JPS60204997A - Composite vacuum pump - Google Patents

Composite vacuum pump

Info

Publication number
JPS60204997A
JPS60204997A JP59059847A JP5984784A JPS60204997A JP S60204997 A JPS60204997 A JP S60204997A JP 59059847 A JP59059847 A JP 59059847A JP 5984784 A JP5984784 A JP 5984784A JP S60204997 A JPS60204997 A JP S60204997A
Authority
JP
Japan
Prior art keywords
pump
spiral
rotor
centrifugal
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59059847A
Other languages
Japanese (ja)
Inventor
Shigeru Kaneto
金戸 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP59059847A priority Critical patent/JPS60204997A/en
Publication of JPS60204997A publication Critical patent/JPS60204997A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To permit the exhaust ranging from the atmospheric pressure to the superhigh vacuum range by a pump by forming a spiral gooved pump part and a centrifugal type pump into a pump case body and installing the rotors of these pump parts onto a common rotary shaft. CONSTITUTION:The captioned pump consists of a spiral-grooved pump part 3 and a centrifugal type pump part 4, and the rotor 5 of the spiral-grooved pump part 3 and the rotor 4a of the centrifugal type pump part 4 are installed onto a common rotary shaft 6. With the revolution of a motor 8, the rotors 5a and 4a revolve through the common rotary shaft 6, and the gas supplied from a suction port 9 is compressed by a spiral-grooved pump 3 equipped with a movable vane 3A, stationary vane 3B, and a spiral groove (not shown in the figure), and further compressed by the centrifugal pump 4 and discharged from a discharge port 10. Therefore, the exhaust ranging from the atmospheric pressure to the superhigh vacuum range is enabled by a pump. Further, the necessity of a rough suction pump and an auxiliary pump, etc. in the conventional method can be eliminated, and the necessity of space can be obviated, and a simple operation is permitted.

Description

【発明の詳細な説明】 本発明は大気圧から超高真空の領域まで1台のポンプに
より排気可能にした複合真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound vacuum pump capable of evacuation from atmospheric pressure to ultra-high vacuum with a single pump.

従来の超高真空ポンプとして スパンタイオンポンプ、
チタンサブリメーションポンプ、ターボ分子ポンプ、ク
ライオポンプ等があるが、これらのポンプのいずれも大
気圧から超高真空の領域まで排気するのに粗引ポンプや
補助ポンプを必要とし、かくて両ポンプ間の配管やバル
ブ、更には両ポンプの運転を制御するための複雑な制御
盤等も必要となり、真空tlシ(系として複雑になると
共にスペースをとる欠点があった。
Spanty ion pump as a conventional ultra-high vacuum pump,
There are titanium sublimation pumps, turbomolecular pumps, cryopumps, etc., but all of these pumps require a roughing pump or an auxiliary pump to pump air from atmospheric pressure to ultra-high vacuum. This requires piping and valves, as well as a complicated control panel to control the operation of both pumps, which has the drawback of making the vacuum system complex and taking up space.

本発明はこれらの欠−禮を排除し配管や/<ルプ等を不
必要にして筒中な真空排塩系でスペースをとらず1台の
ポツプで人気ハ、から超高!′L空の領域まで排気を口
[能にした複合真空ポツプを提0(することを目的とし
、その特徴とするところはポンプ筐体内に、少なくとも
らせん溝ポンプ部と遠心式ポンプ部を形成しこれらポン
プ部のロータを共通の回転軸に装γ、したごとにある。
The present invention eliminates these inconveniences, eliminates the need for piping, pipes, etc., uses an in-cylinder vacuum salt drainage system, and does not take up much space, making it extremely popular and extremely popular! The purpose of this pump is to provide a composite vacuum pump that allows exhaust air to reach the empty area, and its characteristic feature is that at least a helical groove pump section and a centrifugal pump section are formed within the pump housing. The rotors of these pump parts are mounted on a common rotating shaft.

′、−11本発明の1実施例を第1図乃至第7図番ご従
って説明する。
', -11 One embodiment of the present invention will be described with reference to FIGS. 1 to 7.

(1)はポンプ筐体を示し、該ポンプ筐体(1)内には
その1一方より順次ターボ分子ボンブ部(2)、らせん
溝ポンプ部(3)及び遠心式ポンプ部(4)を形成した
。そして該ターボ分子ポンプ部(2)はロータ(5)の
−上方部の外周面に設けた動翼(2a)・・・(2a)
と前記ポンプ筐体(1)の内周面に設けた静翼(2b)
・・・(2b)とがらなり、又前記らせん溝ポンプ部(
3)は前記ターボ分子ポンプ部(2)の動g(2a)・
・・(2a)と共通のロータ(5)の外周面に突設した
環状の板状動a(3a)・・・(3a)と前記ポンプ筐
体(1)の内周面に突設した環状の板状ARM (3b
)・・・(3b)とがらなり、これら各醇E (3b)
において動翼(3a)の下面に対向する上面には第2図
及び第3図示の如く該動翼(3a)の回転方向に従い内
方に向う多数のらせん溝(3c)・・・(3c)が、又
動翼(3a)の上面に対向する下面には該動翼(3a)
の回転方向に従い外方に向うらせん溝(3d)・・・(
3d)がそれぞれ形成されている。又前記遠心式ポンプ
部(4)は前記ロータ(5)に嵌着した回転軸(6)の
外周面に設けたロータ(4a)と前記ポンプ筐体(1)
の内周面に設けたステータ(4b)とからなる。
(1) indicates a pump housing, and inside the pump housing (1), a turbo molecular bomb part (2), a spiral groove pump part (3), and a centrifugal pump part (4) are sequentially formed from one side. did. The turbo-molecular pump section (2) consists of rotor blades (2a)...(2a) provided on the outer peripheral surface of the upper part of the rotor (5).
and a stator blade (2b) provided on the inner peripheral surface of the pump housing (1).
...(2b) The spiral groove pump part (
3) is the dynamic g(2a) of the turbo molecular pump section (2).
...An annular plate-like movement a (3a) protruding from the outer circumferential surface of the rotor (5) common to (2a)... (3a) and protruding from the inner circumferential surface of the pump housing (1) Annular plate-shaped ARM (3b
)...(3b) Togaranari, each of these E (3b)
As shown in FIGS. 2 and 3, the upper surface of the rotor blade (3a) opposite to the lower surface has a large number of spiral grooves (3c) facing inward according to the rotational direction of the rotor blade (3a). However, on the lower surface opposite to the upper surface of the rotor blade (3a), the rotor blade (3a)
Spiral groove (3d) that goes outward according to the rotation direction of (
3d) are formed respectively. Further, the centrifugal pump section (4) includes a rotor (4a) provided on the outer peripheral surface of a rotating shaft (6) fitted to the rotor (5) and the pump housing (1).
and a stator (4b) provided on the inner peripheral surface of the stator.

即ちターボ分子ポンプ部(2)とらせん溝ポンプ部(3
)のロータ(5)と遠心式ポンプ部(4)のロータ(4
a)は共通の回転軸(6)に装着されている。そして該
回転軸(6)は2 (Ill所の軸受(7a)(7b)
 で前記ポンプ筐体(1)に支持されている。
That is, the turbo molecular pump part (2) and the spiral groove pump part (3
) and the rotor (4) of the centrifugal pump section (4).
a) are mounted on a common rotating shaft (6). The rotating shaft (6) has two bearings (7a) (7b)
and is supported by the pump housing (1).

(8)は前記軸受(7a) (7b)間の前記ホ77’
 flf体(1)内に設けたモータ、(8a)はそのロ
ータ、(8b)はステータを示し、該ロータに前記回転
軸(6)を嵌着し、モータ(8)の駆動により該回転軸
(6)を介してターボ分子ポンプ部(2)とらせん溝ポ
ンプ部(3)のロータ(5)及び遠心式ポンプ部(4)
のロータ(4a)が共に回転するようにした。
(8) is the hole 77' between the bearings (7a) and (7b).
A motor provided in the flf body (1), (8a) is its rotor, (8b) is a stator, the rotary shaft (6) is fitted to the rotor, and the rotary shaft is driven by the motor (8). (6) through the rotor (5) of the turbomolecular pump part (2) and the helical groove pump part (3) and the centrifugal pump part (4)
The rotors (4a) of the two rotors rotate together.

ここで前記遠心式ポンプ部(4)のロータ(4a)は第
4図及び第5図示の如く中央に軸筒部(4C)を有する
円板(4d)で該円板(4d)の上面に放射状突条の質
(4e)・・・(4e)が形成されており、軸筒部(4
C)とステータ(4b)との間隙(4f)に進入した気
体は同転する質 (4e)・・・(4e)により遠心力が付与されて円&
(4d)の外方に排出されるようにした。又前記遠心式
ポンプ部(4)のステータ(4b)は第6図及び第7図
の如く周辺部の開口(4g)と中心部の開口(4h)を
有する−1−側円板(41)と、中心部の開口(4j)
を有する下側円板(4k)と、両者を連結する短円筒(
41)とからなり、これらの内部空間(4m)に放射状
のフィン(4n)・・・(4n)を突設し、前記開口(
4g)から内部空間(4m)内に進入した気体はフィン
(4n)・・・(4n)と熱交換して冷却されて前記開
口(4j)から排出し、気体の圧縮熱を放熱し易くなる
ようにした。
Here, the rotor (4a) of the centrifugal pump part (4) is a disc (4d) having a shaft cylinder part (4C) in the center as shown in FIGS. 4 and 5. The quality of radial protrusions (4e)...(4e) is formed, and the shaft cylinder part (4e) is formed.
The gas that has entered the gap (4f) between C) and the stator (4b) is given a centrifugal force by the co-rotating elements (4e)...(4e), causing a circle &
(4d) so that it is discharged to the outside. Further, the stator (4b) of the centrifugal pump section (4) is a -1-side disk (41) having an opening (4g) at the periphery and an opening (4h) at the center as shown in FIGS. 6 and 7. and the opening in the center (4j)
a lower disk (4k) having a
41), radial fins (4n)...(4n) are provided protrudingly in these internal spaces (4m), and the openings (
The gas that entered the internal space (4m) from 4g) exchanges heat with the fins (4n)...(4n), is cooled, and is discharged from the opening (4j), making it easier to radiate the heat of compression of the gas. I did it like that.

尚、(9)は吸気口、(10)は吐出口、(11)はス
リーブ、(12)は軸封部、(13)は前記101転軸
(6)内の油通路を介して前記軸受(7a) (7b)
に油を供給する油タンクを示す。
In addition, (9) is an intake port, (10) is a discharge port, (11) is a sleeve, (12) is a shaft sealing part, and (13) is the said bearing via the oil passage in said 101 rotating shaft (6). (7a) (7b)
Shows the oil tank that supplies oil to the

次にに記実施例のポンプの作動を説明 する。Next, we will explain the operation of the pump in the example below. do.

モータ(8)の駆動によれば共通の回転軸(6)を介し
てロータ(5)及び(4a)が共に回転し、かくて吸気
口(9)からの気体はターボ分子ポンプ部(2)におい
て回転する動χ(2a)と静1卜する静W (2b)・
とにより圧縮され、更にらせん溝ポンプ部(3)におい
て、該気体は第2図示の矢印入方向に回転する動’1(
3a)の下面に伴われて同方向の流れが生じ、その結果
該気体は静翼(3b)の上面のらせん溝(3c)・・・
(3c)内を第2図示の矢印Bの方向に流れて内側に圧
縮され、更に該気体は内側のクリアランス(3e)を経
て次に動W(3a)の上面に伴われて同方向の波れが生
じ、その結果類気体は静翼(3b)の下面のらせん溝(
3d)・・・(3d)内を第2図の矢印Cの方向に流れ
て外側に圧縮され、その後該気体は外側のクリアランス
(3f)を経てから前述と同様の圧縮作用を繰り返して
高圧縮され、更に遠心式ポンプ部(4)において回転す
るロータ(4a)の賓(4e)・・・(4e)と静lヒ
するステータ(4b)・・・(4b)とにより高圧に圧
縮されて吐出口(10)より排出される。従って大気圧
から超高真空の領域まで排気が可能となる。ここで前記
吐出口 (10)における圧力は大気圧以上でもよいし、或いは
大気圧以下でもよい。
According to the drive of the motor (8), the rotors (5) and (4a) rotate together through the common rotation shaft (6), and thus the gas from the intake port (9) is transferred to the turbo molecular pump section (2). The rotating motion χ (2a) and the static W (2b)
Further, in the spiral groove pump part (3), the gas is compressed by the movement '1 (
A flow in the same direction occurs along with the lower surface of the stator vane (3b), so that the gas flows through the spiral groove (3c) on the upper surface of the stator vane (3b)...
(3c) flows in the direction of arrow B shown in the second figure and is compressed inward, and the gas passes through the inner clearance (3e) and is then accompanied by the upper surface of the moving W (3a), causing waves in the same direction. As a result, similar gases flow into the helical groove (
3d) ... (3d) flows in the direction of arrow C in Figure 2 and is compressed outward, and then the gas passes through the outer clearance (3f) and repeats the same compression action as described above to become highly compressed. It is further compressed to high pressure by the rotor (4e)...(4e) of the rotating rotor (4a) and the stationary stator (4b)...(4b) in the centrifugal pump section (4). It is discharged from the discharge port (10). Therefore, exhaust can be performed from atmospheric pressure to ultra-high vacuum. Here, the pressure at the discharge port (10) may be above atmospheric pressure or below atmospheric pressure.

第8図は他の実験例を示し、この実施例においては、タ
ーボ分子ポンプ部(2)が存在せずにらせん溝ポンプ部
(3)と遠心式ポンプ部(4)との組合せからな・す、
該らせん溝ポンプ部(3)のロータ(5a)と遠心式ポ
ンプ部(4)のロータ(4a)が共通の回転軸(6)に
装着されている。
FIG. 8 shows another experimental example, in which the turbo-molecular pump part (2) is not present, but instead is a combination of a spiral groove pump part (3) and a centrifugal pump part (4). vinegar,
The rotor (5a) of the spiral groove pump section (3) and the rotor (4a) of the centrifugal pump section (4) are mounted on a common rotating shaft (6).

ここで前記いずれの実施例のものもモータ(8)等の駆
動部分が大気中にあるので、モータリード線や組合せ部
分の真空シールが不要であり、又駆動部分を大気圧以上
に清潔なカスでパージしておけば、腐蝕性ガスをポンプ
で型用するときでも該腐蝕性ガスが前記駆動部分に進入
することがない。
In each of the above embodiments, the driving parts such as the motor (8) are in the atmosphere, so there is no need to vacuum seal the motor lead wires or the combined parts. If the mold is purged with a pump, the corrosive gas will not enter the driving part even when the corrosive gas is used as a mold.

尚、前記実施例では軸受に軸受の潤滑油を使用した場合
を示したが、グリース筒滑油でもよく、又軸受として前
記実施例のころがり軸受の代りに磁気軸受或い1オス体
軸受等でもよい。更に駆動部として前記実施例の電動式
のモータの代りにエアータービン式のモータ等であって
もよい。
In addition, although the above embodiment shows the case where the bearing lubricating oil is used for the bearing, it is also possible to use grease cylinder lubricating oil, and instead of the rolling bearing of the above embodiment, a magnetic bearing, a single male bearing, etc. may be used as the bearing. good. Further, the driving portion may be an air turbine type motor or the like instead of the electric motor of the above embodiment.

このように本発明によるとポンプ筐体内に少なくともら
せん溝ポンプ部と遠心式ポンプ部を形成し、これらのポ
ンプ部のロータを共通の回転軸に装着したので、1台の
ポンプで大気圧から超高真空の領域まで排気可能で。
As described above, according to the present invention, at least the spiral groove pump section and the centrifugal pump section are formed within the pump housing, and the rotors of these pump sections are mounted on a common rotating shaft. Capable of evacuating to high vacuum areas.

従来の如く粗引ポンプや補助ポンプ等が不必要となり、
かくてII弔な真空排気系となってスペースをとらず、
操作も簡単になり、更に前記らせん溝ポンプ部は動翼と
静翼の段数が容易に増加し得て高真空が更に容易に得ら
れる効果を有する。
Roughing pumps and auxiliary pumps, etc., are no longer required as in the past.
In this way, it becomes a second-class vacuum evacuation system that does not take up space.
The operation is simple, and the number of stages of rotor blades and stationary blades can be easily increased in the spiral groove pump section, making it easier to obtain a high vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合真空ポンプの1実施例の縦断面図
、第2図はそのII −II線線断断面のV−V線面断
面図、第6図は第1図のVl−Vl線拡大截断面図、第
7図はその■−■線截線面断面図8図は他の実施例の縦
断面図である。 (1)・・・ポンプ筐体、 (3)・・・らせん溝ポンプ部、 (3a)・・・動翼、 (3b)・・・静翼、(4)・
・・遠心式ポンプ部、 (41)、(5)・・・ロータ、(6)・・・回転軸9
第1図 第4図 第5図 第6図 第7図
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the compound vacuum pump of the present invention, FIG. FIG. 7 is an enlarged cross-sectional view taken along the line Vl, FIG. 7 is a cross-sectional view taken along the line ■--■, and FIG. 8 is a longitudinal cross-sectional view of another embodiment. (1) Pump housing, (3) Spiral groove pump section, (3a) Moving blade, (3b) Stationary blade, (4)
... Centrifugal pump section, (41), (5) ... Rotor, (6) ... Rotating shaft 9
Figure 1 Figure 4 Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)ポンプ筐体内に、少なくともらせん溝ポンプ部と
遠心式ポンプ部を形成し、これらポンプ部のロータを共
通の回転軸に装着して成る複合真空ポンプ。
(1) A compound vacuum pump in which at least a spiral groove pump section and a centrifugal pump section are formed in a pump housing, and the rotors of these pump sections are mounted on a common rotating shaft.
(2)rfii記らせん溝ポンプ部は環状の板状動翼と
これに対向する面に複数のらせん溝を形成した環状の板
状静翼とからなる特許請求の範囲第1項記載の複合真空
ポンプ。
(2) The compound vacuum according to claim 1, wherein the rfii spiral groove pump section is composed of an annular plate-shaped rotor blade and an annular plate-shaped stator vane with a plurality of spiral grooves formed on the surface facing the rotor blade. pump.
JP59059847A 1984-03-28 1984-03-28 Composite vacuum pump Pending JPS60204997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059847A JPS60204997A (en) 1984-03-28 1984-03-28 Composite vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059847A JPS60204997A (en) 1984-03-28 1984-03-28 Composite vacuum pump

Publications (1)

Publication Number Publication Date
JPS60204997A true JPS60204997A (en) 1985-10-16

Family

ID=13125002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059847A Pending JPS60204997A (en) 1984-03-28 1984-03-28 Composite vacuum pump

Country Status (1)

Country Link
JP (1) JPS60204997A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631772A (en) * 1986-06-20 1988-01-06 Kobe Steel Ltd Vacuum pump and running method thereof
JPH01124396U (en) * 1988-02-17 1989-08-24
JPH01142594U (en) * 1988-03-24 1989-09-29
JPH02136595A (en) * 1988-11-16 1990-05-25 Anelva Corp Vacuum pump
JPH0465992U (en) * 1990-10-15 1992-06-09
EP2644893A2 (en) 2012-03-30 2013-10-02 Ebara Corporation Vacuum evacuation apparatus
WO2014181575A1 (en) 2013-05-09 2014-11-13 エドワーズ株式会社 Clamped circular plate and vacuum pump
WO2015079801A1 (en) 2013-11-28 2015-06-04 エドワーズ株式会社 Component for vacuum pump, siegbahn type exhaust mechanism, and compound vacuum pump
WO2015098275A1 (en) 2013-12-26 2015-07-02 エドワーズ株式会社 Vacuum exhaust mechanism, compound vacuum pump, and rotating body component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138113A (en) * 1974-08-01 1976-03-30 American Optical Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138113A (en) * 1974-08-01 1976-03-30 American Optical Corp

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631772A (en) * 1986-06-20 1988-01-06 Kobe Steel Ltd Vacuum pump and running method thereof
JPH01124396U (en) * 1988-02-17 1989-08-24
JPH01142594U (en) * 1988-03-24 1989-09-29
JPH02136595A (en) * 1988-11-16 1990-05-25 Anelva Corp Vacuum pump
JPH0465992U (en) * 1990-10-15 1992-06-09
EP2644893A2 (en) 2012-03-30 2013-10-02 Ebara Corporation Vacuum evacuation apparatus
KR20160005679A (en) 2013-05-09 2016-01-15 에드워즈 가부시키가이샤 Clamped circular plate and vacuum pump
WO2014181575A1 (en) 2013-05-09 2014-11-13 エドワーズ株式会社 Clamped circular plate and vacuum pump
JP2014218941A (en) * 2013-05-09 2014-11-20 エドワーズ株式会社 Stationary disks and vacuum pump
US10267321B2 (en) 2013-05-09 2019-04-23 Edwards Japan Limited Stator disk and vacuum pump
WO2015079801A1 (en) 2013-11-28 2015-06-04 エドワーズ株式会社 Component for vacuum pump, siegbahn type exhaust mechanism, and compound vacuum pump
KR20160090289A (en) 2013-11-28 2016-07-29 에드워즈 가부시키가이샤 Component for vacuum pump, siegbahn type exhaust mechanism, and compound vacuum pump
US10280937B2 (en) 2013-11-28 2019-05-07 Edwards Japan Limited Vacuum pump component, siegbahn type exhaust mechanism and compound vacuum pump
KR20160102160A (en) 2013-12-26 2016-08-29 에드워즈 가부시키가이샤 Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
WO2015098275A1 (en) 2013-12-26 2015-07-02 エドワーズ株式会社 Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
US10662957B2 (en) 2013-12-26 2020-05-26 Edwards Japan Limited Vacuum exhaust mechanism, compound type vacuum pump, and rotating body part

Similar Documents

Publication Publication Date Title
JPH04209980A (en) Molecular vacuum pump
JPS58150096A (en) High-vacuum rotary pump
JPS60125795A (en) Composite vacuum pump
JPS60204997A (en) Composite vacuum pump
JPS61145394A (en) Molecular pump
JPH0538389U (en) Vacuum pump
JPH0419393B2 (en)
JPH05141389A (en) Vacuum pump
JP2865888B2 (en) Multi-turbo type vacuum pump
JPH02264196A (en) Turbine vacuum pump
JP2770732B2 (en) Lubrication-free vacuum pump
JP2546174Y2 (en) Compound vacuum pump
JP3829415B2 (en) Turbo machine
JPH03237297A (en) Turbo-molecular pump
JP2628351B2 (en) Compound molecular pump
JPH0311193A (en) Vacuum pump
WO2021010347A1 (en) Vacuum pump
JPS58222995A (en) Pumping device
JPH0759956B2 (en) Vacuum pump
JPH11218091A (en) Compression device
JPH0244076Y2 (en)
JPH056195U (en) Vacuum pump
JPS63192987A (en) Centrifugal high vacuum pump
JP2724840B2 (en) Compound vacuum pump
JPH087113Y2 (en) Water-sealed vacuum pump