FIG. 8, and the mechanical strength in the circumferential direction required for the ring-shaped product is improved.
又、第9図(イ)〜(ハ)に示したものは、本発明に係
る他の方法を示すものであり、両端開口のシリンダー1
内に装填した素材4を、シリンダー1の両端開口から嵌
装した加圧ピストン2.2′にて加圧した状態で、一方
の加圧ピストン2を回転させるとともに、シリンダー1
の一部11をシリンダー1の他の部分12に対して回転
させることにより、隣接する回転部11と固定部12と
の境界面Aにおいて材料4に回転方向の剪断力を付与し
ながら加圧ピストン2及び2′を図中左方へ移動させ、
材料4全体を順次前記境界面Aを通過させることにより
、材料4の全長にわたって均一に回転方向の剪断力を付
与して繊維fを配向させるものである。この場合の素材
4中における基材Mの塑性流動及び繊維fの配向の様子
は第10図に示すようなものとなる。即ち、素材4はシ
リンダー内で両端から加圧ピストンで加圧Pされた状態
で、相対的に回転している隣接する回転部11と固定部
12との境界面Aにおいて回転方向の剪断力を与えられ
、この部分で回転方向への塑性流動が起こるのである。Moreover, what is shown in FIGS. 9(a) to 9(c) shows another method according to the present invention, in which a cylinder 1 with openings at both ends is used.
With the material 4 loaded inside being pressurized by the pressurizing pistons 2 and 2' fitted from the openings at both ends of the cylinder 1, one pressurizing piston 2 is rotated, and the cylinder 1 is
By rotating a part 11 of the cylinder 1 with respect to the other part 12 of the cylinder 1, the pressurizing piston 2 and 2' to the left in the figure,
By sequentially passing the entire material 4 through the boundary surface A, a shearing force in the rotational direction is applied uniformly over the entire length of the material 4 to orient the fibers f. In this case, the plastic flow of the base material M and the orientation of the fibers f in the material 4 are as shown in FIG. That is, while the material 4 is pressurized from both ends in the cylinder by pressure pistons, a shearing force in the rotational direction is applied at the interface A between the relatively rotating adjacent rotating part 11 and fixed part 12. plastic flow in the direction of rotation occurs in this part.
そして素材4をシリンダー1内で移動させてその一端か
ら他端へわたって前記境界面Aを通過させ、素材4全体
にわたって基材Mを塑性流動させて繊維fを配向させる
のである。Then, the material 4 is moved within the cylinder 1 and passed through the boundary surface A from one end to the other, causing the base material M to plastically flow over the entire material 4, thereby orienting the fibers f.
更に第11図に示したものは、本発明の他の実施例を示
すものであり、一端を閉鎖した回転シリンダ一部11の
開放端から、両端を開口し回転方向に固定され且つ軸方
向に移動可能とした移動シリンダ一部15を内挿すると
ともに、該移動シリンダ一部15の開口端には加圧ピス
トン2を内挿して加圧シリンダー容器3を構成し、前記
加圧ピストン2にて容器3内部に装填した材料4を加圧
した状態で回転シリンダ一部11を回転させるとともに
、移動シリンダ一部15を加圧ピストン2方向へ後退さ
せることより、回転シリンダ一部ll内に位置する移動
シリンダ一部15の開口端面Bにおいて材料4へ回転方
向の剪断力を付与することにより、基材Mを回転方向に
塑性流動させて繊維fを配向させるものである。Furthermore, FIG. 11 shows another embodiment of the present invention, in which a rotary cylinder part 11 with one end closed is opened at both ends, fixed in the rotational direction, and fixed in the axial direction. A movable movable cylinder part 15 is inserted, and a pressurizing piston 2 is inserted into the open end of the movable cylinder part 15 to form a pressurizing cylinder container 3. By rotating the rotary cylinder part 11 while pressurizing the material 4 loaded inside the container 3 and moving the movable cylinder part 15 backward in the direction of the pressurizing piston 2, the material 4 is located within the rotary cylinder part ll. By applying a shearing force in the rotational direction to the material 4 at the open end surface B of the moving cylinder portion 15, the base material M is caused to plastically flow in the rotational direction and the fibers f are oriented.
以上の如く、本発明に係る繊維強化複合材の製造方法に
よれば、金属又は合成樹脂等の基材に強化繊維を混入さ
せることにより基材単体の場合には得られない物理的、
機械的強度を有する複合材を製造しうるとともに、前記
素材中の繊維を回転する方向へ配向させることにより円
周方向において優れた機械的性質を有するものとして、
円板状又はリング状等に成形した場合に好ましい強度を
有する複合材を提供しうるちのであり、又、前記繊維の
配向とともに基材自体の強化を可能として、複合材とし
てより優れた機械的強度を付与することができる。As described above, according to the method for manufacturing a fiber-reinforced composite material according to the present invention, by mixing reinforcing fibers into a base material such as metal or synthetic resin, physical
A composite material having mechanical strength can be produced, and by orienting the fibers in the material in the direction of rotation, it has excellent mechanical properties in the circumferential direction.
It is possible to provide a composite material that has favorable strength when formed into a disk shape or a ring shape, and it also enables the reinforcement of the base material itself along with the orientation of the fibers, resulting in a more excellent mechanical strength as a composite material. It can impart strength.
又、本発明方法によれば、固形状又は粉体状の4゜
基材の場合にもこれを加熱したり又は溶融状態とするこ
となく機械的に加工して基材中に容易に繊維を混入し、
且つ特定方向に配向させることが可能であり、加工時の
化学反応等により基材や繊維の強度低下を起こすことも
なく、優れた物性を有する複合材を提供うるちのである
。Furthermore, according to the method of the present invention, even in the case of a solid or powdery 4° base material, fibers can be easily incorporated into the base material by mechanical processing without heating or melting the base material. mixed,
Moreover, it can be oriented in a specific direction, and the strength of the base material and fibers does not decrease due to chemical reactions during processing, making it possible to provide composite materials with excellent physical properties.
第1図は本発明方法を実施するための加圧シリンダー容
器の一実施例の斜視図、第2図は前記シリンダー容器を
用いた本発明方法の説明用側断面図、第3図は前記方法
の他の実施例の側断面説明図、第4図は前記方法におけ
る基材の塑性流動及び繊維の配向の様子を示す説明図、
第5図は各種製法による複合材中の繊維配向状態を比較
したものであり、(イ)は本発明方法によるもの、(ロ
)は押出法によるもの、(ハ)は圧延法によるものであ
り、第6図は他のシリンダー容器を用いた本発明方法の
説明用側断面図、第7図は前記方法の他の実施例の側断
面説明図、第8図は前記方法におけ基材の塑性流動及び
繊維の配向の様子を示す説明図、第9図(イ)〜(ハ)
は他の実施例の工程説明図、第10図は第9図の方法に
おける基材の塑性流動及び繊維の配向の様子を示す説明
図、第11図は更に他実施例の説明用側断面図であり、
第12図は従来の押出法、第13図は従来の圧延法の説
明図である。
lニジリンダ−12:加圧ピストン、3:加圧シリンダ
ー容器、4:素材、5:貫通孔、6:突軸、7:被膜、
8:リング、9:供給口、11:回転部、12:固定部
、15:移動部。
M:基材、f:繊維。
特許出願人 有限会社 イブアリサーチ(外1名)FIG. 1 is a perspective view of an embodiment of a pressurized cylinder container for carrying out the method of the present invention, FIG. 2 is a side cross-sectional view for explaining the method of the present invention using the cylinder container, and FIG. 3 is a perspective view of an embodiment of the method of the present invention. FIG. 4 is an explanatory diagram showing the plastic flow of the base material and the orientation of fibers in the method,
Figure 5 compares the fiber orientation state in composite materials produced by various manufacturing methods, with (a) produced by the method of the present invention, (b) produced by the extrusion method, and (c) produced by the rolling method. , FIG. 6 is a side cross-sectional view for explaining the method of the present invention using another cylinder container, FIG. 7 is a side cross-sectional view for explaining another embodiment of the method, and FIG. Explanatory drawings showing plastic flow and fiber orientation, Figures 9 (a) to (c)
10 is an explanatory diagram showing the plastic flow of the base material and fiber orientation in the method of FIG. 9, and FIG. 11 is an explanatory side sectional view of another embodiment. and
FIG. 12 is an explanatory diagram of a conventional extrusion method, and FIG. 13 is an explanatory diagram of a conventional rolling method. l Niji cylinder - 12: Pressurized piston, 3: Pressurized cylinder container, 4: Material, 5: Through hole, 6: Projected shaft, 7: Coating,
8: Ring, 9: Supply port, 11: Rotating part, 12: Fixed part, 15: Moving part. M: base material, f: fiber. Patent applicant Ibuari Research Co., Ltd. (1 other person)
Claims (1)
容器内で加圧した状態でシリンダー容器内面における素
材との接触面を回転させて加圧状態下の素材へ回転方向
の剪断力を付与することにより、強化繊維を基材中で回
転する方向へ配向させてなることを特徴とする繊維強化
複合材の製造方法。 2)加圧シリンダー容器内面の素材に接する側端面を回
転させることにより、加圧状態の素材へその端面から回
転方向の剪断力を付与することを特徴とする特許請求の
範囲第1項記載の繊維強化複合材の製造方法。 3)加圧シリンダー容器の材料に接する内周面を回転さ
せることにより、加圧状態の素材へその外周面から回転
方向の剪断力を付与することを特徴とする特許請求の範
囲第1項記載の繊維強化複合材の製造方法。 4)加圧シリンダー容器の回転面をこれと接する素材に
対してその長さ方向に移動させて材料に剪断力を付与す
ることを特徴とする特許請求の範囲第3項記載の繊維強
化複合材の製造方法。 5)素材として、基材中に強化繊維を混入させた固形材
料を用いてなることを特徴とする特許請求の範囲第1項
記載の繊維強化複合材の製造方法。 6)素材として、粉末状態の基材と強化繊維を混合した
ものを用いてなることを特徴とする特許請求の範囲第1
項記載の繊維強化複合材の製造方法。 7)素材として、溶融状態の基材中に強化繊維を混入さ
せたものを用いてなることを特徴とする特許請求の範囲
第1項記載の繊維強化複合材の製造方法。 8)素材として、強化繊維に基材をコーティングしてな
るものを用いてなる特許請求の範囲第1項記載の繊維強
化複合材の製造方法。 9)素材として、薄層状の材料を多層に積層してなる基
材の隣接する各薄層間に強化繊維を混入させたものを用
いてなる特許請求の範囲第1項記載の繊維強化複合材の
製造方法。[Claims] 1) A material consisting of a base material and reinforcing fibers is placed under pressure in a pressurized cylinder container, and the contact surface with the material on the inner surface of the cylinder container is rotated to transfer the material under the pressurized state. A method for producing a fiber-reinforced composite material, which comprises orienting reinforcing fibers in a rotational direction in a base material by applying a shearing force in the rotational direction. 2) A shearing force in the rotational direction is applied to the pressurized material from the end surface by rotating the side end surface in contact with the material on the inner surface of the pressurized cylinder container, according to claim 1. Method for manufacturing fiber reinforced composite material. 3) A shearing force in the rotational direction is applied to the pressurized material from its outer circumferential surface by rotating the inner circumferential surface in contact with the material of the pressurized cylinder container, according to claim 1. A method for producing a fiber reinforced composite material. 4) The fiber-reinforced composite material according to claim 3, characterized in that the rotating surface of the pressurized cylinder container is moved in the longitudinal direction of the material in contact with it to apply shearing force to the material. manufacturing method. 5) The method for manufacturing a fiber reinforced composite material according to claim 1, characterized in that the material is a solid material in which reinforcing fibers are mixed into the base material. 6) Claim 1, characterized in that the material is a mixture of a powdered base material and reinforcing fibers.
A method for producing a fiber-reinforced composite material as described in Section 1. 7) A method for producing a fiber reinforced composite material according to claim 1, characterized in that the material is a base material in a molten state mixed with reinforcing fibers. 8) A method for producing a fiber-reinforced composite material according to claim 1, wherein the material is a reinforcing fiber coated with a base material. 9) The fiber-reinforced composite material according to claim 1, which is made of a base material formed by laminating multiple thin layers of materials, with reinforcing fibers mixed between adjacent thin layers. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24336188A JPH0293031A (en) | 1988-09-27 | 1988-09-27 | Manufacture of fiber reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24336188A JPH0293031A (en) | 1988-09-27 | 1988-09-27 | Manufacture of fiber reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0293031A true JPH0293031A (en) | 1990-04-03 |
Family
ID=17102697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24336188A Pending JPH0293031A (en) | 1988-09-27 | 1988-09-27 | Manufacture of fiber reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0293031A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012169595A (en) * | 2011-01-12 | 2012-09-06 | Emitec Ges Fuer Emissionstechnologie Mbh | Thermoelectric material and method for producing the same |
CN103084564A (en) * | 2012-10-15 | 2013-05-08 | 柳州市双铠工业技术有限公司 | Process for preparing composite wear-resistant component |
-
1988
- 1988-09-27 JP JP24336188A patent/JPH0293031A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012169595A (en) * | 2011-01-12 | 2012-09-06 | Emitec Ges Fuer Emissionstechnologie Mbh | Thermoelectric material and method for producing the same |
CN103084564A (en) * | 2012-10-15 | 2013-05-08 | 柳州市双铠工业技术有限公司 | Process for preparing composite wear-resistant component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018359514C1 (en) | Solid-state additive manufacturing system and material compositions and structures | |
US9943929B2 (en) | Metal matrix composite creation | |
US9610756B2 (en) | Resin impregnated multi orientation composite material | |
US5094607A (en) | Thermoplastic mold for rotational molding | |
US4080233A (en) | Method of making a self-lubricating bearing | |
US5643382A (en) | Process and device for manufacturing a reinforced composite article | |
DE69420688T2 (en) | Method and device for producing a cylindrical object from fiber composite material | |
WO2005052207A2 (en) | Filament winding for metal matrix composites | |
JPH0293031A (en) | Manufacture of fiber reinforced composite material | |
US4938905A (en) | Method of controlling the orientation of short fibers in a short fiber-reinforced article | |
US3936550A (en) | Composite metallic preform tape | |
US3719538A (en) | Method of forming a composite metallic preform tape | |
US3841942A (en) | Apparatus for forming a composite metallic preform tape | |
JPH0289599A (en) | Method for strengthening metal material or synthetic resin material or the like | |
EP0883486B1 (en) | Wire preforms for composite material manufacture and methods of making | |
Chohan et al. | An Apparatus Designed for Coating and Coloration of Filaments Used in Fused Filament Fabrication (FFF) 3D Printing | |
JPS60214957A (en) | Composite molded shape | |
US3997954A (en) | Low friction bearing prepared by winding onto a mandrel | |
JP4262300B2 (en) | Disk-shaped member and manufacturing method thereof | |
US20240025150A1 (en) | Methods To Directly Join Metals To Polymer/Polymer Composites Using Functionally Active Insert Layer | |
JPH07171921A (en) | Laminated tube | |
CN113005444B (en) | Device for preparing coating on inner surface of revolving body and application of device | |
JPH04286633A (en) | Fiber reinforced plastic roll and manufacture thereof | |
JPS6321108A (en) | Molding machine | |
US12122097B2 (en) | 3D printing system nozzle assembly for printing of fiber reinforced parts |