JPS61140328A - Formation of superplastic material by using granular body as pressure-transmitting medium - Google Patents

Formation of superplastic material by using granular body as pressure-transmitting medium

Info

Publication number
JPS61140328A
JPS61140328A JP59263454A JP26345484A JPS61140328A JP S61140328 A JPS61140328 A JP S61140328A JP 59263454 A JP59263454 A JP 59263454A JP 26345484 A JP26345484 A JP 26345484A JP S61140328 A JPS61140328 A JP S61140328A
Authority
JP
Japan
Prior art keywords
pressure
powder
superplastic
molding
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59263454A
Other languages
Japanese (ja)
Other versions
JPH0232047B2 (en
Inventor
Kunio Okimoto
沖本 邦郎
Tomio Sato
富雄 佐藤
Toshio Yamakawa
山川 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59263454A priority Critical patent/JPS61140328A/en
Publication of JPS61140328A publication Critical patent/JPS61140328A/en
Publication of JPH0232047B2 publication Critical patent/JPH0232047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/10Stamping using yieldable or resilient pads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To press-form easily a superplastic metal sheet-stock by preparing only a die used for transferring a shape of product and using granular bodies as a pressure-transmitting medium equivalent to a punch. CONSTITUTION:A superplastic metal sheet-stock 2 is put on a die 1 used for transferring a shape of product, and a cylinder 3 having optional dimensions is set on the outer circumference of stock 2. When granular bodies 4 charged into the cylinder 3 is pressed under the conditions of temperature and straining rate, capable of developing the superplasticity of stock 2, through a pressing tool 5, the shape of die 1 is transferred to the sheet-stock 2 by the granular bodies 4 playing the role of a transmitting medium or pressure. Graphite, metallic, or ceramic powder having a particle size of about several microns - several hundred microns is used for said granular body.

Description

【発明の詳細な説明】 a0発明の技術分野 本発明1よ超塑性金属板材の成形方法に関する。[Detailed description of the invention] Technical field of a0 invention The present invention 1 relates to a method for forming a superplastic metal plate.

b、従来技術と問題点 超塑性とは材料がある条件下で異常に呻び、変形抵抗が
格段に低下する現象のことであり、一般的な°゛めやす
″として引張試験における伸びが、300%以上得られ
る場合を指している。この材料を成形加工に応用すると
、成形能が擾れているので従来からの成形法では成形が
困難であった複雑な形状のものを少ない工程で製造でき
る。
b. Prior art and problems Superplasticity is a phenomenon in which a material groans abnormally under certain conditions and its deformation resistance is significantly reduced.As a general guideline, the elongation in a tensile test is 300 % or more.When this material is applied to molding processing, it is possible to manufacture products with complex shapes that are difficult to mold using conventional molding methods due to the lack of molding ability, with fewer steps. .

超塑性金属が板状のものである場合には、塊状のものの
場合に比べて加工力は一般に小さくなる。
When the superplastic metal is in the form of a plate, the working force is generally smaller than when it is in the form of a block.

この板状の超塑性金属板においては、プラスチックの成
形で用いられている真空成形やガス圧によるブ四−成形
を用いることさえ可能であり、金属の板材があたかもプ
ラスチックの板材のように成形できるのである。
For this plate-shaped superplastic metal plate, it is even possible to use vacuum forming or gas pressure-based bubble forming, which is used in plastic molding, and the metal plate can be formed as if it were a plastic plate. It is.

このように超塑性金属板材の成形をプラスチックの成形
手法により行うことができ極めて便利なのであるが、問
題点が無い訳ではない。すなわち、真空成形やブロー成
形を行うためには、所定の圧力に到達させるための密封
装置が必要である。つまり、真空成形においては加工力
は真空に引くことによって生じるものであるので、成形
に必要な真空度が達成されなければ成形(よ不可能であ
り、これに耐え得る密封装置を準′備しなければならな
い。一方、ブロー成形Ω場合においては、成形に必要な
空気圧力もしくはガス圧力に到達させるために、やはり
密封装置が必要である。
In this way, superplastic metal plates can be molded using plastic molding techniques, which is extremely convenient, but it is not without its problems. That is, in order to perform vacuum forming or blow molding, a sealing device is required to reach a predetermined pressure. In other words, in vacuum forming, the processing force is generated by drawing a vacuum, so if the degree of vacuum required for forming is not achieved, forming is impossible, and a sealing device that can withstand this must be prepared. On the other hand, in the case of blow molding, a sealing device is still required to reach the air or gas pressure necessary for molding.

