JPH028321A - Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength - Google Patents

Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength

Info

Publication number
JPH028321A
JPH028321A JP15666688A JP15666688A JPH028321A JP H028321 A JPH028321 A JP H028321A JP 15666688 A JP15666688 A JP 15666688A JP 15666688 A JP15666688 A JP 15666688A JP H028321 A JPH028321 A JP H028321A
Authority
JP
Japan
Prior art keywords
tensile strength
stainless steel
less
cold
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15666688A
Other languages
Japanese (ja)
Inventor
Motohiko Takeda
竹田 元彦
Hikari Mitsui
光 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15666688A priority Critical patent/JPH028321A/en
Publication of JPH028321A publication Critical patent/JPH028321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce the title high-strength ultrathin stainless steel sheet for slicer material with low in-plane anisotropy in tensile strength by cold-rolling the hot-rolled and annealed sheet having a specified composition, heating under specified conditions, hardening, and then continuously annealing the sheet. CONSTITUTION:The hot-rolled and annealed stainless steel sheet contg., by weight, 0.20-0.50% C, <=1% Si, <=2% Mn, <=0.3% Ni, 10.5-15% Cr, the balance Fe, and inevitable impurities is cold-rolled, and the cold rolling including process annealing is repeated more than once to <=0.3mm sheet thickness. The cold- rolled sheet is heated, and then hardened from 1040-1100 deg.C. The sheet is then continuously annealed at 250-400 deg.C for 10sec to 10min. As a result, an ultrathin martensitic stainless steel sheet for a wafer slicer having >=170kgf/mm<2> tensile strength, >=6% elongation, and <=5kgf/mm<2> in plane anisotropy in tensile strength is obtained. An ultrathin blade can be easily produced from this material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、セラミックあるいはStウェハスライサ用
の刃の素材に好適なマルテンサイト系ステンレス鋼板の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a martensitic stainless steel plate suitable for a blade material for a ceramic or St wafer slicer.

〈従来の技術〉 従来技術として、特開昭62−238333号公報の如
き、ウェハスライサ用極薄オーステナイト系ステンレス
鋼板の製造方法に関する技術がある。この公報には、高
強度でかつ引張り強さの面内異方性が小さいウェハスラ
イサ用極薄オーステナイト系ステンレス鋼板、特にSi
ウェハスライサ用素材に適したステンレス鋼板の製造方
法が開示されている。
<Prior Art> As a prior art, there is a technology related to a method of manufacturing an ultra-thin austenitic stainless steel plate for a wafer slicer, such as Japanese Patent Application Laid-Open No. 62-238333. This publication describes ultra-thin austenitic stainless steel sheets for wafer slicers that have high strength and small in-plane anisotropy of tensile strength, especially Si
A method for manufacturing a stainless steel plate suitable as a material for a wafer slicer is disclosed.

セラミックあるいはSiウェハスライサ用素材は、一般
には、上述公報にも開示されているように、オーステナ
イト系ステンレス鋼を冷間圧延して加工硬化させ、高強
度を得ている。しかしこの方法では、上述公報の場合を
含めて引張り強さの面内異方性が6〜7kgf/−程度
残存している。
As disclosed in the above-mentioned publication, materials for ceramic or Si wafer slicers are generally made of austenitic stainless steel that is cold-rolled and work-hardened to obtain high strength. However, in this method, in-plane anisotropy of tensile strength of about 6 to 7 kgf/- remains, including the case of the above-mentioned publication.

このような面内異方性の残存はリング状の刃を切断治具
にセットするとき、刃に半径方向の張力がかかるので、
平坦度を悪くし、精度の高いウェハ切断が行えない。
This residual in-plane anisotropy is caused by the fact that when a ring-shaped blade is set in a cutting jig, radial tension is applied to the blade.
This impairs the flatness and makes it impossible to cut the wafer with high precision.

〈発明が解決しようとする課題〉 本発明の目的は従来のオーステナイト系より安価なウェ
ハスライサ用マルテンサイト系ステンレス鋼板の製造方
法を提供することである。
<Problems to be Solved by the Invention> An object of the present invention is to provide a method for manufacturing a martensitic stainless steel plate for a wafer slicer that is cheaper than conventional austenitic stainless steel sheets.

また本発明の他の目的は、引張り強さ170kgf/■
i以上、伸びが6%以上、かつ引張り強さの面内異方性
が5 kgf/−以下のウェハスライサ用マルテンサイ
ト系ステンレス鋼板の製造方法を提供することである。
Another object of the present invention is to have a tensile strength of 170 kgf/■
It is an object of the present invention to provide a method for manufacturing a martensitic stainless steel plate for a wafer slicer, which has an elongation of 6% or more, and an in-plane anisotropy of tensile strength of 5 kgf/- or less.

〈課題を解決するための手段〉 本発明は重量%にて、C: 0.20〜0.50%、S
i:1%以下、Mn:2%以下、Ni:0.3%以下、
Cr:10.5〜15%を含有し、残部Feおよび不可
避的な不純物からなる熱延焼鈍板に、冷間圧延或いは中
間焼鈍を挟む冷間圧延を1回以上繰り返し板厚0.3m
m以下の冷延板としたのち、該冷延板を加熱し1040
〜1100℃の温度から焼入れし、その後250〜40
0℃で10秒以」二10分以下の連続焼鈍を施すことを
特徴とする引張り強さ170kgf/mj以上、伸びが
6%以上、かつ引張り強さの面内異方性が5kgf/賞
i以下のウェハスライサ用極薄マルテンサイト系ステン
レス鋼板の製造方法である。
<Means for solving the problems> The present invention has C: 0.20 to 0.50%, S: 0.20 to 0.50%, S
i: 1% or less, Mn: 2% or less, Ni: 0.3% or less,
A hot-rolled annealed plate containing Cr: 10.5 to 15% and the remainder Fe and unavoidable impurities is cold-rolled or cold-rolled with intermediate annealing at least once to give a plate thickness of 0.3 m.
After forming a cold-rolled sheet with a thickness of 1040 m or less, the cold-rolled sheet is heated to 1040
Quenching from a temperature of ~1100℃, then 250~40℃
A tensile strength of 170 kgf/mj or more, an elongation of 6% or more, and an in-plane anisotropy of tensile strength of 5 kgf/award, characterized by continuous annealing at 0°C for 10 seconds or more and 10 minutes or less. The following is a method for manufacturing an ultra-thin martensitic stainless steel plate for a wafer slicer.

〈作 用〉 スライサ用素材としては超高速回転で発生ずる円周応力
に耐えるために、引張り強さが170kgf/mj以上
が必要である。また、刃にリブ加工を施すため伸びが6
%以上必要であり、さらに前述のように引張り強さの面
内異方性が無いことが望まれる。
<Function> The material for the slicer must have a tensile strength of 170 kgf/mj or more in order to withstand the circumferential stress generated by ultra-high speed rotation. In addition, because the blade is ribbed, the elongation is 6.
% or more, and as mentioned above, it is desirable that there be no in-plane anisotropy in tensile strength.

本発明者らは、この目的のため製造条件を種々検討した
結果、鋼の成分の選定と最終板厚での熱処理条件を組み
合わせることによりこれを達成した。
The present inventors investigated various manufacturing conditions for this purpose, and as a result, achieved this by combining the selection of steel components and the heat treatment conditions at the final plate thickness.

以下、本発明の構成要件の限定理由について説明する。The reasons for limiting the constituent elements of the present invention will be explained below.

Cは、マルテンナイト系ステンレス鋼の強度と延性に大
きく影響する元素であるが、0.20%未満では170
kgf/mm2以上の引張り強さが得られず、また0、
50%を越えると伸びが5%以下となり、所要の6%以
上の伸びが得られないので、0.20〜0.50%に限
定される。
C is an element that greatly affects the strength and ductility of martenitic stainless steel, but if it is less than 0.20%, the
Tensile strength of kgf/mm2 or more cannot be obtained, or 0,
If it exceeds 50%, the elongation will be 5% or less, and the required elongation of 6% or more cannot be obtained, so it is limited to 0.20 to 0.50%.

Siは、鋼の脱酸に使用する元素であるが、1%を越え
ると、高温でのフェライト領域が増大し、引張り強さが
低くなり、所要の強度が得られないので1%以下に限定
される。
Si is an element used to deoxidize steel, but if it exceeds 1%, the ferrite region increases at high temperatures and the tensile strength decreases, making it impossible to obtain the required strength, so it is limited to 1% or less. be done.

Mnは、Siと同様に鋼の脱酸に使用する元素であるが
、2%を越えると、焼入れ後に残留オーステナイトが生
じ、やはり引張り強さが低くなり、所要の強度が得られ
ないので2%以下に限定される。
Mn, like Si, is an element used for deoxidizing steel, but if it exceeds 2%, residual austenite will occur after quenching, resulting in lower tensile strength and the required strength cannot be obtained, so 2% Mn is used. Limited to:

Niは、オーステナイト系ステンレス鋼のスクラップ屑
から混入することが多いが、含有量が0.3%を越える
と、γ変態点が鋼の再結晶温度より低くなり、冷延と再
結晶焼鈍との繰り返しにより0.3mm以下の板厚に冷
延することが困難となる。
Ni is often mixed in from scraps of austenitic stainless steel, but if the content exceeds 0.3%, the γ transformation point will be lower than the recrystallization temperature of the steel, and the difference between cold rolling and recrystallization annealing will decrease. Repeated rolling makes it difficult to cold-roll the sheet to a thickness of 0.3 mm or less.

従って、Niは0.3%以下に限定される。Therefore, Ni is limited to 0.3% or less.

Crはステンレス鋼の耐錆性の点から1000%未満で
は不十分であり、また15%を越えると高温領域でフェ
ライト相が出現し、焼入れ後の硬度が低くなる。従って
Crは10.5〜15%の範囲に限定される。
From the viewpoint of rust resistance of stainless steel, less than 1000% Cr is insufficient, and if it exceeds 15%, a ferrite phase appears in a high temperature region, resulting in a decrease in hardness after quenching. Therefore, Cr is limited to a range of 10.5 to 15%.

高強度にするだめの熱処理は、冷間圧延後に施される。Heat treatment to increase strength is performed after cold rolling.

この時の加熱焼入れ温度が1040℃未満では焼入れ焼
戻し状態で引張り強さが170kgf/mm2以上には
ならない。また、1100℃を越えると、δフェライト
が出現し焼入れ後の引張り強さが低下し、焼入れ焼戻し
状態でやはり引張り強さが170kgf/Ii以上には
ならない。
If the heating and quenching temperature at this time is less than 1040°C, the tensile strength in the quenching and tempering state will not exceed 170 kgf/mm2. Further, when the temperature exceeds 1100°C, δ ferrite appears and the tensile strength after quenching decreases, and the tensile strength does not exceed 170 kgf/Ii in the quenched and tempered state.

伸びを確保するために、低温での焼鈍が必要となるが、
従来はマルテンサイト相からのCの拡散による極微細炭
化物の形成のためには長時間の焼鈍が必要と嶌えられて
いた。しかし、本発明ではこれを短時間の連続焼鈍と鋼
中の化学組成の規制との組合せで解決した。
In order to ensure elongation, low temperature annealing is required, but
Conventionally, it was believed that long-time annealing was required to form ultrafine carbides due to the diffusion of C from the martensitic phase. However, in the present invention, this problem was solved by a combination of short-time continuous annealing and regulation of the chemical composition in the steel.

連続焼鈍の際の焼鈍温度が250℃未満では6%以上の
伸びは達成できない。一方焼鈍温度が400℃を越える
と、伸びは大きくなるが引張り強さ170 kgf/*
j以上を満足することができない。また、焼鈍時間が1
0秒未満では、伸びが大きくならず、10分を越えると
引張り強さが低下するとともに、板を製造する際の経済
性が著しく悪くなるため、10秒〜10分と限定される
If the annealing temperature during continuous annealing is less than 250°C, elongation of 6% or more cannot be achieved. On the other hand, when the annealing temperature exceeds 400℃, the elongation increases but the tensile strength is 170 kgf/*
j or more cannot be satisfied. Also, the annealing time is 1
If the elongation is less than 0 seconds, the elongation will not be large, and if it exceeds 10 minutes, the tensile strength will decrease and the economical efficiency of manufacturing the plate will become extremely poor, so the time is limited to 10 seconds to 10 minutes.

さらにスライサ用鋼板は、スライス時の切断抵抗を小さ
くするために、また被切断物の歩留りを上げるためにも
、その板厚が0.3mm以下と薄いことが必要である。
Furthermore, the steel plate for slicers needs to be as thin as 0.3 mm or less in order to reduce the cutting resistance during slicing and to increase the yield of cut objects.

しかし通常のマルテンサイト系ステンレス鋼は、添加元
素が多くフェライトと炭化物の組織に調整しても地鉄が
硬い。また、冷延後の再結晶焼鈍の温度を高くし、軟化
させることも考えられるが、温度を上げるとT変態相が
出現し、所望の軟化が達成できない。−力木発明では引
張り強さを確保するため、マルテンサイト変態を焼入れ
時に確実に出現させることが必要であり、このためには
オーステナイト形成元素であるNi含有量を増大させる
ことが有利である。しかしながら、Niを0.3%以上
含有すると、前述したようにγ変態温度が再結晶温度近
傍まで低下し、冷延後の再結晶焼鈍が不可能となる。こ
の様になると、冷延−焼鈍の繰り返しによっても0.3
nwn以下の鋼板を経済的に製造することは困難となる
However, normal martensitic stainless steel has many additive elements, and even if it is adjusted to have a ferrite and carbide structure, the base steel is hard. It is also conceivable to soften the steel by increasing the recrystallization annealing temperature after cold rolling, but if the temperature is raised, a T-transformation phase appears, making it impossible to achieve the desired softening. - In the strength wood invention, in order to ensure tensile strength, it is necessary to ensure that martensitic transformation occurs during quenching, and for this purpose it is advantageous to increase the content of Ni, which is an austenite-forming element. However, if Ni is contained in an amount of 0.3% or more, the γ transformation temperature decreases to near the recrystallization temperature as described above, making recrystallization annealing after cold rolling impossible. If this happens, even if repeated cold rolling and annealing, 0.3
It becomes difficult to economically manufacture steel plates of nwn or less.

本発明では旧を0.3%以下に限定しているので、冷延
後の再結晶焼鈍を十分に行うことができるようになり、
板厚0.3mm以下の冷延鋼板の製造が可能になった。
In the present invention, since the content of stale is limited to 0.3% or less, recrystallization annealing after cold rolling can be performed sufficiently.
It has become possible to manufacture cold-rolled steel sheets with a thickness of 0.3 mm or less.

また焼入れ処理により引張り強さが十分確保できるので
、従来の冷間圧延歪み、即ち加工硬化による強度上昇法
では達成できなかった引張り強さの面内異方性を著しく
小さくできた。
In addition, since sufficient tensile strength can be ensured by the quenching treatment, in-plane anisotropy of tensile strength, which could not be achieved with the conventional method of increasing strength by cold rolling strain, that is, work hardening, can be significantly reduced.

〈実施例〉 第1表に示す組成のCr系ステンレス鋼を転炉で精錬し
て、連続鋳造によってスラブとした後、熱間圧延により
板厚3mmの熱延綱帯とした。ついで、通常のステンレ
ス鋼帯と同様のヘル焼鈍(箱型焼鈍)を施し、酸洗を行
ったのち、冷延および焼鈍を2〜4回繰り返し板厚0.
15n++++の冷延鋼帯とした。
<Example> Cr-based stainless steel having the composition shown in Table 1 was refined in a converter, made into a slab by continuous casting, and then made into a hot-rolled steel strip with a plate thickness of 3 mm by hot rolling. Then, it is subjected to hell annealing (box annealing) similar to ordinary stainless steel strips, pickled, and then cold rolled and annealed 2 to 4 times until the plate thickness is 0.
A cold-rolled steel strip of 15n++++ was used.

その後、第2表に示す条件の連続焼鈍ラインで焼入れ処
理を行い、それに続いて低い温度での連続焼鈍を施し、
スライサ用素材とした。
After that, quenching is performed on a continuous annealing line under the conditions shown in Table 2, followed by continuous annealing at a low temperature,
It was used as a material for slicers.

本発明法および比較法による製造条件と引張り強さ、そ
の面内異方性および伸びを第2表に併せて示す。
Table 2 also shows the manufacturing conditions, tensile strength, in-plane anisotropy, and elongation according to the method of the present invention and the comparative method.

引張り試験は、圧延方向と平行な方向より試験片を採取
し、JISZ2241に従って実施した。
The tensile test was conducted in accordance with JIS Z2241 by taking test pieces from a direction parallel to the rolling direction.

引張り強さの面内異方性は、圧延方向に対し、平行、4
5℃1直角方向から引張り試験片を採取し、引張り強さ
を測定した後、最大値から最小値を引いた値とした。
The in-plane anisotropy of tensile strength is parallel to the rolling direction, 4
A tensile test piece was taken from a perpendicular direction at 5°C, and the tensile strength was measured, and the value was calculated by subtracting the minimum value from the maximum value.

第1表のE鋼は、Niを0.43%含有しており、熱延
後の焼鈍を施しても、軟化が十分に進まず、その後の冷
延により鋼帯9エツジがら割れが発生し、0.15mm
への製品化が不可能であった。従って、第2表のスライ
サ素材の性質には引張り強さ等の値はない。第1表で化
学組成を満足している供試材であっても、本発明による
熱処理条件でなければ高強度で高延性の材料を得ること
ができない。また、熱処理条件を満足していても、本発
明で限定している化学組成を満足していなければスライ
サに好適な素材にならない。本発明法は、比較材に比べ
引張り強さが170kgf/m(以上かつ伸びが6%以
上でかつ面内異方性が5kgf/−以下となり、スライ
サ用素材として非常に優れていることる。
The E steel in Table 1 contains 0.43% Ni, and even when annealed after hot rolling, the softening did not progress sufficiently, and cracks occurred at the edge of the steel strip 9 during subsequent cold rolling. ,0.15mm
It was impossible to commercialize the product. Therefore, the properties of the slicer materials in Table 2 do not include values such as tensile strength. Even if the sample material satisfies the chemical composition shown in Table 1, it is not possible to obtain a material with high strength and high ductility unless the heat treatment conditions according to the present invention are applied. Further, even if the heat treatment conditions are satisfied, if the chemical composition defined in the present invention is not satisfied, the material will not be suitable for a slicer. Compared to the comparative material, the method of the present invention has a tensile strength of 170 kgf/m or more, an elongation of 6% or more, and an in-plane anisotropy of 5 kgf/- or less, making it an excellent material for slicers.

〈発明の効果〉 本発明によれば、スライザ用素材に要求引張り強さ17
0kgf/mm2以上で、かつ面内異5kgf/md以
下、そして伸びが6%以上の極テンサイド系ステンレス
鋼板が製造できるを素材として、極薄の刃が容易に製作
できこれによりセラミック、SiあるいはGaAsを精
度高くウェハスライスすることが可能生産性が著しく向
上し、ウェハの歩留りかに改善できる。
<Effects of the Invention> According to the present invention, the required tensile strength of the material for the slider is 17
Ultra-thin blades can be easily manufactured using this material, which can be used to manufacture extremely tensile stainless steel sheets with a strength of 0 kgf/mm2 or more, an in-plane difference of 5 kgf/md or less, and an elongation of 6% or more. It is possible to slice wafers with high precision, significantly increasing productivity and significantly improving wafer yield.

Claims (1)

【特許請求の範囲】[Claims] 重量%にて、C:0.20〜0.50%、Si:1%以
下、Mn:2%以下、Ni:0.3%以下、Cr:10
.5〜15%を含有し、残部Feおよび不可避的な不純
物からなる熱延焼鈍板に、冷間圧延或いは中間焼鈍を挟
む冷間圧延を1回以上繰り返し板厚0.3mm以下の冷
延板としたのち、該冷延板を加熱し1040〜1100
℃の温度から焼入れし、その後250〜400℃で10
秒以上10分以下の連続焼鈍を施すことを特徴とする引
張り強さ170kgf/mm^2以上、伸びが6%以上
、かつ引張り強さの面内異方性が5kgf/mm^2以
下のウェハスライサ用極薄マルテンサイト系ステンレス
鋼板の製造方法。
In weight%, C: 0.20 to 0.50%, Si: 1% or less, Mn: 2% or less, Ni: 0.3% or less, Cr: 10
.. A hot-rolled annealed sheet containing 5 to 15% Fe and unavoidable impurities is subjected to cold rolling or cold rolling with intermediate annealing one or more times to a thickness of 0.3 mm or less. After that, the cold rolled sheet is heated to 1040 to 1100
Quenching from a temperature of 10°C, then 10°C at 250-400°C
Wafers with a tensile strength of 170 kgf/mm^2 or more, an elongation of 6% or more, and an in-plane anisotropy of tensile strength of 5 kgf/mm^2 or less, characterized by being subjected to continuous annealing for a period of seconds or more and 10 minutes or less. A method for manufacturing ultra-thin martensitic stainless steel sheets for slicers.
JP15666688A 1988-06-27 1988-06-27 Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength Pending JPH028321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15666688A JPH028321A (en) 1988-06-27 1988-06-27 Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15666688A JPH028321A (en) 1988-06-27 1988-06-27 Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength

Publications (1)

Publication Number Publication Date
JPH028321A true JPH028321A (en) 1990-01-11

Family

ID=15632652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15666688A Pending JPH028321A (en) 1988-06-27 1988-06-27 Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength

Country Status (1)

Country Link
JP (1) JPH028321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514438A (en) * 2008-01-31 2011-05-06 デュモント スイッツァランド アクチェンゲゼルシャフト Single cylinder type thrust rolling method, apparatus for the single cylinder type thrust rolling method, and products manufactured using the single cylinder type thrust rolling method
JP2015067873A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for production of martensitic stainless steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514438A (en) * 2008-01-31 2011-05-06 デュモント スイッツァランド アクチェンゲゼルシャフト Single cylinder type thrust rolling method, apparatus for the single cylinder type thrust rolling method, and products manufactured using the single cylinder type thrust rolling method
JP2015067873A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for production of martensitic stainless steel strip

Similar Documents

Publication Publication Date Title
WO2012128225A1 (en) Steel sheet for hot-stamped member and process for producing same
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
US10301700B2 (en) Method for producing a steel component
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JPS63317628A (en) Manufacture of high strength stainless steel having superior bulging strength and toughness
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JPH028321A (en) Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength
WO1979000100A1 (en) A process for the production of sheet and strip from ferritic,stabilised,stainless chromium-molybdenum-nickel steels
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPS61124556A (en) Low nickel austenitic stainless steel sheet and its manufacture
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS62238333A (en) Manufacture of ultrathin austenitic stainless steel sheet for water slicer
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0832952B2 (en) Manufacturing method of cold-rolled steel sheet for press work with excellent chemical conversion treatability, weldability, punchability and slidability
JP4380194B2 (en) Manufacturing method of martensitic stainless steel plate excellent in punching workability and martensitic stainless steel plate for disc brake
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance