JPH0284770A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0284770A
JPH0284770A JP23681688A JP23681688A JPH0284770A JP H0284770 A JPH0284770 A JP H0284770A JP 23681688 A JP23681688 A JP 23681688A JP 23681688 A JP23681688 A JP 23681688A JP H0284770 A JPH0284770 A JP H0284770A
Authority
JP
Japan
Prior art keywords
impurity
semiconductor device
mixing
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23681688A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23681688A priority Critical patent/JPH0284770A/en
Publication of JPH0284770A publication Critical patent/JPH0284770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the cost of a semiconductor device using a complementary high-withstand voltage TET by reducing the number of photo processes in an impurity mixing process by a method wherein, after the gate electrodes of the TET are formed, a process for mixing an impurity having one of conductivity types in the whole surface of a substrate is provided. CONSTITUTION:In the case of manufacture of a semiconductor device; wherein semiconductor thin films 102 and 103, gate insulating films 104 and 105 and gate electrodes 106 and 107 are provided on a substrate 101 with a surface which is at least insulated and a thin film transistor consisting of channel regions 120 and 120, offset regions 116 to 119 and source and drain regions 112 to 115, which are provided in the films 102 and 103, is formed into a complementary transistor; a process for mixing an impurity having one of conductivity types in the whole surface of the substrate is provided after the formation of the electrodes 106 and 107. For example, after the electrodes 106 and 107 are formed, an ion-implantation is performed in the whole surface to form P<-> regions. In case the films 102 and 103 consist of silicon, B and the like are used as an impurity to mix and a dose is set in 10<12>cm<-2> or thereabouts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高耐圧の薄膜トランジスタ(以下TF’Tと示
す)を相補型に用いた半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device using complementary high voltage thin film transistors (hereinafter referred to as TF'T).

[従来の技術] 高耐圧TFTは、S、5EKI  et  al。[Conventional technology] High voltage TFTs are S, 5EKI etc.

IEEE  ELECTRON  DEVICELET
TER8,VOL、EDL−8,No、9゜pp、42
5〜427,1987.  等に示されるように、通常
のTPTと異なり、オフセット領域を持っている。
IEEE ELECTRON DEVICELET
TER8, VOL, EDL-8, No, 9°pp, 42
5-427, 1987. As shown in et al., unlike normal TPT, it has an offset area.

従来の、高耐圧TPTを相補型に用いた半導体装置の製
造方法における不純物混入工程は、第2図(a)〜(e
)に示すごとくフォト工程が4回必要であった。同図(
a)はPch  TFTのオフセット領域を形成するた
め薄いp型の領域(p−) を形成する工程における半
導体装置の断面図であり、101は絶縁基板、102及
び103は半導体薄膜、104及び105はゲート絶縁
膜、106及び107はゲート電極、201は不純物の
混入を防止するマスクである。この状態で不純物をイオ
ン注入法等により混入し、p−領域を形成する。同図(
b)は、Pch  TFTのソース、ドレイン領域を形
成するため、温いp型の領域(p“)を形成する工程に
おける半導体装置の断面図であり、202は不純物の混
入を防止するマスクである。同図(C)は、Nch  
TFTのオフセット領域を形成するため薄いn型の領域
(n−)を形成する工程における半導体装置の断面図で
あり、203は不純物の混入を防止するマスクである。
The impurity mixing step in the conventional manufacturing method of a semiconductor device using complementary high-voltage TPT is shown in FIGS. 2(a) to 2(e).
), the photo process was required four times. Same figure (
a) is a cross-sectional view of a semiconductor device in the step of forming a thin p-type region (p-) to form an offset region of a Pch TFT, in which 101 is an insulating substrate, 102 and 103 are semiconductor thin films, and 104 and 105 are Gate insulating films 106 and 107 are gate electrodes, and 201 is a mask for preventing the incorporation of impurities. In this state, impurities are mixed in by ion implantation or the like to form a p- region. Same figure (
b) is a cross-sectional view of the semiconductor device in the step of forming a warm p-type region (p'') to form the source and drain regions of a Pch TFT, and 202 is a mask for preventing the incorporation of impurities. In the same figure (C), Nch
This is a cross-sectional view of the semiconductor device in the step of forming a thin n-type region (n-) to form an offset region of a TFT, and 203 is a mask for preventing the incorporation of impurities.

同図(d)は、Nch  TFTのソース、ドレイン領
域を形成するため濃いn型の領域(nl)を形成する工
程における半導体装置の断面図であり、204は不純物
の混入を防止するマスクである。同図(e)は、マスク
203及び204を剥離し、不純物混入工程終了時の半
導体装置の断面図である。
Figure (d) is a cross-sectional view of the semiconductor device in the step of forming a dense n-type region (nl) to form the source and drain regions of the Nch TFT, and 204 is a mask for preventing the incorporation of impurities. . FIG. 3(e) is a cross-sectional view of the semiconductor device after the impurity mixing process is completed with the masks 203 and 204 removed.

[発明が解決しようとする課題] しかし、従来の相補型高耐圧TPTを用いた半導体装置
の製造方法には、不純物混入工程におけるフォト工程が
4回と多く、半導体装置が高コストなものとなるという
課題があった。そこで本発明では、不純物混入工程にお
けるフォト工程数を低減することによって、半導体装置
を低コスト化することを目的とするものである。
[Problems to be Solved by the Invention] However, in the conventional manufacturing method of a semiconductor device using complementary high-voltage TPT, there are as many as four photo steps in the impurity mixing step, making the semiconductor device expensive. There was a problem. Therefore, an object of the present invention is to reduce the cost of a semiconductor device by reducing the number of photo steps in the impurity mixing step.

[課題を解決するための手段] 以上の課題を解決するため、本発明の半導体装置の製造
方法は、TPTのゲート電極形成後に、基板全面に一方
の導電型を有する不純物を混入する工程を設けたことを
特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a semiconductor device of the present invention includes a step of mixing an impurity having one conductivity type into the entire surface of the substrate after forming the gate electrode of the TPT. It is characterized by:

[実施例] 第1図に、本発明の実施例における相補型高耐圧TPT
を用いた半導体装置の不純物混入工程における、製造工
程順の断面図を示す。同図(a)は、Pch  TFT
のオフセット領域を形成するため、基板全面にp型の導
電型を有する不純物を混入する工程時の断面図である。
[Example] FIG. 1 shows a complementary high voltage TPT in an example of the present invention.
1A and 1B are cross-sectional views in the order of manufacturing steps in an impurity mixing step of a semiconductor device using the method. In the same figure (a), Pch TFT
3 is a cross-sectional view during a step of mixing an impurity having p-type conductivity into the entire surface of the substrate in order to form an offset region. FIG.

同図に於て、101は少なくとも表面が絶縁された基板
、102及び103は半導体薄膜、104及び105は
ゲート絶縁膜、106及び107はゲート電極である。
In the figure, 101 is a substrate whose surface is insulated at least, 102 and 103 are semiconductor thin films, 104 and 105 are gate insulating films, and 106 and 107 are gate electrodes.

基板101上に半導体薄膜102及び103を形成し、
ゲート絶縁膜104及び105、ゲート電極106及び
107を形成する。そして、イオン注入法等でp−領域
を形成する。半導体薄膜102及び103がSlの場合
、混入する不純物はB等を用い、イオン注入法の場合、
ドーズ量は1012c m−2程度である。同図(b)
はPchTFTのソース、ドレイン領域を形成するため
、選択的にp型の導電型を有する不純物を混入する工程
時の断面図であり、108及び109は不純物の混入を
阻止するマスク材料である。イオン注入法で不純物の混
入を行う場合、108及び109にはフォトレジスト等
が用いられ、ドーズ量10 ”c m−2程度の不純物
濃度でp″″″領域成される。同図(C)は、Nch 
 TFTのオフセット領域を形成するため、選択的にn
型の導電型を有する不純物を混入する工程時の断面図で
あり、110はマスク材料である。半導体薄膜102及
び103にSiを用いる場合、混入する不純物にはP等
が用いられる。Pch  TFTのオフセット領域と同
程度のオーダーの濃度で不純物の混入を行い、n−領域
を形成する。同図(d)はNch  TFTのソース、
ドレイン領域を形成するため選択的にn型の導電型を有
する不純物を混入する工程時の断面図であり、111は
マスク材料である。Pch  TFTのソース、 ドレ
イン領域と同程度のオーダーの濃度で不純物の混入を行
い、n゛領域形成する。同図(e)は、マスク材料剥離
工程終了時の断面図であり、以上の工程で、Pch  
TFTのソース、ドレイン領域112及び113、オフ
セット領域116及び117、チャネル領域120、N
ch  TFTのソース、ドレイン領域114及び11
5、オフセット領域118及び119、チャネル領域1
21が形成され、相補型高耐圧TPTが構成されている
ことがわかる。本実施例の不純物混入工程における、マ
スク材料を形成するフォト工程は3工程と、従来例に゛
比べ1工程短縮される。
Forming semiconductor thin films 102 and 103 on a substrate 101,
Gate insulating films 104 and 105 and gate electrodes 106 and 107 are formed. Then, a p- region is formed by ion implantation or the like. When the semiconductor thin films 102 and 103 are made of Sl, B or the like is used as the impurity, and in the case of ion implantation,
The dose amount is about 1012 cm-2. Same figure (b)
1 is a cross-sectional view at the time of selectively mixing impurities having a p-type conductivity type in order to form source and drain regions of a PchTFT, and 108 and 109 are mask materials for preventing the mixing of impurities. When impurities are mixed by ion implantation, a photoresist or the like is used for 108 and 109, and a p'''' region is formed with an impurity concentration of about 10 cm.sup.-2. In the same figure (C), Nch
To form the offset region of the TFT, selective n
It is a cross-sectional view at the time of mixing an impurity having a conductivity type of the mold, and 110 is a mask material. When Si is used for the semiconductor thin films 102 and 103, P or the like is used as the impurity to be mixed. Impurities are mixed in at a concentration on the same order of magnitude as the offset region of the Pch TFT to form an n- region. Figure (d) shows the source of the Nch TFT;
This is a cross-sectional view at the time of selectively mixing an impurity having an n-type conductivity type in order to form a drain region, and 111 is a mask material. Impurities are mixed in at a concentration on the same order as that of the source and drain regions of the Pch TFT to form n' regions. Figure (e) is a cross-sectional view at the end of the mask material peeling process, and in the above process, Pch
TFT source and drain regions 112 and 113, offset regions 116 and 117, channel region 120, N
ch TFT source and drain regions 114 and 11
5. Offset regions 118 and 119, channel region 1
It can be seen that 21 is formed to constitute a complementary high voltage TPT. In the impurity mixing step of this embodiment, the number of photo steps for forming the mask material is three, which is one step shorter than in the conventional example.

第3図は、本発明のもう一つの実施例における、相補型
高耐圧TPTを用いた半導体装置の不純物混入工程にお
ける、製造工程順の断面図である。
FIG. 3 is a cross-sectional view of the manufacturing process order in the impurity mixing process of a semiconductor device using a complementary high voltage TPT in another embodiment of the present invention.

同図(a)は、Pch  TFTのソース、ドレイン領
域を形成するため、選択的にp型の導電型を有する不純
物を混入する工程時の断面図であり、第1図と同一の記
号は第1図と同一のものを表す。
FIG. 1(a) is a cross-sectional view during the process of selectively mixing impurities with p-type conductivity to form the source and drain regions of a Pch TFT, and the same symbols as in FIG. Represents the same thing as Figure 1.

301及び302はマスク材料である。同図(b)は、
Pch  TFTのオフセット領域を形成するため、基
板全面にp型の導電型を有する不純物を混入する工程時
の断面図である。p1領域を形成後、全面に不純物の混
入を行いp−領域を形成する。同図(C)は、Nch 
 TFTのオフセット領域を形成するため、選択的にn
型の導電型を有する不純物を混入する工程時の断面図で
あり、303はマスク材料である。同図(d)は、Nc
hTFTのソース、ドレイン領域を形成するため、選択
的にn型の導電型を有する不純物を混入する工程時の断
面図であり、304はマスク材料である。同図(e)は
、マスク材料剥離工程終了時の断面図である。以上の工
程により、相補型高耐圧TPTが構成される。本実施例
におけるフォト工程も3工程であり、従来例に比べ1工
程短縮される。
301 and 302 are mask materials. The figure (b) is
FIG. 4 is a cross-sectional view during a step of mixing an impurity having p-type conductivity into the entire surface of the substrate in order to form an offset region of a Pch TFT. After forming the p1 region, impurities are mixed into the entire surface to form a p- region. In the same figure (C), Nch
To form the offset region of the TFT, selective n
It is a cross-sectional view at the time of mixing an impurity having a conductivity type of the mold, and 303 is a mask material. In the same figure (d), Nc
This is a cross-sectional view during the step of selectively mixing impurities with n-type conductivity to form the source and drain regions of the hTFT, and 304 is a mask material. FIG. 3(e) is a cross-sectional view at the end of the mask material peeling process. Through the above steps, a complementary high voltage TPT is constructed. The photo process in this embodiment also requires three steps, which is one step shorter than in the conventional example.

以上述べたごとく、相補型高耐圧TPTを用いた半導体
装置の不純物混入工程において、基板全面に不純物を混
入する工程を設けたことにより、フォト工程が短縮され
る。以上の実施例は、基板全面にp型の導電型を有する
不純物を混入している例であるが、もちろん、基板全面
にn型の導電型を有する不純物を混入する工程をとって
もよい。
As described above, in the impurity mixing process of a semiconductor device using a complementary high breakdown voltage TPT, the photo process can be shortened by providing the process of mixing impurities into the entire surface of the substrate. The above embodiment is an example in which an impurity having a p-type conductivity type is mixed into the entire surface of the substrate, but of course a step may be taken in which an impurity having an n-type conductivity type is mixed into the entire surface of the substrate.

また以上の実施例は、ゲート電極の両側にオフセット領
域を持つTPTを用いた例であるが、ゲート電極の片側
のみオフセット領域を持つTPTを用いる場合において
も、本発明を適用すればよい。
Furthermore, although the above embodiments are examples in which a TPT having offset regions on both sides of the gate electrode is used, the present invention may also be applied to a case where a TPT having an offset region on only one side of the gate electrode is used.

また、本発明の半導体装置の製造方法を用いて、同時に
、通常のオフセット領域の無いTPTも形成できるため
、相補型で、通常TPT、高耐圧TPTの混在した半導
体装置が形成できる。相補型高耐圧TPTを用いて、エ
レクトロルミネッセンスや圧電素子の駆動回路等が形成
でき、本発明の応用分野は広い。
Further, since a normal TPT without an offset region can be formed at the same time by using the semiconductor device manufacturing method of the present invention, a complementary semiconductor device including a normal TPT and a high breakdown voltage TPT can be formed. Complementary high-voltage TPTs can be used to form driving circuits for electroluminescence and piezoelectric elements, and the present invention has a wide range of applications.

[発明の効果] 以上述べたように本発明によれば、相補型高耐圧TPT
を用いた半導体装置の製造方法において基板全面に不純
物を混入する工程を設けることにより、製造工程数が低
減され、低コストの高耐圧半導体装置が実現される。ま
た本発明は、一般の高電圧を使用する回路等を含む半導
体装置にも適用できる。
[Effects of the Invention] As described above, according to the present invention, complementary high voltage TPT
By providing a step of mixing impurities into the entire surface of the substrate in a method of manufacturing a semiconductor device using the method, the number of manufacturing steps is reduced, and a low-cost, high-voltage semiconductor device can be realized. The present invention can also be applied to semiconductor devices including circuits that use general high voltage.

圧TFTを用いた半導体装置の不純物混入工程における
、製造工程順の断面図。同図(a)は基板全面にp型の
導電型を有する不純物を混入する工程時の断面図。(b
)は選択的にp型の導電型を有する不純物を混入する工
程時の断面図。(C)は選択的にn型の導電型を有する
不純物を混入する工程時の断面図。(d)は選択的にn
型の導電型を有する不純物を混入する工程時の断面図。
3A and 3B are cross-sectional views in the order of manufacturing steps in an impurity mixing step of a semiconductor device using a pressure TFT. FIG. 6(a) is a cross-sectional view during the step of mixing an impurity having p-type conductivity into the entire surface of the substrate. (b
) is a cross-sectional view during the step of selectively mixing impurities with p-type conductivity. (C) is a cross-sectional view during a step of selectively mixing an impurity having an n-type conductivity type. (d) is selectively n
FIG. 3 is a cross-sectional view of a step of mixing an impurity having a conductivity type.

(た半導体装置の不純物混入工程における、製造工相補
型高耐圧TPTを用いた半導体装置の不純物混入工程に
おける、製造工程順の断面図。
(Cross-sectional views in the order of manufacturing steps in the impurity mixing step of a semiconductor device using a complementary high-voltage TPT in the impurity mixing step of a semiconductor device.

101・・・少なくとも表面が絶縁された基板102.
103・・・半導体Wim 104.105・・・ゲート絶縁膜 106.107・・・ゲート電極 108〜111・・・マスク材料 112〜115・・・ソース、ドレイン領域116〜1
19・・・オフセット領域 120.121・・・チャネル領域 以上 出願人 セイコーエプソン株式会社 代理人 弁理士−上柳雅誉(他1名) ↓ ↓ ↓ ↓ ↓ 番 ↓I/1 (a) 01    ・・・少なくとも表面が絶縁された基板0
2.103・・・半導体薄膜 04.105・・・ゲート謎号す漠 06.107・・・ゲート電極 08〜111・・・マスク材料 12〜115・・・ソース・トレイン領域16〜119
・・・オフセット領域 20.121 ・・・チャネル領域 (a) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓I/1 (b) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓I/1 第2図 (d) (d) (e) 第2図 (a) 第3図 ↓I/1 ↓l/1 ↓I71
101... A substrate 102 whose surface is insulated at least.
103...Semiconductor Wim 104.105...Gate insulating film 106.107...Gate electrodes 108-111...Mask material 112-115...Source and drain regions 116-1
19...Offset area 120.121...Channel area and above Applicant Seiko Epson Co., Ltd. agent Patent attorney - Masayoshi Kamiyanagi (1 other person) ↓ ↓ ↓ ↓ ↓ No.↓I/1 (a) 01... Substrate 0 whose surface is insulated at least
2.103...Semiconductor thin film 04.105...Gate mystery number 06.107...Gate electrode 08-111...Mask material 12-115...Source train region 16-119
...Offset region 20.121 ...Channel region (a) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓I/1 (b) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓I/1 Figure 2 (d) (d) (e) Figure 2 (a) Figure 3 ↓I/1 ↓l/1 ↓I71

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面が絶縁された基板上に半導体薄膜、ゲー
ト絶縁膜、ゲート電極を設け、前記半導体薄膜中にチャ
ネル領域、オフセット領域、ソース、ドレイン領域を設
けて成る薄膜トランジスタを、相補型に形成した半導体
装置の製造方法において、ゲート電極形成後に、基板全
面に一方の導電型を有する不純物を混入する工程を設け
たことを特徴とする半導体装置の製造方法。
A semiconductor device in which a semiconductor thin film, a gate insulating film, and a gate electrode are provided on a substrate whose surface is insulated at least, and a thin film transistor is formed in a complementary manner by providing a channel region, an offset region, a source, and a drain region in the semiconductor thin film. A method for manufacturing a semiconductor device, comprising a step of mixing an impurity having one conductivity type into the entire surface of the substrate after forming the gate electrode.
JP23681688A 1988-09-21 1988-09-21 Manufacture of semiconductor device Pending JPH0284770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23681688A JPH0284770A (en) 1988-09-21 1988-09-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23681688A JPH0284770A (en) 1988-09-21 1988-09-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0284770A true JPH0284770A (en) 1990-03-26

Family

ID=17006206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23681688A Pending JPH0284770A (en) 1988-09-21 1988-09-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0284770A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241466A (en) * 1991-01-16 1992-08-28 Casio Comput Co Ltd Field effect type transistor
JPH07162011A (en) * 1993-10-26 1995-06-23 Internatl Business Mach Corp <Ibm> Method for forming circuit having radiation resistance
US6388291B1 (en) 1994-04-29 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit and method for forming the same
US6475839B2 (en) 1993-11-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of TFT device by backside laser irradiation
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
US6777763B1 (en) 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6798394B1 (en) 1994-10-07 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Active matrix panel
US8193533B2 (en) 1997-02-24 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device having thin film transistors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241466A (en) * 1991-01-16 1992-08-28 Casio Comput Co Ltd Field effect type transistor
US6777763B1 (en) 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7166503B2 (en) 1993-10-01 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a TFT with laser irradiation
JPH07162011A (en) * 1993-10-26 1995-06-23 Internatl Business Mach Corp <Ibm> Method for forming circuit having radiation resistance
US6475839B2 (en) 1993-11-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of TFT device by backside laser irradiation
US6617612B2 (en) * 1993-11-05 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a semiconductor integrated circuit
US6388291B1 (en) 1994-04-29 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit and method for forming the same
US6798394B1 (en) 1994-10-07 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Active matrix panel
US7348971B2 (en) 1994-10-07 2008-03-25 Semiconductor Energy Laboratory Co., Ltd. Active matrix panel
US7864169B2 (en) 1994-10-07 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Active matrix panel
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
US8193533B2 (en) 1997-02-24 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device having thin film transistors

Similar Documents

Publication Publication Date Title
JPH0284770A (en) Manufacture of semiconductor device
JPH02264464A (en) Manufacture of semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0290683A (en) Thin film transistor and manufacture thereof
JPH0272661A (en) Manufacture of semiconductor device
JPH0342868A (en) C-mos thin film transistor device and manufacture thereof
JP3252557B2 (en) Method for manufacturing semiconductor device having well-in-well structure
JPH06268162A (en) Semiconductor device and its manufacture
JPH05235346A (en) Semiconductor device and manufacture thereof
JPH11121394A (en) Method of manufacturing semiconductor device
JP3064445B2 (en) Method of manufacturing complementary semiconductor device
JPH03155156A (en) Manufacture of semiconductor device
KR100291193B1 (en) Method for manufacturing transistor
KR930008853B1 (en) Manufacturing method of semiconductor apparatus
JPS63252461A (en) Manufacture of cmos type semiconductor device
JPH0267755A (en) Semiconductor device
JPH01138745A (en) Semiconductor device
JP2004172350A (en) Semiconductor device and its manufacturing method
JPS61150363A (en) Manufacture of semiconductor device
JPH03257846A (en) Manufacture of semiconductor device
JPH03155164A (en) Semiconductor device
JPH04139766A (en) Vertical type mos field effect transistor and its manufacture
JPH02196461A (en) Manufacture of semiconductor device
JPH01196860A (en) Semiconductor device
JPH0435023A (en) Manufacture of semiconductor device