大量生産する場合においては、このような密封装置を使
用する超塑性金属板材の成形方法も経済←−1□ 的に可能であろうが、現在は多品種少量生産が要求され
ることが多いので、なるべく簡便に成形できる方法が要
望されている。
In the case of mass production, it would be economically possible to form a superplastic metal plate using such a sealing device, but currently, high-mix, low-volume production is often required. There is a need for a method that can be formed as simply as possible.

なお、前記の真空成形やブロー成形以外に、超塑性金属
板材の成形手段として1夜圧成形やゴム圧成形も考えら
れる。しかし、液圧成形の場合においては、圧力媒体で
ある液体の漏れを防止するために真空成形やブロー成形
と同様の問題点があり、簡便な方法とは考えられない。
In addition to the above-mentioned vacuum forming and blow molding, overnight pressure forming and rubber pressure forming are also conceivable as means for forming the superplastic metal plate material. However, in the case of hydraulic molding, there are problems similar to those of vacuum molding and blow molding in order to prevent leakage of liquid, which is a pressure medium, and it cannot be considered a simple method.

また、ゴムを圧力媒体としたゴム圧成形の場合には、冷
間加工であれば比較的問題が少ないが、超塑性材は超塑
性を発現する高温の下で加工するものであるので、ゴム
がその加工温度に耐えられないという欠点がある。
In addition, in the case of rubber compression molding using rubber as a pressure medium, there are relatively few problems if it is cold processed, but superplastic materials are processed at high temperatures where they develop superplasticity, so rubber The disadvantage is that it cannot withstand the processing temperature.

以上のようなことより、超塑性板材の簡便な成形方法の
開発が期待されている。
Based on the above, it is hoped that a simple method for forming superplastic plates will be developed.

C0発明の目的 本発明は上記の点に鑑み、超塑性金属板材を簡便に成形
する方法を提供することを目的とする。
C0 Object of the Invention In view of the above points, an object of the present invention is to provide a method for easily forming a superplastic metal plate material.

d9発明の構成 第1図(イ)のように形状を転写させるための金型1の
上に超塑性金属板材2を置き、その外周に任意の寸法を
有する円筒3を設置する。その円筒の中に粉粒体4を入
れ、超塑性を発現するI度とひずみ速度の下で加圧する
と粉粒体が圧力の伝達媒体となり、第1図(ロ)のよう
に超塑性金属板材2に金型1の形状を転写するものであ
る。この場合、粉粒体4が転写されるべき金型の形状に
柔軟性を有して変形するので、加圧用の工具5は金型1
の形状に加工しておく必要がなく、そのため金型加工に
おける簡易化を図ることができる。
d9 Construction of the Invention As shown in FIG. 1(A), a superplastic metal plate 2 is placed on a mold 1 for transferring a shape, and a cylinder 3 having arbitrary dimensions is placed around its outer periphery. When the powder 4 is placed in the cylinder and pressed under the I degree and strain rate that exhibits superplasticity, the powder becomes a pressure transmission medium, and as shown in Figure 1 (b), the superplastic metal The shape of the mold 1 is transferred onto the plate material 2. In this case, since the granular material 4 is flexibly deformed into the shape of the mold to which it is to be transferred, the pressurizing tool 5 is
There is no need to process the mold into the shape of the metal mold, which simplifies mold processing.

この場合、圧力の伝達媒体として用いる粉粒体に期待さ
れる性質は、次のようなものである。
In this case, the properties expected of the granular material used as the pressure transmission medium are as follows.

条件(1):圧力状態が静水圧に近いこと。Condition (1): The pressure state is close to hydrostatic pressure.

条件(2):加圧力が小さいこと。Condition (2): Pressure force is small.

条件(3)二見掛は密度が大きく、圧縮成形時のストロ
ークが短いこと。
Condition (3) The density of the second appearance is high and the stroke during compression molding is short.

条件(4):耐熱性があること。Condition (4): Be heat resistant.

条件(5):加圧することにより固まらないこと。Condition (5): Do not harden when pressurized.

条件(1)〜(5)を順に説明する。条件(1):圧力
状態が静水圧に近い程、圧力の伝達効率がよく、超塑性
金属板材の成形性が向上する。また、粉粒体と円筒との
間の摩擦が小さいければ、超塑性金属板に伝達される圧
力が増大し、加圧軸に垂直な方向の圧力分布が均一にな
る。粉粒体と円筒との間の摩擦を軽減させるためには、
いわゆる“片押し成形法“でなく、°゛両押し成形法“
を用いると効果的である。成形された超塑性金属板の表
面性状の点から判断すると、粉粒体の粒径は一般に細か
い方がよい。粒径が大きすぎると、超塑性金属板に粉粒
体が押し込まれ、板材に作用する圧力分布が不均一とな
り、表面性状が劣る。この傾向を緩和するために、粉粒
体と超塑性金属板材との間に金属製の箔もしくは薄板を
敷(と効果的である。条件(2):加圧装置の容量を軽
減させるためには、加圧力が小さくて済む粉粒体が望ま
しい。条件(3):粉粒体の見掛は密度の大きいものの
方が、圧縮時のストロークが短くて済み、また粉粒体の
使用量が少なくてよい。条件(4):超塑性発現温度に
粉粒体を加熱するので、その温度に耐え得るものでなけ
ればならない。条件(5):成形後に金型から取り出し
た時、粉粒体が固まっているとその粉粒体を再利用する
ことが困難であるので、粉粒体は固ま  ・らない方が
望ましい。
Conditions (1) to (5) will be explained in order. Condition (1): The closer the pressure state is to hydrostatic pressure, the better the pressure transmission efficiency and the better the formability of the superplastic metal plate material. Furthermore, if the friction between the powder and the cylinder is small, the pressure transmitted to the superplastic metal plate increases, and the pressure distribution in the direction perpendicular to the pressurizing axis becomes uniform. In order to reduce the friction between the powder and the cylinder,
It is not the so-called “single press molding method” but the “double press molding method”.
It is effective to use Judging from the surface quality of the formed superplastic metal plate, it is generally better for the particle size of the powder to be finer. If the particle size is too large, the powder particles will be forced into the superplastic metal plate, resulting in uneven pressure distribution acting on the plate material and poor surface quality. In order to alleviate this tendency, it is effective to place metal foil or a thin plate between the powder and the superplastic metal plate. Condition (2): To reduce the capacity of the pressurizing device. A powder or granule that requires a small pressing force is desirable.Condition (3): If the powder or granule has a higher apparent density, the stroke during compression will be shorter, and the amount of powder or granule used will be reduced. Condition (4): Since the powder or granule is heated to the temperature at which superplasticity occurs, it must be able to withstand that temperature.Condition (5): When taken out from the mold after molding, the powder or granule It is difficult to reuse the powder or granules if they are solidified, so it is preferable that the powder or granules do not solidify.

以上のような条件を極力満足するものを鋭意検討を重ね
て調査した結果、粒径が数μmから数百μm程度の黒鉛
粉末、金属粉末、セラミックス粉末などが有効であり、
これらの粉粒体を用いることにより擬静水圧の状態を簡
便に作り出すことができ、気体や液体を用いる従来から
の成形法に比べてはるかにフレキシビリティ−に富む簡
便な成形手段を提供するものであることが明らかとなっ
た。
As a result of extensive research into materials that satisfy the above conditions as much as possible, we found that graphite powder, metal powder, ceramic powder, etc. with a particle size of several μm to several hundred μm are effective.
By using these powders, a quasi-hydrostatic pressure state can be easily created, providing a simple molding method that is far more flexible than conventional molding methods that use gas or liquid. It became clear that.

f、実施例 実施例1 超塑性金属板としてZn ’、 22A1超塑性材を用
いtコ。
f. Examples Example 1 Zn', 22A1 superplastic material was used as the superplastic metal plate.

更に詳しく説明すると、アルゴン噴霧法により製造した
粒径が25μm以下の粉末を、380℃で30分加熱し
た後、氷水の中で急冷処理を施し、最後に真空乾燥した
。このようにして得られたZn −22AJ!超塑性粉
末を12.5gf使用し、46mmゝの金型を用いて5
5kgf / mm”の成形圧力で圧縮成形し、直径と
厚さが46+m++” X 1.5nnaの円板状の板
材を製造し、これを実施例用の材料とした。
To explain in more detail, a powder having a particle size of 25 μm or less produced by an argon spray method was heated at 380° C. for 30 minutes, then rapidly cooled in ice water, and finally dried in vacuum. Zn-22AJ thus obtained! Using 12.5 gf of superplastic powder and using a 46 mm mold,
Compression molding was performed at a molding pressure of 5 kgf/mm" to produce a disc-shaped plate material with a diameter and thickness of 46+m++" x 1.5nna, and this was used as a material for examples.

圧力媒体としては、粒度分布が+80メツシュ20%[
F、−80メツシュaO%以上(aoメツシュは175
μmに対応)である黒鉛粉末(日本黒鉛工業(株)PA
G−80)を約80gf使用した。この黒鉛粉末を第2
図のように充てんした。充てんした際の粉末の体積は約
100ciである。第2図に示したものを電気炉に入れ
てZn −22kt超塑性材の超塑性発現温度である2
50℃に加熱した後に取り出し、油圧式万能試験機を用
いて10tonfの加圧力(圧力に換算して6 kgf
 / wa’ )を作用させた。負荷時の一所要時間は
約1分30秒である。加圧後にZn−22Af超塑性材
を取り出すと、金型の形状を転写して第2図の破線で示
したように成形されており、また、黒鉛粉末は固まって
いなかった。
As a pressure medium, the particle size distribution is +80 mesh 20% [
F, -80 mesh aO% or more (ao mesh is 175
Graphite powder (Nippon Graphite Industries Co., Ltd. PA
G-80) was used at about 80 gf. This graphite powder is
Filled as shown in the figure. The volume of the powder when filled is approximately 100 ci. The material shown in Figure 2 is placed in an electric furnace and the superplasticity onset temperature of the Zn-22kt superplastic material is 2.
After heating to 50℃, take it out and use a hydraulic universal testing machine to apply a pressure of 10 tonf (converted to pressure: 6 kgf).
/wa') was applied. The required time under load is approximately 1 minute and 30 seconds. When the Zn-22Af superplastic material was taken out after being pressurized, it was found that the shape of the mold was transferred and molded as shown by the broken line in FIG. 2, and the graphite powder was not solidified.

実施例2 第3図のようにZn −22Aj!超塑性金属板の上に
実施例1よりも粒径の細かい黒鉛粉末(+15Gメツシ
ュ1%以下、−250メツシュア5〜90%;日本黒鉛
工業(株・)CB−150)を4〜5 gf (体積に
して約10ci)充てんし、その上層部に実施例1の黒
鉛粉末PAG−80を約70g f充てんした。ここで
、圧力媒体の全体を粒径の細かい黒鉛粉末にしなかった
のは、粒径の細かい方が成形品の表面性状が層れている
ものの粒径が小さいと一般に充てん時の見掛は密度が小
さく、その分だけ円筒の長さが余分に必要であゆ、また
圧縮時のストロークが長くなるので、これらの弊害を除
くためである。
Example 2 As shown in Fig. 3, Zn-22Aj! 4 to 5 gf of graphite powder (+15G mesh 1% or less, -250 mesh 5 to 90%; Nippon Graphite Industries Co., Ltd. CB-150) with a finer particle size than Example 1 was placed on the superplastic metal plate. The upper layer was filled with about 70 gf of graphite powder PAG-80 of Example 1. Here, the reason why we did not use graphite powder with a fine particle size as the entire pressure medium is that although the finer the particle size, the more layered the surface texture of the molded product, if the particle size is small, the apparent density at the time of filling is generally lower. This is to eliminate these disadvantages, since the cylinder is small and the length of the cylinder is required to be extra, and the stroke during compression becomes longer.

加圧力ば4 tonf (圧力に換算して2.4kgf
 / ff1m” )である。金型の形状は第3図のよ
うであり、使用した超塑性金属板、加熱温度および加圧
速度など3は実施例1と同様である。成形の結果、超塑
性板と接している黒鉛粉末CB −150はやや固まっ
たものの、上層部の黒鉛粉末PAG−80は固まること
なく、第3図の破線で示したように成形することができ
た。
Pressure force: 4 tonf (converted to pressure: 2.4 kgf)
/ ff1m"). The shape of the mold is as shown in Figure 3, and the superplastic metal plate used, heating temperature, pressing speed, etc. 3 are the same as in Example 1. As a result of molding, the superplastic Although the graphite powder CB-150 in contact with the plate hardened slightly, the graphite powder PAG-80 in the upper layer did not harden and could be molded as shown by the broken line in FIG.

実施例3 実施例2の場合と同様に粒径の異なる2種類の黒鉛粉末
を層状に充てんした。すなわち、Zn−22A1超!!
I性板の上に粒径が更に小さい黒鉛粉末(平均粒径10
μm;日本黒鉛工業(株)ACP)を約4g(体積にし
て約10d)充てんし、その上層部に実施例1と実施例
2で使用した黒鉛粉末(PAG −80)を充てんした
。加圧力は10tonf (圧力6kgf/mm”であ
る。金型の形状は第4図のようである。1吏用した超塑
性金属板、加熱温度および加圧速度などの条件は、実施
例1、実施例2に同じである。その結果、第4図の破線
で示したように金型の形状を転写して精度よく成形する
ことができた。
Example 3 As in Example 2, two types of graphite powders with different particle sizes were filled in a layered manner. In other words, Zn-22A1 super! !
Graphite powder with smaller particle size (average particle size 10
About 4 g (about 10 d in volume) of Nippon Graphite Industries Co., Ltd. ACP) was filled, and the graphite powder (PAG-80) used in Examples 1 and 2 was filled in the upper layer. The pressing force was 10 tonf (pressure 6 kgf/mm"). The shape of the mold was as shown in Fig. 4. Conditions such as the superplastic metal plate used, heating temperature, and pressing speed were those of Example 1. This is the same as in Example 2. As a result, the shape of the mold was transferred and molding could be carried out with high precision, as shown by the broken line in FIG.

実施例4 ′ 第5図のようにZn−22Af超塑性金属板の上に
粉砕鉄粉(粒度分布177〜149μm5%以下、14
9〜74μff150〜60%、74〜44μm20〜
30%、−44μm 15%以上;日本磁力選鉱(株)
 E’S −50)と黒鉛粉末(ACP)の混合粉末を
約300gf充てんした。
Example 4 ' As shown in Figure 5, crushed iron powder (particle size distribution 177-149 μm, 5% or less, 14
9~74μff150~60%, 74~44μm20~
30%, -44μm 15% or more; Japan Magnetic Separation Co., Ltd.
Approximately 300 gf of a mixed powder of E'S-50) and graphite powder (ACP) was filled.

この場合、黒鉛粉末は粉末潤滑剤として用いたものであ
り、配合比は鉄粉290gfに対して黒鉛粉末は約10
gfである。これは体積割合では、おおよそ80arl
s 3Gco(に相当する。加圧力は2Qtonf (
12kgf/III+12)である。金型の形状は第5
図のようである。使用した超塑性金属板、加熱温度およ
び加圧速度などは、実施例1〜3と同様である。成形の
結果、第5図の破線で示しtコように超塑性金属を成形
することができた。
In this case, the graphite powder was used as a powder lubricant, and the blending ratio was approximately 10 gf of graphite powder to 290 gf of iron powder.
gf. This is approximately 80 arl in terms of volume ratio.
s 3Gco (corresponds to.The pressurizing force is 2Qtonf (
12kgf/III+12). The shape of the mold is the fifth
As shown in the figure. The superplastic metal plate, heating temperature, pressing speed, etc. used were the same as in Examples 1 to 3. As a result of the forming, the superplastic metal could be formed as shown by the broken line in FIG.

実施例5 実施例4の場合において、金型の形状と加圧力だけを変
化させ、他の条件は実施例4とまったく同一とした。こ
の場合、金型は第3図のものを使用し、加圧力は10t
onf (6kgf / ma’ )とした。成形の結
果、第3図の破線のように成形することができた。
Example 5 In the case of Example 4, only the shape of the mold and the pressing force were changed, and the other conditions were completely the same as in Example 4. In this case, the mold shown in Figure 3 is used, and the pressing force is 10t.
onf (6 kgf/ma'). As a result of molding, it was possible to mold as shown by the broken line in FIG.

実施例6 圧力媒体として直径が0.5Mの鉛粒を770gf使用
した。金型の形状は第5図のものである。これ以外の条
件、すなわち使用した超塑性金属板、加熱温度および加
圧速度などは、・実施例1と同一である。成形の結果、
鉛粒が一部分やや固まる傾向にあるものの、第5図の破
線のように成形することが可能であった。
Example 6 770 gf of lead particles with a diameter of 0.5 M were used as the pressure medium. The shape of the mold is shown in FIG. Other conditions, such as the superplastic metal plate used, heating temperature, and pressing speed, were the same as in Example 1. As a result of molding,
Although some of the lead grains tended to harden a little, it was possible to mold them as shown by the broken lines in FIG.

実施例7 圧力媒体として平均粒径が85μm程度のA 120゜
粉末を約95gf使用した。この場合、第2図の金型を
使用し、加圧力は10tonf (6kgf / ll
lm2)とした。
Example 7 About 95 gf of A 120° powder with an average particle size of about 85 μm was used as the pressure medium. In this case, the mold shown in Fig. 2 is used, and the pressing force is 10 tonf (6 kgf/ll
lm2).

これ以外の成形条件(超塑性金属板、加熱温度、加圧速
度など)は、実施例1で詳述したものと同一である。成
形の結果、超塑性金属板を第2図の破線で示すように成
形することかで°きた。
The other molding conditions (superplastic metal plate, heating temperature, pressing speed, etc.) are the same as those detailed in Example 1. As a result of the forming, it was possible to form the superplastic metal plate as shown by the broken line in FIG.

実施例8 圧力媒体として高温用潤滑剤として使用されている窒化
硼素の粉末(−325メツシュ98%)を約20gf使
用した。充てん時の粉末の体積は約100cjである。
Example 8 About 20 gf of boron nitride powder (-325 mesh 98%), which is used as a high-temperature lubricant, was used as the pressure medium. The volume of the powder when filled is approximately 100cj.

金型の形状は第6図のようであり、加圧力は10ton
f (6kgf / mm2)である。これ以外の成形
条件は、これまでとまった(同一である。成形加工の後
において超塑性金属板を取り出すと、窒化硼素の粉末が
固まっていたにもかかわらず第6図の破線のように成形
することができ、成形体の表面性状は極めで優れていた
The shape of the mold is as shown in Figure 6, and the pressing force is 10 tons.
f (6 kgf/mm2). The other molding conditions were the same as before. When the superplastic metal plate was taken out after the molding process, although the boron nitride powder had solidified, it was molded as shown by the broken line in Figure 6. The surface quality of the molded product was extremely excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(イ)と(ロ)は本発明による成形方法の説明
図であり、(イ)は成形を行う前の状態、(ロ)は成形
後の状態の断面を示す。第2図は実施例1と実施例7に
おいて使用された装置と成形された板材の断面図、第3
図は実施例2と実施例5において使用された装置と成形
された板材の断面図、第4図は実施例3において使用さ
れた装置と成形された板材の断面図、第5図は実施例4
と実施例6において使用された装置と成形された板材の
断面図、第6図は実施例8において使用された装置と成
形された゛板材の断面図である。 1゛形状を転写させるための金型、2・超塑性金属板材
、3 円筒、4・粉粒体、5・加圧用工具。 第1図(イ)   第1図(ロ) 第2図   第3図 第4図 第6図 第5図
(A) and (B) of FIG. 1 are explanatory diagrams of the molding method according to the present invention, in which (A) shows a cross section before molding, and (B) shows a cross section after molding. Figure 2 is a cross-sectional view of the apparatus and molded plate material used in Examples 1 and 7;
The figure is a sectional view of the apparatus and molded plate material used in Examples 2 and 5, FIG. 4 is a sectional view of the apparatus and molded plate material used in Example 3, and FIG. 5 is a sectional view of the molded plate material used in Example 3. 4
FIG. 6 is a sectional view of the apparatus used in Example 6 and the plate material formed. FIG. 6 is a sectional view of the apparatus and the plate material formed in Example 8. 1. Mold for transferring the shape, 2. Superplastic metal plate, 3. Cylinder, 4. Powder, 5. Pressure tool. Figure 1 (a) Figure 1 (b) Figure 2 Figure 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】 1、超塑性金属板材を超塑性を発現する温度とひずみ速
度の下で成形するに際し、製品の形状を転写させるべき
ダイスのみを準備し、パンチに相当する圧力伝達媒体と
して粉粒体を用いて超塑性金属板材を加圧成形すること
を特徴とする超塑性材の成形方法。 2、特許請求の範囲第1項記載の成形方法において、粉
粒体と超塑性金属板材との間に金属性の箔もしくは薄板
を介在させることを特徴とする超塑性材の成形方法。
[Claims] 1. When forming a superplastic metal plate material at a temperature and strain rate that cause superplasticity, only a die to which the shape of the product is to be transferred is prepared and used as a pressure transmission medium equivalent to a punch. A method for forming a superplastic material, characterized by pressure forming a superplastic metal plate using powder or granules. 2. A method for molding a superplastic material according to claim 1, characterized in that a metallic foil or thin plate is interposed between the powder and the superplastic metal plate material.
JP59263454A 1984-12-12 1984-12-12 Formation of superplastic material by using granular body as pressure-transmitting medium Granted JPS61140328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263454A JPS61140328A (en) 1984-12-12 1984-12-12 Formation of superplastic material by using granular body as pressure-transmitting medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263454A JPS61140328A (en) 1984-12-12 1984-12-12 Formation of superplastic material by using granular body as pressure-transmitting medium

Publications (2)

Publication Number Publication Date
JPS61140328A true JPS61140328A (en) 1986-06-27
JPH0232047B2 JPH0232047B2 (en) 1990-07-18

Family

ID=17389734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263454A Granted JPS61140328A (en) 1984-12-12 1984-12-12 Formation of superplastic material by using granular body as pressure-transmitting medium

Country Status (1)

Country Link
JP (1) JPS61140328A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085068A (en) * 1991-01-16 1992-02-04 Extrude Hone Corporation Die forming metallic sheet materials
WO1993001902A1 (en) * 1991-07-23 1993-02-04 Extrude Hone Corporation Die forming metallic sheet materials
CN100376340C (en) * 2005-01-24 2008-03-26 燕山大学 Half-mould forming process for metal plate material
CN101837407A (en) * 2010-04-15 2010-09-22 重庆理工大学 Forming die by solid particle medium and radial thrust
FR2975313A1 (en) * 2011-05-19 2012-11-23 Peugeot Citroen Automobiles Sa Method for shaping e.g. mechanical parts, in automobile industry, involves applying pressure on blank to plastically deform blank until contact with die by solid particles, where particles are formed of powder and/or balls
CN103909132A (en) * 2014-04-04 2014-07-09 燕山大学 Reverse drawing method for soft die with peripheral auxiliary thrust
JP2015160242A (en) * 2014-02-28 2015-09-07 独立行政法人国立高等専門学校機構 Foil draw processing
JP2015213932A (en) * 2014-05-08 2015-12-03 新日鐵住金株式会社 Stretch flanging method and flanging device
CN105537360A (en) * 2015-12-25 2016-05-04 燕山大学 Forward-backward drawing and forming method for metal plate soft mould
CN112170608A (en) * 2020-09-10 2021-01-05 平高集团有限公司 Part deep drawing forming method and forming die

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869753A (en) * 1971-12-20 1973-09-21
JPS4879755A (en) * 1972-01-29 1973-10-25
JPS51132165A (en) * 1975-05-14 1976-11-17 Kumagaya Seisakushiyo Kk Method of bead for metal cylinder
JPS5238937A (en) * 1975-09-23 1977-03-25 Ricoh Co Ltd Liquid developer for electrostatic photography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869753A (en) * 1971-12-20 1973-09-21
JPS4879755A (en) * 1972-01-29 1973-10-25
JPS51132165A (en) * 1975-05-14 1976-11-17 Kumagaya Seisakushiyo Kk Method of bead for metal cylinder
JPS5238937A (en) * 1975-09-23 1977-03-25 Ricoh Co Ltd Liquid developer for electrostatic photography

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085068A (en) * 1991-01-16 1992-02-04 Extrude Hone Corporation Die forming metallic sheet materials
WO1993001902A1 (en) * 1991-07-23 1993-02-04 Extrude Hone Corporation Die forming metallic sheet materials
CN100376340C (en) * 2005-01-24 2008-03-26 燕山大学 Half-mould forming process for metal plate material
CN101837407A (en) * 2010-04-15 2010-09-22 重庆理工大学 Forming die by solid particle medium and radial thrust
FR2975313A1 (en) * 2011-05-19 2012-11-23 Peugeot Citroen Automobiles Sa Method for shaping e.g. mechanical parts, in automobile industry, involves applying pressure on blank to plastically deform blank until contact with die by solid particles, where particles are formed of powder and/or balls
JP2015160242A (en) * 2014-02-28 2015-09-07 独立行政法人国立高等専門学校機構 Foil draw processing
CN103909132A (en) * 2014-04-04 2014-07-09 燕山大学 Reverse drawing method for soft die with peripheral auxiliary thrust
JP2015213932A (en) * 2014-05-08 2015-12-03 新日鐵住金株式会社 Stretch flanging method and flanging device
CN105537360A (en) * 2015-12-25 2016-05-04 燕山大学 Forward-backward drawing and forming method for metal plate soft mould
CN112170608A (en) * 2020-09-10 2021-01-05 平高集团有限公司 Part deep drawing forming method and forming die

Also Published As

Publication number Publication date
JPH0232047B2 (en) 1990-07-18

Similar Documents

Publication Publication Date Title
US4539175A (en) Method of object consolidation employing graphite particulate
US4640711A (en) Method of object consolidation employing graphite particulate
JPH0130882B2 (en)
JPS61140328A (en) Formation of superplastic material by using granular body as pressure-transmitting medium
JP3497461B2 (en) Method for producing porous metal
US5246638A (en) Process and apparatus for electroconsolidation
CN110468308A (en) A kind of preparation method of low-cost and high-performance aluminum matrix composite billet
JP2529580B2 (en) Method and polymer material for molding article precursors into articles
JPH04168201A (en) Manufacture of ceramic reinforced al alloy composite material
Sutradhar et al. Cold forging of sintered iron-powder preforms
JPS63281809A (en) Method for press molding of heat resistant resin powder
US3741756A (en) Metal consolidation
US5623727A (en) Method for manufacturing powder metallurgical tooling
JPH0938750A (en) Porous die material having excellent heat exchangeability
US3472656A (en) Method of manufacturing articles from particulate metal masses
JP2640642B2 (en) Method of improving alloy material properties and processing apparatus and product thereof
JPS61190008A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
SU1678527A1 (en) Process for manufacturing hard alloy-based tools
US3135995A (en) Method of and apparatus for the generation of pressure inside an enclosed cavity
RU2151025C1 (en) Method of manufacturing hot-deformed articles from powder materials
JPS61281834A (en) Manufacture of extruding billet of aluminum alloy powder
UA146725U (en) METHOD OF MANUFACTURE OF DEFORMED COMPOSITE MATERIAL ON THE BASIS OF STEEL AND REFRACTORY COMPOUNDS
JPS63242497A (en) Rolling reduction compression method for high temperature fluid of material
JPS60116735A (en) Manufacture of fiber reinforced aluminum material
JPS5933086A (en) Production of composite roll

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term