JPH028335A - 酸化物超伝導線材製造用シース - Google Patents

酸化物超伝導線材製造用シース

Info

Publication number
JPH028335A
JPH028335A JP63157992A JP15799288A JPH028335A JP H028335 A JPH028335 A JP H028335A JP 63157992 A JP63157992 A JP 63157992A JP 15799288 A JP15799288 A JP 15799288A JP H028335 A JPH028335 A JP H028335A
Authority
JP
Japan
Prior art keywords
sheath
alloy
pipe
wire
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63157992A
Other languages
English (en)
Inventor
Hiroshi Maeda
弘 前田
Tadashi Inoue
井上 廉
Hisashi Sekine
関根 久
Hiroichi Yamamoto
博一 山本
Kazutaka Mori
一剛 森
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Original Assignee
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Research Institute for Metals filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63157992A priority Critical patent/JPH028335A/ja
Publication of JPH028335A publication Critical patent/JPH028335A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リニアモーターカー、超伝導推進船、核磁気
共鳴断層撮影装置等の超伝導コイルに適用される酸化物
超伝導線材の製造に用いられるシースに関する。
〔従来の技術〕
酸化物超伝導体の線材化に関しては未だ確立された製造
法はない。実用化されているNb3Snなどの金属間化
合物では、 Cu−Sn合金製のパイプにNbを充填し
、延伸加工した後に熱処理を施してNbB Snを合成
する方法が知られている。
〔発明が解決しようとする課題〕
高い臨界温度を有する酸化物超伝導体としては−fpI
lえばに2NiF4構造を有する(LaBa)2Cu0
4や酸素欠損ペロプスカイト型の(RE)BazCu3
0.−δ(RE:希土類元素)などが知られている。T
cが90Ki越える(RE)Ba2Cu307−.5で
酸素が7−δと示されるのは、この酸化物では温度など
によシ官有する酸素量が異なることを示している。超伝
導体ではδ〉α1であるが、焼結に必要な温度900℃
以上ではδ≧α9であると報告されている。この物質が
超伝導となるには、焼結稜炉冷してrR素を含有させ、
δさα1とすることが必要でめる。
超伝導物質の応用には、ゼロ抵抗や完全反磁性を利用し
た電力貯蔵、送電、リニアモーターカー、電磁推進船な
どがめけられるが、これらに適用するには、超伝導体の
線材化が必須であシ、上記の高い臨界温度を有する酸化
物超伝導体については未だ実用に供される線材加工法は
確立されていない。
線材化の一方法としては、銀(Ag)  などのパイプ
中に酸化物超伝導体の粉末や焼結体を充填し、延伸加工
後焼結する方法が考えられる。しかし、先に述べたよう
にこの酸化物は高温では酸素を放出し、放出された酸素
はAgパイプを拡散して線材の外に逃げてしまう。降温
時には、Ag  における酸素の拡散係数が小さくなる
ため、パイプ内の酸化物に酸素が充分供給されず、短時
間のアニールでは超伝導体とならないという問題点があ
った。これを解決するにはAgシースの厚みを薄くすれ
ばよいがAgシース単独で厚みを薄くしていくと延伸加
工中に亀裂が発生するためうまく加工できないという問
題点があった。
本発明は上記技術水準に鑑み、従来技術におけるような
問題点のない酸化物超伝導線材製造用シースを提供しよ
うとするものである。
〔課題を解決するための手段〕
本発明者らは、Agと他の金属との合金でAgと同等お
るいはそれ以上の融点を有し、またAgよりも硬度の尚
い合金について検討した結果、1〜10 atm.%の
Mn f加えたAg合金がAgよシも融点が高く、かつ
硬度も増加し、容易に延伸加工できることを見出し、更
に該合金パイプにCu p被覆することにより該合金の
厚さを薄くしうろことを見出した。
本発明は上記知見に基づいて完成されたものでおって、 (1)  1〜10 atm.%のMn ?:金含有る
Ag合金製パイプよシなる酸化物超伝導線材製造用シー
ス 及び (2)1〜10 atm.%のMnを官有するAg合金
製パイプの外周をCuパイプで被覆してなる酸化物超伝
導線材製造用シース でおる。
〔作 用〕
1 ”−10atm6%のMn f含有するAg合金は
Agと同等あるいはそれ以上の融点を有し、またAgよ
シも硬度の高い合金であシ、かつ延伸加工が容易にでき
るので、酸化物超伝導線材製造用シースとしてAgシー
スよシも肉厚が薄いものを使用することができる。この
ため延伸加工が更に容易となるばかシでなく、酸化物超
伝導体の酸素欠損の回復が容易である。
また1〜10 atm.%のMnを含有するAg合金は
硬度が高いのでCuとの複合化が容易でメへI Sl 
0 atm.%のMnを含有するAg合金製ノくイブの
外周にCuパイプを被覆したものは、延伸加工時のシー
スの強度がCuで補われるので1〜I D atm.%
のMnを含有するAg合金単独のシースよりも、その部
分をよシー層薄くすることができ、そのため酸化物超伝
導体の酸素欠損の回復が一層容易となる。
本発明において使用するAg合金のMnの菫ヲ1〜10
 atm.%とじたのは、j atm.チ未満では添加
効果がな(,10atm.%を越えると硬度が高くなり
すぎ、延伸加工に適さなくなるからでめる。
本発明のシースは、これに酸化物超伝導粉末を充填して
延伸加工して酸化物超伝導線材を製造する方法ならば、
如何なる方法においても使用し得るが、延伸加工する際
に断面圧縮率(初期断面&So/力U工後の断面積S)
が2へ50となる毎に100〜300℃の中間焼鈍を加
える延伸加工法(該方法は本出願と同日付で、“酸化物
超伝導線材の製造法”なるタイトルで出願した)のシー
スとして使用するのに特に適している。
〔実施例1〕 粉末混合法によって得たYBa2C’u307−δ粉末
を外径10m、内径&5mのMn 5 atm. % 
−Ag合金製パイプに充填し、冷間加工を施して外径を
07箇の単芯線とした。この線材を66本束ね、外径6
wm、内径4.5■のMn 5 atm.%−Ag合金
製パイプに入れ、断面縮小率が10となる毎に150℃
、1時間の中間焼鈍を刃口えた冷間加工を施し、外径1
17mとした。この多芯線7本を再び束ね、外径2.5
III11内径1.9−のMn −5atm.チーAg
合金製パイプに入れ、断面縮小率が10となった時に先
と同様の中間焼鈍を加えた冷間加工によル外径をα7m
とし、内部に252本の酸化物線を含む多芯線を作製し
た。その結果、線材の破断もなく良好な酸化物超伝導多
芯線材を得た。
これに対し、シースの肉厚を薄くするために、初めから
外径5.2)111%内径4.5露の銀製シースを使用
して上記と同様に延伸した場合、線材の外径が2.5m
になった時点で線材が破断した。
〔実施例2〕 粉末混合法によって得たYBa2 Cu30?−δ粉末
を外径10m、内径&5■のMn 5 atm. % 
−Ag合金製パイプに充填し、冷間加工を施して外径を
0.7ggの単芯線とした。この単芯線36本を束ね、
外径6■、内径52■のCuパイプと外径5、2 ta
 b内径4,5■のMn 5 atm.%−Ag 合金
パイプの2層からなるパイプに入れ、断面縮小率が10
となる毎に中間焼鈍を加えた冷間加工を行い、外径をα
7■とし、 Cuを硝酸で除去し外径α6■とじた。こ
の多芯線7本を再び束ね、外径五〇1111% 内径2
.4mの銅パイプと外径2.4諺、内径1.8WのMn
 5 atm. % −Ag合金製パイプの2層からな
るパイプに入れ、断面縮小率が10となった時に先と同
様の中間焼鈍を加えた冷間加工により外径をα7■とし
、Cuシースを再び硝酸で除去し、外径α58■で内部
に252本の酸化物線を含む多芯線を作製した。その結
果、線材の破断もなく良好な酸化物多芯線材を得た。
実施例1と実施?l12とを比較すると明らかなように
、実施例2で使用したシースを使用すると実施例1で使
用したシースの場合よシAg合金の肉厚の薄いものが得
られる。
〔実験例〕
Mn−Ag合金のマンガン組成をα5,1,10゜15
 atm.%とじて、実施例1及び2と同様の加工を行
った。その結果15 atm.%では単芯線36本に線
材は破断し、加工不能となった。他の6mは実施例1及
び2と同様に加工が可能でおった。これら3種の加工時
の硬度の変化を調べるとα5 atm.%では純銀とほ
ぼ同じでらり、添加の効果が確認されなかった。
〔発明の効果〕
本発明によれば、酸化物超伝導線材を製造するに適した
シースが提供され、従来よシも細い単芯線、多芯線を得
ることができる0

Claims (2)

    【特許請求の範囲】
  1. (1)1〜10atm.%のMnを含有するAg合金製
    パイプよりなることを特徴とする酸化物超伝導線材製造
    用シース。
  2. (2)1〜10atm.%のMnを含有するAg合金製
    パイプの外周をCuパイプで被覆してなることを特徴と
    する酸化物超伝導線材製造用シース。
JP63157992A 1988-06-28 1988-06-28 酸化物超伝導線材製造用シース Pending JPH028335A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157992A JPH028335A (ja) 1988-06-28 1988-06-28 酸化物超伝導線材製造用シース

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157992A JPH028335A (ja) 1988-06-28 1988-06-28 酸化物超伝導線材製造用シース

Publications (1)

Publication Number Publication Date
JPH028335A true JPH028335A (ja) 1990-01-11

Family

ID=15661877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157992A Pending JPH028335A (ja) 1988-06-28 1988-06-28 酸化物超伝導線材製造用シース

Country Status (1)

Country Link
JP (1) JPH028335A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014961A1 (en) * 1996-09-23 1998-04-09 The Regents Of The University Of California High temperature superconducting composite conductor and a method for manufacture of same
US6469253B1 (en) 1995-10-17 2002-10-22 Sumitomo Electric Industries, Ltd Oxide superconducting wire with stabilizing metal have none noble component
JP2003086031A (ja) * 2001-09-07 2003-03-20 Tokuriki Honten Co Ltd 超電導材用シース材およびその製造方法並びに超電導線材
EP1719556A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Catalyst structure and method for producing carbon nanotube using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469253B1 (en) 1995-10-17 2002-10-22 Sumitomo Electric Industries, Ltd Oxide superconducting wire with stabilizing metal have none noble component
WO1998014961A1 (en) * 1996-09-23 1998-04-09 The Regents Of The University Of California High temperature superconducting composite conductor and a method for manufacture of same
JP2003086031A (ja) * 2001-09-07 2003-03-20 Tokuriki Honten Co Ltd 超電導材用シース材およびその製造方法並びに超電導線材
EP1719556A1 (en) * 2004-02-27 2006-11-08 Sumitomo Electric Industries, Ltd. Catalyst structure and method for producing carbon nanotube using same
EP1719556A4 (en) * 2004-02-27 2010-10-20 Sumitomo Electric Industries STRUCTURE OF CATALYST AND METHOD FOR MANUFACTURING CARBON NANOTUBE USING THE SAME
US8592338B2 (en) 2004-02-27 2013-11-26 Sumitomo Electric Industries, Ltd. Catalyst structure and method of manufacturing carbon nanotube using the same

Similar Documents

Publication Publication Date Title
US5283232A (en) Method for producing oxide superconducting composite wire
US5063200A (en) Ceramic superconductor article
JPH09185916A (ja) 複合酸化物セラミック系超電導線の製造方法
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
JPH06196031A (ja) 酸化物超電導線材の製造方法
JPH028335A (ja) 酸化物超伝導線材製造用シース
JP3778971B2 (ja) 酸化物超電導線材およびその製造方法
JP3100877B2 (ja) 酸化物超電導線材の製造方法
JP3945600B2 (ja) Nb 3 Sn超伝導線材の製造方法
JP3848449B2 (ja) 酸化物超電導線の製造方法
JP3692657B2 (ja) 酸化物超電導線材
JPS63285155A (ja) 酸化物系超電導材料、およびその製造方法
JP2569413B2 (ja) Bi系酸化物超電導線材の製造方法
JPH029744A (ja) 緻密な酸化物超伝導線材の製造法
CA1338753C (en) Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
JP2565954B2 (ja) 超電導体コイルの製造方法
JPH08241635A (ja) 酸化物超電導線材およびその製造方法
JPH06510157A (ja) テクスチャード超伝導体とその製造方法
JPH0211208A (ja) 酸化物超伝導線材の製造法
JPH02229753A (ja) 超電導性を有するセラミック酸化物含有延性複合体の製法
Flukiger et al. Multifilamentary Superconductive Wires Composed of Filaments Nb3 Sn or V3 Ga clad in copper or copper alloys and process for manufacturing such wires
JPH07114836A (ja) 超電導線材及びその製造方法
JPH07141940A (ja) ビスマス系酸化物超伝導線材の製造方法
JPH03173017A (ja) 酸化物超電導線材の製造方法およびコイルの製造方法
JPH01243314A (ja) 酸化物系超電導多心線の製造方法