JPH0275796A - Composite vacuum pump - Google Patents

Composite vacuum pump

Info

Publication number
JPH0275796A
JPH0275796A JP22653388A JP22653388A JPH0275796A JP H0275796 A JPH0275796 A JP H0275796A JP 22653388 A JP22653388 A JP 22653388A JP 22653388 A JP22653388 A JP 22653388A JP H0275796 A JPH0275796 A JP H0275796A
Authority
JP
Japan
Prior art keywords
pump part
pump section
rotor
circumferential groove
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22653388A
Other languages
Japanese (ja)
Other versions
JP2627437B2 (en
Inventor
Tatsuji Ikegami
池上 達治
Tetsuo Obayashi
哲郎 大林
Keiichi Yoshida
恵一 吉田
Masashi Iguchi
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP63226533A priority Critical patent/JP2627437B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH0275796A publication Critical patent/JPH0275796A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,463 priority patent/US5160250A/en
Priority to US07/769,365 priority patent/US5217346A/en
Application granted granted Critical
Publication of JP2627437B2 publication Critical patent/JP2627437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite molecular pump, having a high exhaust speed, at a low cost by a method wherein a turbo molecular pump part, a circumferential groove vacuum pump part, and a vortex pump part are disposed, in order named, from the suction port side in a casing having a suction port and an exhaust port. CONSTITUTION:In a casing 1, a turbo molecular pump part 2 is situated at an upper part, 8 circumferential groove pump part 3 is located therebelow, and a vortex pump part 4 is further provided below the circumferential groove pump part. The turbo molecular pump part 2 is formed with a number of moving vanes 2a protruded from the outer peripheral surface of a rotor 5 and a number of stationary blades 2b protruded from the inner peripheral surface of the casing 1, and the circumferential groove pump part 3 is provided with three rotary discs 3a protruded from the outer peripheral surface of the rotor 5. The vortex pump part 4 is formed with a number of radial blades 4a protruded from the outer peripheral surface of the rotor 5 and a stator 4c having a suction flow passage 4b positioned facing the radial blades.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は粒子加速器、核融合実験、同位体分離等の実験
研究装置、電子顕微鏡、表面分析計等の分析計測装置、
及び半導体製造真空装置等の工業用真空装置において、
大気圧から高真空及び超高真空にわたる吸入圧範囲で清
浄な真空を確実に生成できる有用な複合分子ポンプに関
する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Field of Application The present invention is applicable to particle accelerators, nuclear fusion experiments, experimental research equipment such as isotope separation, analytical measurement equipment such as electron microscopes and surface analyzers,
and industrial vacuum equipment such as semiconductor manufacturing vacuum equipment,
The present invention relates to a useful composite molecular pump that can reliably generate a clean vacuum in a suction pressure range from atmospheric pressure to high vacuum and ultra-high vacuum.

(2)従来の技術 従来この種の複合分子ポンプとして、第20図の如く吸
気口(a)と排気口(b)とを有する筐体(C)内に、
該吸気口(a)側からターボ分子ポンプ部(d)、ねじ
溝ポンプ部(e)及び渦流ポンプ部(f)を順次配設し
たものが知られている。尚(h)はこれらターボ分子ポ
ンプ部(d)、ねじ溝ポンプ部(e)及び渦流ポンプ部
(f)のロータ(g)の回転軸、(i)は該回転軸(h
)を回転yせるモータを示す。
(2) Prior Art Conventionally, as shown in FIG. 20, a composite molecular pump of this type has a casing (C) having an intake port (a) and an exhaust port (b).
It is known that a turbo molecular pump section (d), a thread groove pump section (e), and a vortex pump section (f) are sequentially arranged from the intake port (a) side. Note that (h) is the rotation axis of the rotor (g) of the turbomolecular pump section (d), thread groove pump section (e), and vortex pump section (f), and (i) is the rotation axis (h).
) is shown.

(3)発明が解決しようとする問題点 この従来の複合分子ポンプによれば、十分に安定した圧
縮性能をもたせ、且つ排気速度を伸長させるために、渦
流ポンプ部(f)を8段以上に形成し更に該渦流ポンプ
部(f)の前段のねじ溝ポンプ部(e)のロータ外径を
渦流ポンプ部(f)の外径と同等以上とする構成になっ
ている。
(3) Problems to be Solved by the Invention According to this conventional composite molecular pump, in order to provide sufficiently stable compression performance and increase pumping speed, the vortex pump section (f) is arranged in eight or more stages. Furthermore, the outer diameter of the rotor of the threaded groove pump section (e) in the preceding stage of the vortex pump section (f) is equal to or larger than the outer diameter of the vortex pump section (f).

又ターボ分子ポンプ部(d)の排気性能を特に分子量の
小さい水素(H3)等に対して十分もたせるためにはね
じ溝ポンプ部(e)の排気速度を十分大きくしなければ
ならないため、ねじ溝ポンプ部(e)のねじ溝の幅を広
くシ、更に圧縮比を十分高くするためねじ溝の全長を長
くすることが必要となり、その結果ねじ溝ポンプ部(e
)のロータは軸方向に対して伸長した構成となり、総合
したロータ(g)はその全長が比較的長く、且つ外径も
大きくなる。
In addition, in order to ensure sufficient pumping performance of the turbo molecular pump section (d) especially for hydrogen (H3) with a small molecular weight, the pumping speed of the threaded groove pump section (e) must be made sufficiently high. In order to widen the width of the thread groove of the pump part (e) and further increase the compression ratio sufficiently, it is necessary to increase the overall length of the thread groove.
) has a configuration that extends in the axial direction, and the overall length of the combined rotor (g) is relatively long and the outer diameter is also large.

かくて従来の複合分子ポンプにおいては、ロータが一体
形状で軸端装荷方式をとっているため、ロータ(g)の
高速回転に伴い回転軸(h)に曲げモーメントが働き振
動を誘発する。しかもねじ溝ポンプ部(e)は肉厚の外
筒部分が大となると共に1重くて、総合したロータ(g
)の全長が長くなるから1回転軸廻りの慣性モーメン)
Izが大になると共に、軸中心線に直交する、X軸及び
y軸の廻りの慣性モーメントrx及びryが非常に大き
くなる。高速回転する回転体が振動が少なく安定した高
速運転をできるためには、Ix、IyがIzと同等か又
はより小であることが必要である。第20図の従来の複
合分子ポンプではIx、IyがIzよりも大になり、振
動が少なく安定した高速運転をできるように動釣合をと
ることが困難となる問題点があった。
Thus, in the conventional composite molecular pump, the rotor is integrally shaped and the shaft end is loaded, so that a bending moment acts on the rotating shaft (h) as the rotor (g) rotates at high speed, inducing vibration. Moreover, the thread groove pump part (e) has a thick outer cylinder part and is also heavy, and the total rotor (g
) becomes longer, so the moment of inertia around the axis of one revolution)
As Iz increases, the moments of inertia rx and ry around the X-axis and y-axis, which are perpendicular to the axis center line, become extremely large. In order for a rotating body that rotates at high speed to be able to operate stably at high speed with less vibration, it is necessary that Ix and Iy be equal to or smaller than Iz. In the conventional composite molecular pump shown in FIG. 20, Ix and Iy are larger than Iz, and there is a problem in that it is difficult to maintain dynamic balance to enable stable high-speed operation with little vibration.

本発明は、これらの問題点を解消し、大気圧から超高真
空にわたる圧力範囲で大きな排気速度を有する複合分子
ポンプを安価に提供することを目的とする。
An object of the present invention is to solve these problems and to provide a composite molecular pump at low cost that has a high pumping speed in a pressure range from atmospheric pressure to ultra-high vacuum.

(4)問題点を解決するための手段 この問題を達成°すべく本発明は、吸気口と排気口を有
する筐体内に、該吸気口側からターボ分子ポンプ部、円
周溝真空ポンプ部及び渦流ポンプ部を順次配設したこと
を特徴とする。
(4) Means for Solving the Problem In order to achieve this problem, the present invention provides a housing having an intake port and an exhaust port, and includes a turbo molecular pump section, a circumferential groove vacuum pump section, and a circumferential groove vacuum pump section from the intake port side. It is characterized by sequential arrangement of vortex pump parts.

(5)作用 運転の初期状態において、吸気口に流入した気体は主と
して渦流ポンプ部で乱流状態となって圧縮排気され、そ
の後詰流入気体は分子流状態でターボ分子ポンプ部に流
入し該ターボ分子ポンプ部の高速回転する動翼と静翼と
によりこの部分を移送圧縮される。そして連設されだ円
周溝ポンプ部において、この圧縮移動された気体は高速
回転する回転円板、特にその周辺部の気体摩擦によるモ
レキュラードラッグ効果による輸送効果を生じて大きな
排気速度と十分な圧縮作用を受けて分子流から粘性流と
なり1次の渦流ポンプ部の吸入口に流入し、更に該渦流
ポンプ部において圧縮されはC大気圧まで圧縮されて排
気口から大気に放出される。
(5) In the initial state of operation, the gas that has flowed into the intake port becomes a turbulent flow mainly in the vortex pump section and is compressed and exhausted, and the inflowing gas then flows into the turbo molecular pump section in a molecular flow state, and the gas flows into the turbo molecular pump section in a molecular flow state. This portion is transferred and compressed by the rotating blades and stationary blades of the molecular pump section, which rotate at high speed. In the continuous circumferential groove pump section, this compressed and moved gas is transported by the molecular drag effect caused by the gas friction caused by the high-speed rotation of the rotating disk, especially around its periphery, resulting in a large pumping speed and sufficient compression. Under the action, the molecular flow becomes a viscous flow, flows into the inlet of the primary vortex pump section, is further compressed in the vortex pump section, is compressed to C atmospheric pressure, and is discharged into the atmosphere from the exhaust port.

(6)実施例 本発明の複合真空ポンプの1実施例を第1図乃至第8図
に従って説明する。
(6) Embodiment An embodiment of the composite vacuum pump of the present invention will be described with reference to FIGS. 1 to 8.

(1)は筐体を示し、該筐体(1)内には上部にターボ
分子ポンプ部(2)とその下方に円周溝ポンプ部(3)
と更にその下方に渦流ポンプ部(4)が設けられており
、前記ターボ分子ポンプ部(2)はロータ(5)の外周
面に突設した多数の動1(2L)と前記筐体(1)の内
周面に突設した多数の静1 (2b)とからなり、又前
記円周溝ポンプ部(3)は前記ロータ(5)の外周面に
3枚の回転円板(3a)が突設yれており、これら回転
円板(3a)はその上方から下方になるに従って板厚を
順次大から小にすると共に両面の周辺部を切欠いて切込
段部(3b)  (3b)に形成し、これら各回転円板
(3a)の切込段部(3b)(3b)(7)切込み深さ
を上方から下方になるに従って前述と同様に大から小に
した。又(3C)は前記筐体(1)の内面に固定したス
テータを示し、該ステータ(3C)は前記回転円板(3
a)に相当する位置において該回転円板(3a)が介入
される環状の凹部(3d)が形成されており、該凹部(
3d)と前記切込段部(3b)l−b)により前記各回
転円板(3a)の周辺部の両面に通風路(3e)(3e
)を形成した。
(1) indicates a housing, and inside the housing (1) there is a turbo molecular pump part (2) at the top and a circumferential groove pump part (3) below it.
Further, a vortex pump section (4) is provided below the vortex pump section (4), and the turbo molecular pump section (2) has a large number of moving parts 1 (2L) protruding from the outer peripheral surface of the rotor (5) and the housing (1). ), and the circumferential groove pump part (3) has three rotary discs (3a) on the outer peripheral surface of the rotor (5). The rotating discs (3a) have thicknesses gradually increasing from the top to the bottom, and the peripheral parts of both sides are cut out to form notch steps (3b). The cutting depths of the cutting step portions (3b), (3b), and (7) of each of these rotary disks (3a) were made from large to small from the top to the bottom in the same manner as described above. Further, (3C) indicates a stator fixed to the inner surface of the housing (1), and the stator (3C) is attached to the rotating disk (3).
An annular recess (3d) into which the rotating disk (3a) is inserted is formed at a position corresponding to a), and the recess (3d)
3d) and the cut step portions (3b) l-b) provide ventilation passages (3e) (3e
) was formed.

ここで各回転円板(3a)の通風路(3e)(3e)に
おける回転円板(3a)側とステータ(3c)側の対向
面間の距離すは前述の如く切込段部(3b)  (3b
)の切込み深さに応じて上方から下方になるに従って大
から小になる。そして前記各凹部(3d)に、前記回転
円板(3a)の周辺部が通過する部分を截除した隔壁(
,3f)を前記ステータ(3c)より突設して該隔壁(
3f)により通風路(3e)(3e)を区切り、隣り合
う回転円板(3a)(3a)の通風路(3e)  (3
e)及び(3e)  (3e)において上流側の回転円
板(3a)の通風路(3e)  (3e)の隔壁(3f
)の他側の終端部と下流側の回転円板(3a)の通風路
(36)  (3e)の隔壁(3f)の1側の始端部と
の間を連通路(3g)により連通し、更にこれら隔壁(
3f)及び連通路(3g)を第2図乃至第8図の如く上
流側から下流側に至るに従ってその位2を順次ずらせて
形成し、かくて吸気口(12)からの気体分子は連通路
(3g)を介して送られながら各回転円板(3a)の通
風路(3e)  (3e)において順次圧縮され、相当
に高い圧縮比が得られる。そして最も上流側の回転円板
(3a)の通風路(3B)(3e)の隔壁(3f)の1
側の始端部を第1図の如くターボ分子ポンプ部(2)か
らの第1中間吸気口(6)に、又最も下流側の回転円板
(3a)の通風路(3e)(3e)(7)隔壁(3f)
 (7)他側の終端部を第1図の前記渦流ポンプ部(4
)の第2中間吸気口(7)に連通した。
Here, the distance between the facing surfaces of the rotating disk (3a) side and the stator (3c) side in the ventilation passages (3e) (3e) of each rotating disk (3a) is the notch step portion (3b) as described above. (3b
) from large to small from top to bottom depending on the depth of cut. In each of the recesses (3d), a partition wall (
, 3f) are provided to protrude from the stator (3c), and the partition wall (
The ventilation passages (3e) (3e) are separated by the ventilation passages (3e) (3e) of the adjacent rotating discs (3a) (3a).
e) and (3e) In (3e), the partition wall (3f) of the ventilation passage (3e) of the rotating disk (3a) on the upstream side (3e)
) and the starting end of the first side of the partition wall (3f) of the ventilation passage (36) (3e) of the rotating disk (3a) on the downstream side through a communication path (3g), Furthermore, these bulkheads (
3f) and the communication passage (3g) are formed by sequentially shifting the position 2 from the upstream side to the downstream side as shown in Figs. (3g) and is sequentially compressed in the ventilation passages (3e) (3e) of each rotating disk (3a), resulting in a considerably high compression ratio. and 1 of the partition wall (3f) of the ventilation passage (3B) (3e) of the rotating disk (3a) on the most upstream side.
The starting end of the side is connected to the first intermediate intake port (6) from the turbomolecular pump section (2) as shown in Fig. 1, and the ventilation path (3e) (3e) ( 7) Bulkhead (3f)
(7) Connect the other end of the vortex pump section (4) in FIG.
) was communicated with the second intermediate intake port (7).

又渦流ポンプ部(4)は前記ロータ(5)の外周面に突
設し放射状の凹部(4d)を有する多数のラジアルブレ
ード(4a)とこれらにそれぞれ対向する吸込流路(4
b)を有するステータ(4C)とからなり、該流路(4
b)の終端部を第1図の如く排気口(13)に連通した
The vortex pump section (4) has a large number of radial blades (4a) projecting from the outer circumferential surface of the rotor (5) and having radial recesses (4d), and suction passages (4) facing each of the radial blades (4a).
b) and a stator (4C) having a flow path (4C).
The terminal end of b) was communicated with the exhaust port (13) as shown in FIG.

又前記各ポンプ部(2)、(3)、(4)のロータ(5
)の軸(5a)は、前記筐体(1)の下方部のモータ筐
体(la)から上方に突出する内筒(lb)の上方部に
設けた上部軸受(8a)及び該モータ筐体(1a)の底
板(lc)に設けた下部軸受(8b)によって支持され
、又前記軸(5a)の下方部には前記モータ筐体(la
)内に設けたインダクションモータ、ヒステリシスモ、
−夕等からなる高周波モータ(9)のロータ(9a)が
固定されていると共に、該軸(5a)の下端部は前記底
板(IC)の下方に設けた潤滑油槽(lO)内の潤滑油
中に没入しており、前記高周波モータ(9)の駆動によ
る前記軸(5a)の高速回転による遠心力によって潤滑
油が該軸(5a)の中心孔(11)及びその枝孔(ll
a)(lla)を経て前記上部軸受(8a)に供給され
る。又下部軸受(8b)は前記モータ筐体(1a)の内
周に設けた溝より潤滑油が供給される。
In addition, the rotor (5) of each of the pump parts (2), (3), (4)
) is connected to an upper bearing (8a) provided in an upper part of an inner cylinder (lb) that projects upward from a motor housing (la) in a lower part of the housing (1) and the motor housing. It is supported by a lower bearing (8b) provided on the bottom plate (lc) of (1a), and the motor housing (la
) Induction motor, hysteresis motor,
- The rotor (9a) of a high frequency motor (9) consisting of a rotor, etc. is fixed, and the lower end of the shaft (5a) is lubricating oil in a lubricating oil tank (lO) provided below the bottom plate (IC). The centrifugal force caused by the high-speed rotation of the shaft (5a) driven by the high-frequency motor (9) causes lubricating oil to flow into the center hole (11) of the shaft (5a) and its branch holes (ll).
a) (lla) and is supplied to the upper bearing (8a). Further, the lower bearing (8b) is supplied with lubricating oil from a groove provided on the inner circumference of the motor housing (1a).

かくて前記各ポンプ部(2)、(3)、(4)の動El
l (2a) 、回転円板(3a)、  ラジアルブレ
ード(4a)はロータ(5)に一体に構成されているの
で高速回転によっても振動も小さく騒音が殆ど発生しな
い、尚(12)は吸気口、(13)は排気口を示す。
Thus, the dynamic El of each of the pump parts (2), (3), and (4)
l (2a), the rotating disk (3a), and the radial blades (4a) are integrated with the rotor (5), so there is little vibration even during high-speed rotation, and almost no noise is generated. , (13) indicates an exhaust port.

次に上記実施例の複合真空ポンプの作動を説明する。Next, the operation of the compound vacuum pump of the above embodiment will be explained.

高周波モータ(9)の駆動によりロータ(5)が回転し
始めると、その初期状態において吸気口(12)に流入
した気体は、乱流から中間流状態となりターボ分子ポン
プ部(2)の回転する動1(2a)に衝突し、該動翼(
2a)と前記筐体(1)から突設した静翼(2b)との
作用により、駆動51 (2a)の移動する円周方向と
、軸に平行な下方向の運動量が与えられ、積層された前
記動翼(2a)及び静1 (2b)の回転により下方に
圧縮移動する。尚1分子ポンプ部(2)は始動時の加速
中は、密度の高い気体がポンプ内に存在することによる
風損と、回転体の慣性モーメントに対する加速トルクが
大きくなるが、前記高周波モータ(9)の入力電流が過
大にならないように回転数を制御している。
When the rotor (5) starts to rotate due to the drive of the high-frequency motor (9), the gas flowing into the intake port (12) in its initial state changes from a turbulent flow to an intermediate flow state, causing the turbo molecular pump section (2) to rotate. It collides with the moving blade 1 (2a), and the moving blade (
2a) and the stationary blades (2b) protruding from the housing (1), momentum is given in the circumferential direction in which the drive 51 (2a) moves and in a downward direction parallel to the axis, and the stacking is performed. The rotor blade (2a) and the rotor blade (2b) are rotated to compress and move downward. It should be noted that during acceleration at the time of startup, the single molecule pump section (2) suffers from windage damage due to the presence of high density gas in the pump, and the acceleration torque relative to the moment of inertia of the rotating body becomes large. ) The rotation speed is controlled so that the input current does not become excessive.

次に前記分子ポンプ部(2)により圧縮移動された気体
は第1中間吸気口(6)を経て前記ロータ(5)に一体
に形成された円周溝ポンプ部(3)の回転円板(3a)
の最も高速回転移動する周辺部の切込段部(3b)(3
b)の両面に当ってこの時の気体分子摩擦によるモレ午
ニラードラッグ効果により輸送効果が生じ連通路(3g
)を介して各回転円板(3a)の通風路(3e)  (
3e)を第2図の矢印の如く順次輸送され、分子流から
粘性流にある圧力領域において排気作用を生じて全体と
して大きな圧縮比を実現し、第2中間吸気口(7)を経
て前記ロータ(5)に一体に形成された渦流ポンプ部(
4)のラジアルブレード(4a)の回転により圧縮され
る。そしてその圧縮比は1.45〜2.0であり、該ラ
ジアルブレード(4a)を10段前後の多数段重ねるこ
とにより約70の圧縮比が得られ、かくてこの圧縮比に
より、渦流ポンプ部では700Pa (5,2トル)以
下から大気圧の領域にわたる吸入圧から大気圧まで圧縮
できる。従って本実施例の複合真空ポンプによれば大気
圧から超高真空まで大きな排気速度で気体を排気可能と
なる。
Next, the gas compressed and moved by the molecular pump section (2) passes through the first intermediate intake port (6) and passes through the rotating disk ( 3a)
(3b) (3)
When it hits both sides of b), a transport effect occurs due to the drag effect caused by the friction of gas molecules, and the communication path (3g
) of each rotating disk (3a) through the ventilation passage (3e) (
3e) are sequentially transported as shown by the arrows in Fig. 2, and an exhaust effect occurs in the pressure range from molecular flow to viscous flow, achieving a large compression ratio as a whole, and the air is transferred to the rotor via the second intermediate intake port (7). (5) The vortex pump part (
It is compressed by the rotation of the radial blade (4a) in step 4). The compression ratio is 1.45 to 2.0, and by stacking the radial blades (4a) in multiple stages (about 10 stages), a compression ratio of about 70 is obtained. It can be compressed from suction pressures up to atmospheric pressure, ranging from less than 700 Pa (5.2 Torr) to atmospheric pressure. Therefore, according to the compound vacuum pump of this embodiment, gas can be pumped out at a high pumping speed from atmospheric pressure to ultra-high vacuum.

ここで1発明者の実験によれば、ターボ分子ポンプ部(
2)の動翼(2a)の外径を200mmとし円周溝ポン
プ部(3)を3段とし渦流ポンプ部(4)のロータ外径
を130mmとしたものを用意して、吸気口圧力−排気
速度曲線を求めたところ第9図のグラフが得られ、この
グラフの曲線は従来の複合真空ポンプに補助真空ポンプ
を接続した場合と略凹−曲線であり、このことにより実
施例の真空ポンプは補助真空ポンプが不必要で1台の真
空ポンプにより大気圧から超高真空まで排気できること
がわかる。 又第10図乃至第12図は円周溝ポンプ部
(3)の第2実施例を示し、該実施例においては前記各
回転円板(3a)の通風路(3e)  (3e)におけ
る回転円板(3a)側とステータ(3C)側の対向面間
の距sbが始端部から終端部に向って徐々に小となるよ
うに形成し、圧縮性能を向上したものである。
According to the experiments of one inventor, the turbomolecular pump section (
2), the rotor blade (2a) has an outer diameter of 200 mm, the circumferential groove pump section (3) has three stages, and the vortex pump section (4) has a rotor outer diameter of 130 mm, and the inlet pressure - When the pumping speed curve was determined, the graph shown in Fig. 9 was obtained, and the curve in this graph is a substantially concave curve when an auxiliary vacuum pump is connected to a conventional compound vacuum pump. It can be seen that an auxiliary vacuum pump is not required and a single vacuum pump can evacuate from atmospheric pressure to ultra-high vacuum. Moreover, FIGS. 10 to 12 show a second embodiment of the circumferential groove pump section (3), and in this embodiment, the rotation circles in the ventilation passages (3e) (3e) of each of the rotary disks (3a) are The distance sb between the facing surfaces of the plate (3a) side and the stator (3C) side is formed so as to gradually become smaller from the starting end to the ending end, thereby improving compression performance.

第13図は円周溝ポンプ部の第3実施例を示し、該実施
例においては、前記各回転円板(3a)の周辺部の切込
段部(3b)  (3b)の個所の肉厚を外方になるに
従って徐々に薄く形成すると共に、これら切込段部(3
b)(3b)とこれらに対向する前記凹部(3、d )
の内面との間の距離すは半径方向のいずれの位置でも等
しくなるように該凹部(3d)を外方に向うのに従って
間隔が狭くなるように形成したものである。
FIG. 13 shows a third embodiment of the circumferential groove pump section, and in this embodiment, the wall thickness of the cut step portions (3b) (3b) on the periphery of each rotary disk (3a) is are formed to become gradually thinner toward the outside, and these cut step portions (3
b) (3b) and the recesses (3, d) facing them;
The concave portion (3d) is formed so that the distance between the concave portion (3d) and the inner surface of the concave portion is the same at any position in the radial direction, and the distance becomes narrower as it goes outward.

第14図乃至第17図は円周溝ポンプ部(3)の第4実
施例を示し、各回転円板(3a)の吸気口と吐出口を中
心に対して対称の位置に2個所設け、並列に排気圧縮す
るようにして、排気速度を2倍にしたものである。
FIG. 14 to FIG. 17 show a fourth embodiment of the circumferential groove pump section (3), in which two locations are provided at symmetrical positions with respect to the inlet and outlet ports of each rotating disk (3a), The exhaust speed is doubled by compressing the exhaust air in parallel.

第18図は渦流ポンプ部(4)の第2実施例を示し、吸
込流路(4d)をラジアルブレード(4a)の両側に並
列に設けたもので次の段の通風路断面を並列部の70%
とした構造を示す。
FIG. 18 shows a second embodiment of the vortex pump section (4), in which the suction channel (4d) is provided in parallel on both sides of the radial blade (4a), and the cross section of the ventilation channel of the next stage is set in the parallel section. 70%
The structure is shown below.

第19図は渦流ポンプ部(4)の第3実施例を示し、−
枚のラジアルグレード(4a)の両面に凹部(4b)を
設け4段のポンプ要素を構成したものを示したものであ
る。
FIG. 19 shows a third embodiment of the vortex pump section (4), -
This figure shows a four-stage pump element constructed by providing recesses (4b) on both sides of a single radial grade (4a).

そして第18図の実施例のものと第19図の実施例のも
の1〜2個とを組合せる等、少ない段重ねによっても実
質上多数段のラジアルブレードの渦渣ポンプ部に相当す
る。
Even if there is a small number of stacked stages, such as by combining one or two of the embodiment shown in FIG. 18 and one or two of the embodiment shown in FIG. 19, it substantially corresponds to a vortex pump section with multiple stages of radial blades.

(7)発明の効果 このように本発明によると吸気口と排気口とを有する筐
体内に、いづれも排気圧縮作動部に真空ポンプ油が全く
存在しないターボ分子ポンプ部、円周溝ポンプ部及び渦
流ポンプ部とを吸気口側から順次配設し、吸気口からの
気体をターボ分子ポンプ部において一旦圧縮移送してか
ら円周溝ポンプ部においてその回転円板の特に高速に回
転する周辺部により前記気体が気体分子摩擦によるモレ
キュラードラッグで効率的な輸送効果を生ずると共に1
円周溝ポンプ部の排気速度を決定する第1段目の回転円
板の通風路への吸気口を半径方向に大きな寸法をとるこ
とが可能となり、かくて大きな排気速度を得ることがで
き、更に渦流ポンプ部に設けた多数のラジアルブレード
により高い圧縮比が得られ、大気圧から超高真空にわた
る吸入範囲で各圧力分野に対応して十分な排気速度を気
体の分子量及び化学性質に関係なく得られ、且つ吸気口
側から排気口側に至る回転体は円周溝ポンプ部の大きな
排気性能の効果により、従来より軸方向の長さを著しく
短縮し得て各ポンプ部のロータが小型に一体化でき、回
転軸の端部に結合した単ロータ形に構成可能となり、振
動の発生を抑止できると共に、小型軽量なロータに高精
度の加工を要求されず、かくてコンパクトで且つ軽量で
オイルフリーの清浄な真空を生成できる真空ポンプが廉
価に得られる効果を有する。さらに本発明による複合真
空ポンプは、アル、ミニラム合金で一体化したロータ及
びステータに耐食性をコーティングすることにより有害
で腐食性のガスに対する耐食性をもち、潤滑油が汚染さ
れることがなく、また構成するポンプ部がすべて気体に
対して遠心方向の流速を与えるものであり、各段の吐出
口を半径方向の外周部に設けてあって、ポンプがプロセ
スガスと共に粉粒体を吸入したり、あるいは圧縮中に化
学反応により粉粒体を生じても、支障なく運転し、粉粒
を排気口に順次排出する効果を有するから、半導体製造
真空装置等において極めて有用で経済的効果が大きい。
(7) Effects of the Invention As described above, according to the present invention, the turbo molecular pump section, the circumferential groove pump section, and the The vortex pump section is arranged sequentially from the intake port side, and the gas from the intake port is once compressed and transferred in the turbo molecular pump section, and then in the circumferential groove pump section, by the peripheral part of the rotating disk that rotates at a particularly high speed. The gas produces an efficient transport effect by molecular drag due to gas molecule friction, and 1
It becomes possible to take a large dimension in the radial direction of the intake port to the ventilation passage of the first stage rotary disk which determines the pumping speed of the circumferential groove pump section, and thus a large pumping speed can be obtained. Furthermore, a high compression ratio is achieved by the large number of radial blades installed in the vortex pump section, and the pumping speed is sufficient for each pressure field in the suction range from atmospheric pressure to ultra-high vacuum, regardless of the molecular weight and chemical properties of the gas. Due to the large pumping performance of the circumferentially grooved pump section, the rotating body extending from the intake port side to the exhaust port side can be significantly shortened in axial length compared to conventional systems, and the rotor of each pump section can be made smaller. It can be integrated into a single rotor type connected to the end of the rotating shaft, which can suppress the generation of vibration, and does not require high-precision machining for a small and lightweight rotor, making it compact, lightweight, and oil-free. A vacuum pump that can generate free, clean vacuum has the effect of being inexpensive. Furthermore, the composite vacuum pump according to the present invention has corrosion resistance against harmful and corrosive gases by coating the rotor and stator integrated with aluminum and miniram alloy with corrosion resistance, and the lubricating oil is not contaminated. All of the pump parts give a centrifugal flow velocity to the gas, and the discharge ports of each stage are provided on the outer periphery in the radial direction, so that the pump sucks powder and granules together with the process gas, or Even if granules are generated due to a chemical reaction during compression, the compressor operates without any trouble and has the effect of sequentially discharging the granules to the exhaust port, so it is extremely useful and economically effective in semiconductor manufacturing vacuum equipment and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合真空ポンプの第1実施例の全体の
断面図、第2図は第1図のI−I線截断面図、第3図は
第2図の■−II線截断線図断面図図は第2図の■−■
線截線面断面図5図は第2図の17−IV線線断断面図
第6図は第2図のv−V線截断面図、第7図は第2図の
VT−Vll線断断面図第8図は第2図の■−■線截線
面断面図9図は吸気口圧力と排気速度との関係を示すグ
ラフ、第10図乃至第12図は円周溝ポンプ部の第2実
施例の部分断面図、第13図は円周溝ポンプ部の第3実
施例の部分断面図、第14図は円周溝ポンプ部の第4実
施例を示す第2図に相当する断面図、第15図は第14
図のI−I線截断面図、第16図は第14図のII −
II線線断断面図第17図は第14図のm−■ 載断面
図、第18図は渦流ポンプ部の第2実施例を示すロータ
の個所の縦断面図、第19図は渦流ポンプ部の第3実施
例を示すロータの個所の縦断面図、第20図は従来の複
合分子ポンプの断面図である。 (1)・・・筐体 (2)・・・ターボ分子ポンプ部 (3)・・・円周溝ポンプ部 (4)・・・渦流ポンプ部 (12)・・・吸気口 (13)・・・排気口 出 願 人  株式会社大阪真空機器製作所第19図 第20図 臀 1口。 第1図 第2図 第5図  第6図 第7図 M8図 d
FIG. 1 is a cross-sectional view of the entire first embodiment of the compound vacuum pump of the present invention, FIG. 2 is a cross-sectional view taken along the line II in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line ■-II in FIG. The cross-sectional diagram is shown in Figure 2.
Figure 5 is a cross-sectional view taken along line 17-IV in Figure 2. Figure 6 is a cross-sectional view taken along line v-V in Figure 2. Figure 7 is a cross-sectional view taken along line VT-Vll in Figure 2. 8 is a sectional view taken along the line ■-■ in FIG. 2; FIG. 9 is a graph showing the relationship between intake port pressure and pumping speed; and FIGS. 13 is a partial sectional view of the third embodiment of the circumferential groove pump section, and FIG. 14 is a cross section corresponding to FIG. 2 showing the fourth embodiment of the circumferential groove pump section. Figure 15 is the 14th
16 is a cross-sectional view taken along line I-I in the figure, and FIG. 16 is II-I in FIG.
17 is a sectional view taken along line II in FIG. 14, FIG. 18 is a vertical sectional view of the rotor showing the second embodiment of the vortex pump section, and FIG. 19 is a sectional view taken along line II of FIG. 14. FIG. 20 is a longitudinal sectional view of a rotor portion showing a third embodiment of the present invention, and FIG. 20 is a sectional view of a conventional composite molecular pump. (1)...Housing (2)...Turbo molecular pump section (3)...Circumferential groove pump section (4)...Vortex pump section (12)...Intake port (13) ...Exhaust port applicant Osaka Vacuum Equipment Manufacturing Co., Ltd. Figure 19 Figure 20 Buttocks 1 port. Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure M8 d

Claims (1)

【特許請求の範囲】[Claims] 吸気口と排気口を有する筐体内に、該吸気口側からター
ボ分子ポンプ部、円周溝ポンプ部及び渦流ポンプ部を順
次配設したことを特徴とする複合真空ポンプ。
A composite vacuum pump characterized in that a turbo molecular pump section, a circumferential groove pump section, and a vortex pump section are sequentially arranged from the intake port side in a housing having an intake port and an exhaust port.
JP63226533A 1988-07-13 1988-09-12 Compound vacuum pump Expired - Fee Related JP2627437B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63226533A JP2627437B2 (en) 1988-09-12 1988-09-12 Compound vacuum pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226533A JP2627437B2 (en) 1988-09-12 1988-09-12 Compound vacuum pump

Publications (2)

Publication Number Publication Date
JPH0275796A true JPH0275796A (en) 1990-03-15
JP2627437B2 JP2627437B2 (en) 1997-07-09

Family

ID=16846630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226533A Expired - Fee Related JP2627437B2 (en) 1988-07-13 1988-09-12 Compound vacuum pump

Country Status (1)

Country Link
JP (1) JP2627437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815078A (en) * 1994-06-29 1996-01-19 Ulvac Japan Ltd Leakage detecting device using compound molecular drag pump
CN114352553A (en) * 2021-12-31 2022-04-15 北京中科科仪股份有限公司 Vortex mechanism and composite molecular pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660176B2 (en) * 2015-12-25 2020-03-11 エドワーズ株式会社 Vacuum pump and split vane section used for it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759098A (en) * 1980-08-11 1982-04-09 Mireron Nooman Molecule driving apparatus
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6163385A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Manufacture of rotor of turbo-molecular pump
JPS6385290A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump
JPS63118394U (en) * 1987-01-26 1988-07-30

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759098A (en) * 1980-08-11 1982-04-09 Mireron Nooman Molecule driving apparatus
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6163385A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Manufacture of rotor of turbo-molecular pump
JPS6385290A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump
JPS63118394U (en) * 1987-01-26 1988-07-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815078A (en) * 1994-06-29 1996-01-19 Ulvac Japan Ltd Leakage detecting device using compound molecular drag pump
CN114352553A (en) * 2021-12-31 2022-04-15 北京中科科仪股份有限公司 Vortex mechanism and composite molecular pump
CN114352553B (en) * 2021-12-31 2024-01-09 北京中科科仪股份有限公司 Vortex mechanism and compound molecular pump

Also Published As

Publication number Publication date
JP2627437B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US5160250A (en) Vacuum pump with a peripheral groove pump unit
US5219269A (en) Vacuum pump
EP1318309B1 (en) Vacuum pump
KR102123137B1 (en) Clamped circular plate and vacuum pump
JPH02102385A (en) Gas exhaust system
EP3076021A1 (en) Component for vacuum pump, siegbahn type exhaust mechanism, and compound vacuum pump
CN108105121B (en) Multistage composite high-vacuum dry pump
JP3935865B2 (en) Vacuum pump
JPH0275796A (en) Composite vacuum pump
EP0477924B1 (en) Turbo vacuum pump
US5217346A (en) Vacuum pump
JPS60204997A (en) Composite vacuum pump
JP2628351B2 (en) Compound molecular pump
US20230109154A1 (en) Axial flow vacuum pump with curved rotor and stator blades
US5803713A (en) Multi-stage liquid ring vacuum pump-compressor
JPH02264196A (en) Turbine vacuum pump
EP2956674B1 (en) Vacuum pump
JP2724840B2 (en) Compound vacuum pump
JP2004293377A (en) Multi-stage dry pump
KR20230115704A (en) Turbo Compressor
JPH07101039B2 (en) Compound vacuum pump
JPH01170795A (en) Vortex turbo-machinery
JP2696370B2 (en) Circumferential groove vacuum pump
JPS63192987A (en) Centrifugal high vacuum pump
JP2004116509A (en) Multiple stage vortex fluid machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees