JP2628351B2 - Compound molecular pump - Google Patents

Compound molecular pump

Info

Publication number
JP2628351B2
JP2628351B2 JP63186632A JP18663288A JP2628351B2 JP 2628351 B2 JP2628351 B2 JP 2628351B2 JP 63186632 A JP63186632 A JP 63186632A JP 18663288 A JP18663288 A JP 18663288A JP 2628351 B2 JP2628351 B2 JP 2628351B2
Authority
JP
Japan
Prior art keywords
pump section
molecular pump
circumferential groove
vacuum pump
rotating disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63186632A
Other languages
Japanese (ja)
Other versions
JPH0237197A (en
Inventor
達治 池上
哲郎 大林
恵一 吉田
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP63186632A priority Critical patent/JP2628351B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH0237197A publication Critical patent/JPH0237197A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,463 priority patent/US5160250A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,365 priority patent/US5217346A/en
Application granted granted Critical
Publication of JP2628351B2 publication Critical patent/JP2628351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は粒子加速器、核融合実験、同位体分離等の実
験研究装置、電子顕微鏡、表面分析計等の分析計測装
置、及び半導体製造真空装置等の工業用真空装置におい
て、中真空から高真空及び超高真空にわたる圧力範囲で
有用な複合分子ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial application field The present invention relates to an experimental research device such as a particle accelerator, a nuclear fusion experiment, an isotope separation, an analytical measuring device such as an electron microscope and a surface analyzer, and a semiconductor manufacturing vacuum. The present invention relates to a composite molecular pump useful in an industrial vacuum device such as a device in a pressure range from medium vacuum to high vacuum and ultra-high vacuum.

(2)従来の技術 従来この種の複合分子ポンプとして、第22図の如く吸
気口(a)と排気口(b)とを有する筐体(c)内に、
該吸気口(a)側からターボ分子ポンプ部(d)及びね
じ溝ポンプ部(e)を順次配設したものが知られてい
る。尚、(f)はこれらターボ分子ポンプ部(d)及び
ねじ溝ポンプ部(e)のロータ(g)の回転軸、(h)
は該軸(f)を回転させるモータを示す。
(2) Prior Art Conventionally, as a composite molecular pump of this type, a casing (c) having an intake port (a) and an exhaust port (b) as shown in FIG.
It is known that a turbo molecular pump section (d) and a thread groove pump section (e) are sequentially arranged from the intake port (a) side. (F) is the rotation axis of the rotor (g) of the turbo molecular pump section (d) and the thread groove pump section (e), (h)
Denotes a motor for rotating the shaft (f).

(3)発明が解決しようとする問題点 この従来の複合分子ポンプによれば、吸入圧が10-1Pa
以上の領域における排気速度の伸長が不十分で、且つ低
い吸入圧を維持できる背圧の最大許容圧力を十分高い値
とすることが困難であり、特に大型の複合分子ポンプに
おいて問題を有している。
(3) Problems to be solved by the invention According to this conventional composite molecular pump, the suction pressure is 10 -1 Pa
The evacuation speed in the above region is insufficiently elongated, and it is difficult to set the maximum allowable pressure of the back pressure capable of maintaining a low suction pressure to a sufficiently high value. I have.

この問題を解決するためには、ねじ溝ポンプの入口で
の排気速度が、ポンプの吸気口での排気速度に相応した
割合、即ち10分の1程度以上の大きさをもち、且つ最大
許容背圧が十分高くなければならない。そのためには、
ねじ溝ポンプ部(e)のねじ溝入口の断面積、その周速
及びねじ溝の長さと関連してロータの軸方向長さを大き
くする必要がある。つまりロータ(g)の径を十分大き
くし、外周部の肉厚を厚くしてねじ溝の断面積を大きく
し、軸方向寸法を長くし、且つロータ(g)外周とステ
ータとの間の隙間を十分小さくすることが必要である。
しかしねじ溝ポンプ部(e)は肉厚の外筒部分が外周部
にあるため、遠心力による応力と伸びが大となると共に
重く、大型の複合分子ポンプではロータ(g)の径をタ
ーボ分子ポンプ部(d)のロータ外径より小さくせざる
を得ない。その結果ターボ分子ポンプ部(d)の段数の
増加につながり大型化し、加工組立が煩雑でさらに肉厚
の円筒形ロータ(g)は重くて回転軸廻りの慣性モーメ
ントが大きく、その結果始動時の加速トルク及び停止時
の電気ブレーキトルクが大きくなり、モータ(h)が大
形になって、駆動電源の容量も大きくなり、全体的に高
価となる等の欠点を有し、しかも十分な高流量性能の達
成も困難な問題を有している。
In order to solve this problem, the pumping speed at the inlet of the thread groove pump has a ratio corresponding to the pumping speed at the inlet of the pump, that is, about one-tenth or more, and the maximum allowable height is smaller. The pressure must be high enough. for that purpose,
It is necessary to increase the axial length of the rotor in relation to the cross-sectional area of the thread groove inlet of the thread groove pump section (e), its peripheral speed and the length of the thread groove. That is, the diameter of the rotor (g) is made sufficiently large, the thickness of the outer peripheral portion is increased, the cross-sectional area of the thread groove is increased, the axial dimension is lengthened, and the clearance between the outer periphery of the rotor (g) and the stator is increased. Needs to be sufficiently small.
However, since the thread groove pump portion (e) has a thick outer cylinder portion on the outer peripheral portion, the stress and elongation due to centrifugal force are large and heavy, and the diameter of the rotor (g) is large in a large composite molecular pump. It must be smaller than the rotor outer diameter of the pump section (d). As a result, the number of stages of the turbo molecular pump section (d) increases, resulting in an increase in size, complicated processing and assembly, and a thick cylindrical rotor (g) is heavy and has a large moment of inertia around the rotation axis. Acceleration torque and electric brake torque at the time of stop increase, the motor (h) becomes large, the capacity of the drive power supply also increases, and it has the disadvantage that it is expensive overall, and has a sufficiently high flow rate. Achieving performance also has difficult problems.

本発明は、これらの問題点を解消し中真空から高真空
及び超高真空にわたる圧力範囲で大きな排気速度を有し
大型機としても好適な複合分子ポンプを安価に提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to provide a low-cost composite molecular pump which has a large pumping speed in a pressure range from medium vacuum to high vacuum and ultra-high vacuum and is suitable as a large machine.

(4)問題点を解決するための手段 この問題を達成すべく本発明は、吸気口と排気口を有
する筐体内に、該吸気口側からターボ分子ポンプ部及び
円周溝真空ポンプ部を順次配設し、該円周溝真空ポンプ
部は、複数の回転円板の周辺部を切欠いて形成した切欠
段部と該回転円板が介入されるステータに形成の環状の
凹部とにより前記各回転円板の周辺部に形成された通風
路と、隣り合う該通風路間を連通する連通路とからなる
ことを特徴とする。
(4) Means for Solving the Problems In order to achieve this problem, the present invention provides a turbo molecular pump section and a circumferential groove vacuum pump section in a housing having an intake port and an exhaust port sequentially from the intake port side. The circumferential groove vacuum pump section is provided with a notch step formed by notching the periphery of the plurality of rotating disks and an annular concave portion formed in the stator through which the rotating disks are interposed. It is characterized by comprising a ventilation path formed in a peripheral portion of the disc and a communication path communicating between adjacent ventilation paths.

(5)作用 分子流状態で吸気口に流入した気体は、ターボ分子ポ
ンプ部の高速回転する多数の動翼及び静翼によりこの部
分を移送圧縮される。そして次の円周溝真空ポンプ部に
おいて、この圧縮移動された気体は高速回転する回転円
板の特に高速回転する周辺部により気体分子摩擦による
モレキュラードラッグ効果による輸送効果を生じて分子
流から粘性流となり大きな排気速度で排気口に向って圧
縮排気される。
(5) Operation The gas that has flowed into the intake port in the state of molecular flow is transported and compressed in this part by a large number of high-speed rotating blades and stationary blades of the turbo molecular pump section. Then, in the next circumferential groove vacuum pump section, the compressed and moved gas is transported by the molecular drag effect due to gas molecule friction due to the gas molecule friction due to the particularly high-speed rotating peripheral portion of the rotating disk, and the viscous flow from the molecular flow. Compressed exhaust is performed toward the exhaust port at a high exhaust speed.

(6)実 施 例 本発明の複合分子ポンプの第1実施例を第1図乃至第
10図に従って説明する。
(6) Embodiment FIGS. 1 to 3 show a first embodiment of the composite molecular pump of the present invention.
Explanation will be given according to FIG.

(1)は筐体を示し、該筐体(1)内にはその上部に
ターボ分子ポンプ部(2)とその下方に円周溝真空ポン
プ部(3)が設けられており、前記ターボ分子ポンプ部
(2)はロータ(4)の外周面に突設した多数の動翼
(2a)と前記筐体(1)の内周面に突設した多数の静翼
(2b)とからなり、又前記円周溝真空ポンプ部(3)は
次のように構成されている。
(1) shows a housing, in which a turbo-molecular pump section (2) is provided at an upper part thereof and a circumferential groove vacuum pump section (3) is provided below the turbo-molecular pump section. The pump section (2) is composed of a number of moving blades (2a) protruding from the outer peripheral surface of the rotor (4) and a number of stationary blades (2b) protruding from the inner peripheral surface of the housing (1). Further, the circumferential groove vacuum pump section (3) is configured as follows.

即ち前記ロータ(4)の外周面に4枚の回転円板(3
a)が突設されており、これら回転円板(3a)はその上
方から下方になるに従って板厚を順次大から小にすると
共に両面の周辺部を切欠いて切込段部(3b)(3b)に形
成し、これら各回転円板(3a)の切込段部(3b)(3b)
の切込み深さを上方から下方になるに従って前述と同様
に大から小にした。又(3c)は前記筐体(1)の内面に
固定したステータを示し、該ステータ(3c)は前記回転
円板(3a)に相当する位置において該回転円板(3a)が
介入される環状の凹部(3d)が形成されており、該凹部
(3d)と前記切込段部(3b)(3b)により前記各回転円
板(3a)の周辺部の両面に通風路(3e)(3e)を形成し
た。
That is, four rotating disks (3) are provided on the outer peripheral surface of the rotor (4).
a) are protrudingly provided, and these rotating disks (3a) are gradually reduced in thickness from the upper side to the lower side, and the peripheral portions of both sides are notched so that the cutting steps (3b) (3b) ), And the cutting steps (3b) (3b) of these rotary disks (3a)
The depth of cut was changed from large to small in the same manner as described above as going from top to bottom. Reference numeral (3c) denotes a stator fixed to the inner surface of the housing (1), and the stator (3c) has an annular shape in which the rotating disk (3a) is interposed at a position corresponding to the rotating disk (3a). Recesses (3d) are formed, and the recesses (3d) and the notch steps (3b) (3b) provide ventilation passages (3e) (3e) on both surfaces of the peripheral portion of each rotating disk (3a). ) Formed.

ここで各回転円板(3a)の通風路(3e)(3e)におけ
る回転円板(3a)側とステータ(3c)側の対向面間の距
離bは前述の如く切込段部(3b)(3b)の切込み深さに
応じて上方から下方になるに従って大から小になる。そ
して前記各凹部(3d)に、前記回転円板(3a)の周辺部
が通過する部分を截除した隔壁(3f)を前記ステータ
(3c)より突設して該隔壁(3f)により通風路(3e)
(3e)を区切り、隣り合う回転円板(3a)(3a)の通風
路(3e)(3e)及び(3e)(3e)において上流側の回転
円板(3a)の通風路(3e)(3e)の隔壁(3f)の他側の
終端部と下流側の回転円板(3a)の通風路(3e)(3e)
の隔壁(3f)の1側の始端部との間を連通路(3g)によ
り連通し、更にこれら隔壁(3f)及び連通路(3g)を第
2図乃至第9図の如く上流側から下流側に至るに従って
その位置を順次ずらせて形成し、かくて吸気口からの気
体分子は連通路(3g)を介して送られながら各回転円板
(3a)の通風路(3e)(3e)において順次圧縮され、相
当に高い圧縮比が得られる。そして最も上流側の回転円
板(3a)の通風路(3e)(3e)の隔壁(3f)の1側の始
端部を第1図及び第2図の如くターボ分子ポンプ部
(2)からの中間吸気口(10)に、又最も下流側の回転
円板(3a)の通風路(3e)(3e)の隔壁(3f)の他側の
終端部を第1図、第2図及び第10図の如く排気口(9)
に連通した。排気口(9)のフランジには補助真空ポン
プに接続する配管を結合する。
Here, the distance b between the opposed surfaces of the rotating disk (3a) side and the stator (3c) side in the ventilation path (3e) (3e) of each rotating disk (3a) is, as described above, the notch step (3b) According to the cutting depth of (3b), the size decreases from large to small as going from top to bottom. In each of the recesses (3d), a partition wall (3f) obtained by cutting off a portion through which the peripheral portion of the rotating disk (3a) passes is provided so as to protrude from the stator (3c), and a ventilation path is formed by the partition wall (3f). (3e)
(3e), the ventilation paths (3e) and (3e) of the adjacent rotating disks (3a) and (3a) and the ventilation paths (3e) and (3e) of the upstream rotating disk (3a) in (3e) and (3e) 3e) Ventilation path (3e) (3e) of the other end of partition wall (3f) and downstream rotating disk (3a)
A communication path (3g) communicates with the first end of the partition wall (3f) through a communication path (3g), and further connects the partition wall (3f) and the communication path (3g) from the upstream side to the downstream side as shown in FIGS. The gas molecules from the suction port are sent through the communication path (3g) in the ventilation passages (3e) and (3e) of each rotating disk (3a) while being shifted through the communication port (3g). Compression is performed sequentially to obtain a considerably high compression ratio. As shown in FIGS. 1 and 2, the starting end of the partition wall (3f) of the ventilation path (3e) (3e) of the most upstream rotating disk (3a) is connected to the turbo molecular pump section (2). The other end of the partition (3f) of the ventilation path (3e) (3e) of the most downstream rotating disk (3a) is connected to the intermediate intake port (10) and to the other end of the partition (3f) in FIGS. Exhaust port (9) as shown
Communicated with A pipe connected to the auxiliary vacuum pump is connected to the flange of the exhaust port (9).

前記ポンプ部(2)(3)のロータ(4)の軸(4a)
は前記筐体(1)の下方部のモータ筐体(1a)から上方
に突出する内筒(1b)の上方部に設けた上部軸受(5a)
及び該モータ筐体(1a)の底板(1c)に設けた下部軸受
(5b)によって支承し、又前記軸(4a)の中間部には前
記モータ筐体(1a)内に設けたインダクションモータ、
ヒステリシスモータ等からなる高周波モータ(6)のロ
ータ(6a)が固定されていると共に、該軸(4a)の下端
部が前記底板(1c)の下方に設けた潤滑油槽(7)内の
潤滑油中に没入しており、前記高周波モータ(6)の駆
動による前記軸(4a)の高速回転によって潤滑油が該軸
(4a)の中心孔(4b)及びその枝孔(4c)を経て上部軸
受(5a)に供給される。又下部軸受(5b)は前記モータ
筐体(1a)の内周に設けた溝より潤滑油が供給される。
The shaft (4a) of the rotor (4) of the pump section (2) (3)
Is an upper bearing (5a) provided above the inner cylinder (1b) projecting upward from the motor housing (1a) below the housing (1).
And an induction motor supported by a lower bearing (5b) provided on a bottom plate (1c) of the motor housing (1a), and an intermediate portion of the shaft (4a) provided in the motor housing (1a).
A rotor (6a) of a high-frequency motor (6) composed of a hysteresis motor or the like is fixed, and a lower end of the shaft (4a) is provided in a lubricating oil tank (7) provided below the bottom plate (1c). The lubricating oil is immersed in the upper bearing through the center hole (4b) of the shaft (4a) and its branch hole (4c) by the high-speed rotation of the shaft (4a) driven by the high-frequency motor (6). (5a). The lower bearing (5b) is supplied with lubricating oil from a groove provided on the inner periphery of the motor housing (1a).

かくて前記ポンプ部(2)(3)の動翼(2a)、回転
円板(3a)は一体化されたロータ(4)により構成して
いるので高速回転によっても振動も小さく騒音が殆ど発
生しない。尚(8)は吸気口を示す。
Thus, since the rotor blades (2a) and the rotating disk (3a) of the pump sections (2) and (3) are constituted by an integrated rotor (4), vibrations are small even at high speed rotation and almost no noise is generated. do not do. Incidentally, (8) indicates an intake port.

次に上記実施例の複合分子ポンプの作動を説明する。 Next, the operation of the composite molecular pump of the above embodiment will be described.

高周波モータ(6)の駆動によりロータ(4)が高速
で回転しているとき、吸気口(8)に流入する気体は分
子流あるいはそれに近い中間流状態にあり、その気体分
子はターボ分子ポンプ部(2)の回転する動翼(2a)に
衝突し、該動翼(2a)と前記筐体(1)から突設した静
翼(2b)との作用により、該動翼(2a)の移動する円周
方向と軸(4a)に平行に下方向に運動量が与えられ、積
層された前記動翼(2a)及び静翼(2b)の回転により下
方に圧縮移動される。分子ポンプ部(2)は、始動時の
加速中は、密度の高い気体がポンプ内に存在することに
よる風損と、ロータ(4)の慣性モーメントに対する加
速トルクが大きく、モータ(6)の入力電流が過大にな
らないように自動的に制限し、回転数を制御している。
When the rotor (4) is rotating at a high speed by driving the high frequency motor (6), the gas flowing into the intake port (8) is in a molecular flow or an intermediate flow state close thereto, and the gas molecules are in a turbo molecular pump section. The moving blade (2a) collides with the rotating blade (2a) of (2), and moves by the action of the moving blade (2a) and the stationary blade (2b) protruding from the housing (1). Momentum is given downward in a direction parallel to the circumferential direction and the axis (4a), and is compressed and moved downward by the rotation of the stacked moving blades (2a) and stationary blades (2b). During acceleration at the time of starting, the molecular pump unit (2) has a large windage due to the presence of a gas having a high density in the pump and a large acceleration torque with respect to the moment of inertia of the rotor (4). The current is automatically limited so that the current does not become excessive, and the number of rotations is controlled.

圧縮移動された気体は中間吸気口(10)を経て前記ロ
ータ(4)に一体に形成された円周溝真空ポンプ部
(3)の回転円板(3a)の最も高速回転移動する周辺部
の切込段部(3b)(3b)の両面に当ってこの時の気体分
子摩擦によるモレキュラードラッグ効果により輸送効果
が生じ連通路(3g)を介して各回転円板(3a)の通風路
(3e)(3e)を第2図の矢印の如く順次輸送され、分子
流から粘性流にある圧力領域において排気作用を生じて
全体として大きな圧縮比を実現し、排気口(9)から補
助真空ポンプによって大気圧まで圧縮される。
The compressed and moved gas passes through the intermediate suction port (10) and forms the peripheral portion of the rotating disk (3a) of the circumferential groove vacuum pump section (3) integrally formed with the rotor (4) at the highest rotational speed. The transport effect occurs due to the molecular drag effect due to the gas molecule friction at this time on both sides of the notch step (3b) (3b), and the ventilation path (3e) of each rotating disk (3a) passes through the communication path (3g). (3e) is sequentially transported as indicated by the arrow in FIG. 2, and a large compression ratio is realized as a whole by evacuating in the pressure region where the molecular flow is in a viscous flow, and the auxiliary vacuum pump is used from the exhaust port (9). Compressed to atmospheric pressure.

ここで、発明者の実験によれば、円周溝真空ポンプ1
段だけで分子流から粘性流領域で10倍の圧縮比が得ら
れ、この実施例の如く4段の構成により容易に104以上
の圧縮比とすることができる。又前述した従来の複合分
子ポンプにおいて窒素ガス(N2)に対する吸気口圧力と
排気速度との関係は第11図の実線のグラフの如くなり、
窒素ガス(N2)及び水素ガス(H2)に対する排気口圧力
と圧縮比との関係は第12図の実線のグラフの如くなりこ
れら実線で示す従来の複合分子ポンプの性能に対し破線
で示す本発明の複合分子ポンプの性能は同等以上を実現
できる。
Here, according to the experiment of the inventor, according to the circumferential groove vacuum pump 1
A compression ratio of 10 times can be obtained in the viscous flow region from the molecular flow only by the stage, and a compression ratio of 10 4 or more can be easily achieved by the four-stage configuration as in this embodiment. In addition, in the above-described conventional composite molecular pump, the relationship between the inlet pressure and the exhaust speed for nitrogen gas (N 2 ) is as shown by the solid line graph in FIG.
The relationship between the outlet pressure and the compression ratio for nitrogen gas (N 2 ) and hydrogen gas (H 2 ) is as shown by the solid line graph in FIG. 12, which is indicated by the broken line with respect to the performance of the conventional composite molecular pump shown by these solid lines. The performance of the composite molecular pump of the present invention can be equal or better.

又、各回転円板(3a)の通風路(3e)(3e)を連通路
(3g)で直接連通する式であるので、特別の連通のため
の管路を必要とせず、筐体(1)内のスペースの有効利
用が図れ、円周溝真空ポンプ部(3)の軸方向長さは、
同じ性能をもつねじ溝真空ポンプ部を想定した時の軸方
向長さに比して、約3分の1と短くて済み、ロータ
(4)は軽量で、回転の慣性モーメントははるかに小さ
くなる。
In addition, since the ventilation passages (3e) and (3e) of each rotating disk (3a) are directly communicated with the communication passage (3g), no special communication conduit is required, and the casing (1) is not required. The space in the parentheses can be used effectively, and the axial length of the circumferential groove vacuum pump (3) is
Compared to the axial length assuming a thread groove vacuum pump part having the same performance, it is only required to be about one-third shorter, the rotor (4) is lightweight, and the moment of inertia of rotation is much smaller. .

尚、前記第1実施例では、円周溝真空ポンプ部(3)
を4枚の回転円板(3a)により構成した場合を示した
が、要求される圧縮比により回転円板(3a)が1〜3枚
或いは5枚以上のいずれにより構成してもよい。
In the first embodiment, the circumferential groove vacuum pump section (3)
Is shown with four rotating disks (3a), but the number of rotating disks (3a) may be one to three or five or more depending on the required compression ratio.

次に第13図乃至第16図は円周溝真空ポンプ部の第2実
施例を示し、該実施例においては前記各回転円板(3a)
の通風路(3e)(3e)における回転円板(3a)側とステ
ータ(3c)側の対向面間の距離bが始端部から終端部に
向って徐々に小となるように形成した。かくて前記第1
実施例の如く回転円板(3a)を高速に回転すると、通風
路(3e)(3e)内の気体はその始端部から終端部に至る
に従って高い圧力となって気体の平均自由行程λが小と
なり、これに応じて前述の如く通風路(3e)(3e)の対
向面間の距離bが徐々に小となるので、溝の深さbと気
体分子の平均自由行程λとの比b/λが最適値に近い値を
保ち輸送効果が更に増大すると共に排気圧縮性能が向上
する。
Next, FIGS. 13 to 16 show a second embodiment of the circumferential groove vacuum pump section, in which the rotary disks (3a) are used.
The distance b between the opposed surfaces of the rotating disk (3a) and the stator (3c) in the ventilation passages (3e) and (3e) is gradually reduced from the start end to the end. Thus the first
When the rotating disk (3a) is rotated at a high speed as in the embodiment, the gas in the ventilation passages (3e) and (3e) becomes high in pressure from the start end to the end, and the mean free path λ of the gas becomes small. Accordingly, as described above, the distance b between the facing surfaces of the ventilation passages (3e) and (3e) becomes gradually smaller as described above, so that the ratio b / of the depth b of the groove to the mean free path λ of the gas molecules is obtained. λ is kept close to the optimum value, the transport effect is further increased, and the exhaust compression performance is improved.

第17図は円周溝真空ポンプ部の第3実施例を示し、該
実施例においては、前記各回転円板(3a)の周辺部の切
込段部(3b)(3b)の個所の肉厚を外方になるに従って
徐々に薄く形成すると共に、これら切込段部(3b)(3
b)とこれらに対向する前記凹部(3d)の内面との間の
距離bは半径方向のいずれの位置でも等しくなるように
該凹部(3d)を外方に向うのに従って間隔が狭くなるよ
うに形成しており、かくて前記回転円板(3a)の周辺部
の切込段部(3b)(3b)の個所の肉厚が外方になるのに
従って徐々に小となっているので、該回転円板(3a)が
高速で回転してもその中心部に作用する遠心応力の最大
値が小となり、従って該回転円板(3a)にかなりの強度
を要求されることなく、該回転円板(3a)の材質として
エンジニアリングプラスチックやセラミックス、或いは
鋳造物であってもよく、更に大型機を容易に製作可能と
なる。
FIG. 17 shows a third embodiment of a circumferential groove vacuum pump unit. In this embodiment, the thickness of the cutting steps (3b) and (3b) at the periphery of each rotary disk (3a) is shown. As the thickness is gradually reduced toward the outside, these cutting steps (3b) (3
The distance b between the inner surface of the concave portion (3d) and the inner surface of the concave portion (3d) is set so that the distance becomes smaller as the concave portion (3d) faces outward so that the distance b becomes equal at any position in the radial direction. Since the thickness of the cutting steps (3b) and (3b) at the periphery of the rotating disk (3a) becomes gradually smaller as going outward, Even if the rotating disk (3a) rotates at a high speed, the maximum value of the centrifugal stress acting on the center of the rotating disk (3a) becomes small, so that the rotating disk (3a) is not required to have considerable strength, and The material of the plate (3a) may be engineering plastic, ceramics, or a casting, and a large machine can be easily manufactured.

又、第18図乃至第21図は円周溝真空ポンプ部の第4実
施例を示し、該実施例においては各回転円板(3a)の通
風路(3e)(3e)において前記中間吸気口(10)、連通
路(3g)又は排気口(9)をそれぞれ180度の間隔をも
って2個所設けると共に、これに応じて隔壁(3f)も2
個所設けており、かくて隔壁(3f)(3f)により仕切ら
れた2個所の略半円周状の通風路(3e)(3e)において
気体分子が圧縮排気されるので、その排気速度は略2倍
になる。尚この実施例では2個の隔壁(3f)により通風
路(3e)(3e)を2個所に区切った例を示したが、3個
以上の隔壁(3f)により通風路(3e)(3e)を3個所以
上に区切ってもよい。
FIGS. 18 to 21 show a fourth embodiment of a circumferential groove vacuum pump unit. In this embodiment, the intermediate intake port is provided in the ventilation passages (3e) and (3e) of each rotating disk (3a). (10) Two communication passages (3g) and two exhaust ports (9) are provided at intervals of 180 degrees, and the partition (3f) is also two
Since gas molecules are compressed and exhausted in two substantially semicircular ventilation passages (3e) and (3e) separated by the partition walls (3f) and (3f), the exhaust speed is substantially the same. Double. In this embodiment, an example is shown in which the ventilation path (3e) (3e) is divided into two places by two partition walls (3f). May be divided into three or more places.

(7)発明の効果 このように本発明によると吸気口と排気口とを有する
筐体内に吸気口側からターボ分子ポンプ部及び円周溝真
空ポンプ部とを順次配設し、吸気口からの気体をターボ
分子ポンプ部において一旦圧縮移送してから円周溝真空
ポンプ部においてその回転円板の特に高速に回転する周
辺部により前記気体が気体分子摩擦によるモレキュラー
ドラッグで効率的な輸送効果を生ずると共に円周溝真空
ポンプ部の排気速度を決定する第1段目の回転円板の通
風路への吸気口を半径方向に大きな寸法をとることが可
能となり、かくて大きな排気速度を得ることができ、更
に円周溝真空ポンプ部の回転円板の段数を増すことによ
り大きな圧縮比が得られて中真空から超高真空にわたる
圧力範囲に対する効率的な排気圧縮が可能になり、更に
円周溝真空ポンプ部の軸方向の長さは同性能のものに比
し短くて済み、ロータが軽量で慣性モーメントは小さく
て済むので、高い加工精度が要求されず廉価に得られる
と共に性能上好ましい大型機を得ることも可能となる効
果を有する。
(7) Effects of the Invention According to the present invention, as described above, the turbo molecular pump section and the circumferential groove vacuum pump section are sequentially arranged from the intake port side in the housing having the intake port and the exhaust port, and The gas is compressed and transferred once in the turbo-molecular pump unit, and then the gas is efficiently transported by molecular drag due to gas molecule friction due to the particularly high-speed rotating peripheral portion of the rotating disk in the circumferential groove vacuum pump unit. At the same time, it is possible to take a large dimension in the radial direction of the intake port to the ventilation path of the first-stage rotating disk which determines the pumping speed of the circumferential groove vacuum pump section, thus obtaining a large pumping speed. By increasing the number of rotating disks in the circumferential groove vacuum pump section, a large compression ratio can be obtained, enabling efficient exhaust compression in a pressure range from medium vacuum to ultra-high vacuum. The axial length of the peripheral groove vacuum pump part is shorter than that of the same performance, the rotor is lightweight and the moment of inertia is small, so high processing accuracy is not required and it can be obtained at low cost and is preferable in performance. This has the effect that a large machine can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の複合分子ポンプの第1実施例の全体の
断面図、第2図は第1図のI−I線截断面図、第3図は
第2図のII−II線截断面図、第4図は第2図のIII−III
線截断面図、第5図は第2図のIV−IV線截断面図、第6
図は第2図のV−V線截断面図、第7図は第2図のVI−
VI線截断面図、第8図は第2,図VII−VII線截断面図、第
9図は第2図のVIII−VIII線截断面図、第10図は第2図
のIX−IX線截断面図、第11図は吸気口圧力と排気速度と
の関係を示すグラフ、第12図は排気口圧力と圧縮比との
関係を示すグラフ、第13図は円周溝真空ポンプ部の第2
実施例の平面図、第14図は第13図のI−I線の1部の截
断面図、第15図は第13図のII−II線の1部の截断面図、
第16図は第13図のIII−III線の1部の截断面図、第17図
は円周溝真空ポンプ部の第3実施例の部分断面図、第18
図は円周溝真空ポンプ部の第4実施例の平面図、第19図
は第18図のI−I線の1部の截断面図、第20図は第18図
のII−II線の1部の截断面図、第21図は第18図のIII−I
II線の1部の截断面図、第22図は従来の複合分子ポンプ
の断面図である。 (1)……筐体 (2)……ターボ分子ポンプ部 (3)……円周溝真空ポンプ部 (8)……吸気口 (9)……排気口
1 is an overall sectional view of a first embodiment of a composite molecular pump according to the present invention, FIG. 2 is a sectional view taken along line II of FIG. 1, and FIG. 3 is a sectional view taken along line II-II of FIG. Fig. 4 is III-III in Fig. 2.
5 is a sectional view taken along the line IV-IV in FIG. 2, and FIG.
The drawing is a sectional view taken along the line VV of FIG. 2, and FIG.
8 is a sectional view taken along line VII-VII of FIG. 8, FIG. 9 is a sectional view taken along line VIII-VIII of FIG. 2, and FIG. 10 is a line IX-IX of FIG. FIG. 11 is a graph showing the relationship between the intake port pressure and the exhaust speed, FIG. 12 is a graph showing the relationship between the exhaust port pressure and the compression ratio, and FIG. 13 is a diagram showing the circumferential groove vacuum pump section. 2
FIG. 14 is a partial sectional view taken along line II of FIG. 13; FIG. 15 is a partial sectional view taken along line II-II of FIG. 13;
16 is a sectional view of a part taken along the line III-III of FIG. 13, FIG. 17 is a partial sectional view of a third embodiment of the circumferential groove vacuum pump section, and FIG.
FIG. 19 is a plan view of a fourth embodiment of a circumferential groove vacuum pump section, FIG. 19 is a cross-sectional view of a part taken along the line II of FIG. 18, and FIG. FIG. 21 is a sectional view of a part of FIG.
FIG. 22 is a cross-sectional view of a part of a conventional composite molecular pump taken along a line II. (1) ... Housing (2) ... Turbo molecular pump section (3) ... Circumferential groove vacuum pump section (8) ... Intake port (9) ... Exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 昌司 大阪府堺市鳳東町7―775 株式会社大 阪真空機器製作所堺工場内 (56)参考文献 特開 昭63−85287(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shoji Iguchi 7-775, Hotocho, Sakai-shi, Osaka Inside Sakai Plant of Osaka Vacuum Equipment Co., Ltd. (56) References JP-A-63-85287 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気口と排気口を有する筐体内に、該吸気
口側からターボ分子ポンプ部及び円周溝真空ポンプ部を
順次配設し、該円周溝真空ポンプ部は、複数の回転円板
の周辺部を切欠いて形成した切込段部と該回転円板が介
入されるステータに形成の環状の凹部とにより前記各回
転円板の周辺部に形成された通風路と、隣り合う該通風
路間を連通する連通路とからなることを特徴とする複合
分子ポンプ。
1. A turbo molecular pump section and a circumferential groove vacuum pump section are sequentially arranged from a suction port side in a housing having an inlet port and an exhaust port, and the circumferential groove vacuum pump section includes a plurality of rotating pumps. Adjacent to the ventilation passages formed in the periphery of each of the rotating disks by a notch step formed by cutting out the periphery of the disks and an annular recess formed in the stator through which the rotating disks are interposed. A composite molecular pump comprising: a communication path communicating between the ventilation paths.
JP63186632A 1988-07-13 1988-07-26 Compound molecular pump Expired - Fee Related JP2628351B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63186632A JP2628351B2 (en) 1988-07-26 1988-07-26 Compound molecular pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186632A JP2628351B2 (en) 1988-07-26 1988-07-26 Compound molecular pump

Publications (2)

Publication Number Publication Date
JPH0237197A JPH0237197A (en) 1990-02-07
JP2628351B2 true JP2628351B2 (en) 1997-07-09

Family

ID=16191978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186632A Expired - Fee Related JP2628351B2 (en) 1988-07-13 1988-07-26 Compound molecular pump

Country Status (1)

Country Link
JP (1) JP2628351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046766A1 (en) * 2000-09-21 2002-04-11 Leybold Vakuum Gmbh Compound-friction vacuum pump
JP6390479B2 (en) * 2015-03-18 2018-09-19 株式会社島津製作所 Turbo molecular pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575098A (en) * 1980-06-11 1982-01-11 Nippon Musical Instruments Mfg Automatic performance device
JPS6163385A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Manufacture of rotor of turbo-molecular pump
JPS6385287A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump

Also Published As

Publication number Publication date
JPH0237197A (en) 1990-02-07

Similar Documents

Publication Publication Date Title
US5160250A (en) Vacuum pump with a peripheral groove pump unit
US5219269A (en) Vacuum pump
JP2000274394A (en) Turbo molecular pump
JP6331491B2 (en) Vacuum pump
KR20160005679A (en) Clamped circular plate and vacuum pump
JP4086470B2 (en) Turbo molecular pump
JPS60125795A (en) Composite vacuum pump
JP2628351B2 (en) Compound molecular pump
JP3935865B2 (en) Vacuum pump
US5451147A (en) Turbo vacuum pump
JPH0786357B2 (en) Oil-free vacuum pump
JPS60204997A (en) Composite vacuum pump
JPH10141277A (en) Double discharge-type gas friction pump
JPH0538389U (en) Vacuum pump
US5217346A (en) Vacuum pump
JP2627437B2 (en) Compound vacuum pump
US7896625B2 (en) Vacuum pumping system and method of operating a vacuum pumping arrangement
JPS62258186A (en) Multi-stage type vacuum pump
JP2724840B2 (en) Compound vacuum pump
JP2865888B2 (en) Multi-turbo type vacuum pump
JPH02264196A (en) Turbine vacuum pump
JP2761486B2 (en) Circumferential groove vacuum pump
JP2000110771A (en) Turbo molecular pump
JPH05141389A (en) Vacuum pump
JPH03237297A (en) Turbo-molecular pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees