JP2761486B2 - Circumferential groove vacuum pump - Google Patents

Circumferential groove vacuum pump

Info

Publication number
JP2761486B2
JP2761486B2 JP63174148A JP17414888A JP2761486B2 JP 2761486 B2 JP2761486 B2 JP 2761486B2 JP 63174148 A JP63174148 A JP 63174148A JP 17414888 A JP17414888 A JP 17414888A JP 2761486 B2 JP2761486 B2 JP 2761486B2
Authority
JP
Japan
Prior art keywords
rotating disk
ventilation path
stator
intake port
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63174148A
Other languages
Japanese (ja)
Other versions
JPH0223297A (en
Inventor
達治 池上
哲郎 大林
恵一 吉田
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OOSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OOSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP63174148A priority Critical patent/JP2761486B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH0223297A publication Critical patent/JPH0223297A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,463 priority patent/US5160250A/en
Priority to US07/769,365 priority patent/US5217346A/en
Application granted granted Critical
Publication of JP2761486B2 publication Critical patent/JP2761486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は粒子加速器、プラズマ物理等の実験研究装
置、電子顕微鏡、表面分析計等及び半導体製造用真空装
置等の工業用真空装置において分子流から粘性流にわた
る領域即ち高真空から中真空にわたる圧力範囲で有用な
円周溝真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial application field The present invention relates to molecular accelerators in industrial vacuum equipment such as particle accelerators, experimental research equipment such as plasma physics, electron microscopes, surface analyzers, and semiconductor manufacturing vacuum equipment. A circumferential groove vacuum pump useful in the region from flow to viscous flow, that is, in the pressure range from high to medium vacuum.

(2)従来の技術 従来の真空ポンプの1例として第16図の如く筐体
(a)内に回転板(b)を有する回転軸(c)を軸支
し、該回転板(b)の両面に対向する前記筐体(a)の
両内面にスパイラル状の溝(d)(d)を形成し、これ
ら溝(d)(d)の外方端を吸気口(e)に又内方端を
排気口(f)に連通し、前記回転板(b)の回転に伴っ
て吸気口(e)からの気体を溝(d)(d)において圧
縮しながら排気口(f)より排気するものが知られてい
る。
(2) Conventional technology As an example of a conventional vacuum pump, a rotary shaft (c) having a rotary plate (b) in a housing (a) as shown in FIG. Spiral grooves (d) and (d) are formed on both inner surfaces of the housing (a) opposed to both surfaces, and the outer ends of these grooves (d) and (d) are connected to the intake port (e) again. The end communicates with the exhaust port (f), and the gas from the intake port (e) is exhausted from the exhaust port (f) while compressing the gas from the intake port (e) in the grooves (d) and (d) with the rotation of the rotary plate (b). Things are known.

(3)発明が解決しようとする問題点 この従来の真空ポンプによれば筐体(a)の内面に渦
巻状の溝(d)(d)を形成する式であり、圧縮性能を
上げるために溝を長くする必要から、該溝(d)(d)
の幅を大にすることができず、一方溝の深さを幅に比し
て大きくとることは排気性能を損なうから溝の断面積を
大にすることができず、その上、圧縮比を上げるために
多段式を考えると、回転円板は両面に対向する渦巻溝を
設けて並列に排気する方式では、次の段へ連絡通路が複
雑な構造となり、回転円板の両面を並列に作動させられ
ないことになるから排気速度を大とするとが困難であ
り、又仮に排気速度を大にすべく前記溝(d)(d)の
断面積を大にするとこれに応じて前記回転円板(b)の
径を大にする必要があり真空ポンプが大型となる問題点
を有していた。
(3) Problems to be Solved by the Invention According to this conventional vacuum pump, spiral grooves (d) and (d) are formed on the inner surface of the housing (a). Since the grooves need to be long, the grooves (d) and (d)
The width of the groove cannot be made large, while on the other hand, if the depth of the groove is made large compared to the width, the exhaust performance is impaired, so that the cross-sectional area of the groove cannot be made large. Considering the multi-stage type to raise, the rotating disk is provided with spiral grooves facing each other and exhausted in parallel, the communication passage to the next stage has a complicated structure, and both surfaces of the rotating disk operate in parallel Therefore, it is difficult to increase the pumping speed, and if the cross-sectional area of the grooves (d) and (d) is increased so as to increase the pumping speed, the rotating disk is correspondingly increased. There is a problem that the diameter of (b) needs to be large and the vacuum pump becomes large.

本発明はこれらの問題点を解決し分子流から粘性流に
わたる領域で大きな排気速度が得られる小型の真空ポン
プを提供することを目的とする。
It is an object of the present invention to solve these problems and to provide a small-sized vacuum pump capable of obtaining a large pumping speed in a region from a molecular flow to a viscous flow.

(4)問題点を解決するための手段 この目的を達成すべく第1発明は吸気口と排気口を有
する筐体内に回転円板を有する回転軸を軸支すると共
に、該筐体内に、該回転円板が介入される凹部を有する
ステータを固定し、該回転円板の両面の周辺部に切込段
部を或いはこれら周辺部に対向する位置の凹部に環状溝
を形成してこれら切込段部或いは環状溝を通風路に形成
し、これら通風路に隔壁を前記ステータから突設し、該
隔壁の1側の該通風路の始端部を前記吸気口に該隔壁の
他側の該通風路の終端部を前記排気口に連通したことを
特徴とし、又第2発明は第1発明において前記通風路に
おける前記回転円板側とステータ側の対向面間の距離を
その始端部から終端部に至るに従って徐々に小さくした
ことを特徴とし、又第3発明は吸気口と排気口を有する
筐体内に複数の回転円板を有する回転軸を軸支すると共
に、該筐体内に、これら各回転円板が介入される凹部を
有するステータを固定し、これら回転円板の両面の周辺
部に切込段部を或いはこれら周辺部に対向する位置の凹
部に環状溝を形成してこれら切込段部或いは環状溝を通
風路に形成し、これら通風路に前記ステータから隔壁を
突設し、隣り合う回転円板の通風路において吸気口側の
回転円板の通風路の隔壁の他側の終端部と排気口側の回
転円板の通風路の隔壁の1側の始端部との間を連通路に
より連結し、前記吸気口に最も近い回転円板の通風路の
隔壁の1側の始端部を前記吸気口に連通すると共に前記
排気口に最も近い回転円板の通風路の隔壁の他側の終端
部を前記排気口に連通したことを特徴とし、更に第4発
明は第3発明において前記各回転円板の通風路における
該回転円板側とステータ側の対向面間の距離は前記吸気
口側から排気口側に至るに従って順次小となるようにし
たことを特徴とする。
(4) Means for Solving the Problems In order to achieve this object, the first invention supports a rotating shaft having a rotating disk in a housing having an intake port and an exhaust port, and includes A stator having a recess in which the rotating disk is interposed is fixed, and a notch step is formed in a peripheral portion on both sides of the rotating disk, or an annular groove is formed in a concave portion at a position facing the peripheral portion. Steps or annular grooves are formed in the ventilation passages, and partitions are protruded from the stator in these ventilation passages. The starting end of the ventilation passage on one side of the partition is connected to the intake port by the ventilation on the other side of the partition. According to a second aspect of the present invention, in the first aspect of the present invention, the distance between the rotating disk side and the stator side facing surface in the ventilation path is changed from the start end to the end end. The third invention is characterized in that the intake port and the exhaust A rotating shaft having a plurality of rotating disks is rotatably supported in a housing having a vent, and a stator having a recess in which each of the rotating disks is interposed is fixed in the housing. A notch step is formed in a peripheral portion of the groove or an annular groove is formed in a concave portion at a position opposed to the peripheral portion to form a cut passage or an annular groove in a ventilation passage. In the ventilation path of the adjacent rotating disk, which is protruding, the other end of the partition of the ventilation path of the rotating disk on the intake port side and the starting end of one side of the partition of the ventilation path of the rotating disk on the exhaust port side Are connected to each other by a communication path, and a starting end of the partition wall of the ventilation path of the rotating disk closest to the intake port is communicated with the intake port and the ventilation path of the rotating disk closest to the exhaust port. The other end of the partition wall is communicated with the exhaust port. According to a third aspect of the invention, the distance between the rotating disk side and the facing surface on the stator side in the ventilation path of each of the rotating disks is sequentially reduced from the intake port side to the exhaust port side. .

(5)作用 第1発明によれば、高速回転する回転円板で最も高速
回転移動する周辺部の両面により通風路の気体分子は気
体分子摩擦によるモレキュラードラッグ効果による輸送
効果を生じ、始端部から終端部に向って分子流或いは中
間流状態から粘性流となって吸気口より排気口に向って
大きな排気速度で圧縮排気される。
(5) Function According to the first invention, the gas molecules in the ventilation path produce a transport effect by the molecular drag effect due to gas molecule friction due to both surfaces of the peripheral portion of the rotating disk which rotates at the highest speed and the highest speed. A viscous flow is formed from the molecular flow or the intermediate flow toward the terminal end, and compressed and exhausted at a large exhaust speed from the intake port to the exhaust port.

又第2発明によれば始端部から終端部に向って圧力が
上昇するのに対応して回転円板の周辺部の面とこれに対
向するステータの面との距離bが小となり、かくてb/λ
(λは気体の平均自由行程)が最適値に近い値を保ち、
圧縮輸送効果が更に有効に維持される。
According to the second invention, the distance b between the surface of the peripheral portion of the rotating disk and the surface of the stator opposed thereto is reduced in response to the increase in the pressure from the start end to the end, and thus, b / λ
(Λ is the mean free path of the gas) keeps a value close to the optimal value,
The compression transport effect is more effectively maintained.

又第3発明によれば各回転円板の通風路において気体
分子を順次圧縮排気して相当に大きな圧縮比が得られ
る。
According to the third aspect of the present invention, a considerably large compression ratio can be obtained by sequentially compressing and exhausting gas molecules in the ventilation passage of each rotating disk.

更に第4発明によれば最も大きい吸気口側の通風路か
ら吸入された気体が各回転円板の通風路に順次圧送され
るに従って圧力が上昇し、これに対応してb/λが最適値
に近い値を保つbの値の各段の通風路で気体は効率よく
圧縮されて小さい段数で高い圧縮性能を実現し、排気速
度も大きくすることができる。
Further, according to the fourth aspect of the invention, the pressure increases as the gas sucked from the largest ventilation path on the intake port side is sequentially pumped into the ventilation path of each rotating disk, and accordingly, b / λ is set to the optimal value. The gas is efficiently compressed in the ventilation passage of each stage having a value of b which keeps a value close to the above, realizing high compression performance with a small number of stages, and increasing the exhaust speed.

(6)実施例 本発明の第1実施例を第1図乃至第4図に従って説明
する。
(6) Embodiment A first embodiment of the present invention will be described with reference to FIGS.

(1)は真空ポンプの筐体、(2)は該筐体(1)内
に軸支した回転軸を示し、該回転軸(2)はその下端部
においてモータが連結されていると共に上端部に回転円
板(3)がその中央部ボス部(3a)において固定されて
いる。そして該回転円板(3)はその両面の周辺部を切
欠いて切込段部(4)(4)に形成した。又(5)は前
記筐体(1)に内面に固定したステータを示し、該ステ
ータ(5)は前記回転円板(3)に相当する位置におい
て該回転円板(3)が介入される環状の凹部(6)が形
成されており、該凹部(6)と前記切込段部(4)
(4)により前記回転円板(3)の周辺部の両面に通風
路(7)(7)を形成した。そして前記凹部(6)に、
前記回転円板(3)の周辺部が通過する部分を截除した
隔壁(8)を前記ステータ(5)により突設して該隔壁
(8)により前記通風路(7)(7)を区切り、該隔壁
(8)の1側即ち上流側のこれら通風路(7)(7)の
始端部を吸入口(9)に連通すると共に前記隔壁(8)
の他側即ち下流側のこれら通風路(7)(7)の終端部
を排気口(10)に連通した。
(1) shows a housing of the vacuum pump, (2) shows a rotating shaft supported in the housing (1), and the rotating shaft (2) has a motor connected at a lower end thereof and an upper end thereof. The rotating disk (3) is fixed at the center boss (3a). Then, the rotating disk (3) was formed with notch steps (4) and (4) by cutting out the peripheral portions on both sides. Reference numeral (5) denotes a stator fixed to the inner surface of the housing (1). The stator (5) has an annular shape in which the rotary disk (3) is interposed at a position corresponding to the rotary disk (3). Recess (6) is formed, and the recess (6) and the notch step (4) are formed.
According to (4), ventilation paths (7) and (7) were formed on both sides of the peripheral portion of the rotating disk (3). And in the recess (6),
A partition (8) obtained by cutting a portion through which the peripheral portion of the rotating disk (3) passes is protruded by the stator (5), and the ventilation paths (7) and (7) are separated by the partition (8). The starting ends of the ventilation paths (7) and (7) on one side of the partition (8), that is, on the upstream side, communicate with the suction port (9) and the partition (8).
The other end, that is, the downstream end of each of the ventilation paths (7) and (7) was connected to the exhaust port (10).

かくて、モータの駆動により回転円板(3)をその周
速が気体分子の確率平均速度の0.1〜1.0倍の高速で第1
図のA矢印方向に回転させると、通風路(7)(7)は
回転円板(3)の周辺部に形成されているので、これら
通風路(7)(7)の気体分子は回転円板(3)の周辺
部の最も高速回転移動する切込段部(4)(4)の両面
に当ってこのときの気体分子摩擦によるモレキュラード
ラッグ効果により輸送効果が生じ、かくて気体分子は第
1図及び第2図の矢印Bの如く吸気口(9)より通風路
(7)(7)を第1図の矢印Cの如く輸送され第1図及
び第4図の矢印Dの如く排気口(10)より圧縮排気さ
れ、分子流から粘性流にある圧力領域において排気作用
を有する。尚発明者の実験によれば、分子流から粘性流
の領域で10倍以上の圧縮費が得られた。
Thus, the rotating disk (3) is driven by the motor so that its peripheral speed is 0.1 to 1.0 times the probability average speed of gas molecules.
When rotated in the direction indicated by the arrow A in the figure, the ventilation channels (7) and (7) are formed around the rotating disk (3). The transport effect occurs due to the molecular drag effect due to the gas molecule friction at this time on both sides of the cutting step portions (4) and (4), which rotate at the highest speed in the peripheral portion of the plate (3). As shown by arrows B in FIGS. 1 and 2, the air passages (7) and (7) are transported from the intake port (9) as shown by arrows C in FIG. 1 and are exhausted by arrows D in FIGS. 1 and 4. (10) It is compressed and evacuated, and has an evacuating action in a pressure range from a molecular flow to a viscous flow. According to the experiment by the inventor, a compression cost of 10 times or more was obtained in the region from the molecular flow to the viscous flow.

第5図乃至第7図は第2実施例を示し、該実施例にお
いては、前記通風路(7)(7)における回転円板
(3)側とステータ(5)側の対向面側の距離bをその
始端部から終端部に向って徐々に小となるように形成し
た。
5 to 7 show a second embodiment. In this embodiment, the distance between the rotating disk (3) side and the facing surface side of the stator (5) side in the ventilation passages (7) (7) is shown. b was formed so that it gradually became smaller from the start end to the end.

かくて前記第1実施例の如く回転円板(3)を高速に
回転すると、通風路(7)(7)内の気体はその始端部
から終端部に至るに従って高い圧力となって気体の平均
自由行程λが小となり、b/λが最適値に近い値を保ち圧
縮輸送効果が更に有効に維持される。
Thus, when the rotating disk (3) is rotated at a high speed as in the first embodiment, the gas in the ventilation passages (7) (7) becomes high in pressure from the start end to the end and becomes an average gas. The free stroke λ becomes small, and b / λ keeps a value close to the optimum value, so that the compression transport effect is more effectively maintained.

第8図乃至第15図は第3実施例を示し、該実施例にお
いては、3枚の回転円板(3)…(3)をボス部(3a)
において一体的に形成すると共に各回転円板(3)の通
風路における回転円板(3)側とステータ(5)側の対
向面間の距離が吸気口(9)側から排気口(10)側に至
るに従って順次小となるように形成し、更にこれら通風
路(7)(7)に突出の隔壁(8)及び隣り合う通風路
(7)(7)及び(7)(7)間を連通する連通路(1
1)を吸気口(9)側に排気口(10)側に至るに従って
その位置を順次ずらせて形成し、かくて吸気口(9)か
らの気体分子は連通路(11)を介して送られながら各通
風路(7)(7)において順次圧縮され、相当に高い圧
縮比が得られる。ここで発明者の実験によれば103以上
の大きな圧縮比が得られた。尚、この実施例は3段の場
合を示したが、更に多数段に構成することにより更に大
きな圧縮比が得られる。
FIGS. 8 to 15 show a third embodiment, in which three rotating disks (3)... (3) are connected to a boss (3a).
And the distance between the opposed surfaces of the rotating disk (3) and the stator (5) in the ventilation path of each rotating disk (3) is changed from the intake (9) side to the exhaust port (10). The air passages (7), (7) are formed so as to become smaller in order, and the partition wall (8) protruding from the air passages (7), (7) and the adjacent air passages (7), (7), (7), (7) are further separated. Communicating passage (1
1) is formed by sequentially shifting its position toward the intake port (9) toward the exhaust port (10), and the gas molecules from the intake port (9) are sent through the communication path (11). However, compression is sequentially performed in each of the ventilation paths (7) and (7), and a considerably high compression ratio is obtained. Here, according to the inventor's experiment 10 3 or more large compression ratio is obtained. Although this embodiment shows the case of three stages, a larger compression ratio can be obtained by constructing more stages.

又前述したいずれの実施例も回転円板(3)の周辺部
の両面を切込ん切込段部(4)(4)を形成している
が、回転円板の周辺部には切込みを設けず、代りに該周
辺部に対向するステータ(5)の凹部の内面に環状溝を
形成してもよい。
In each of the above-described embodiments, the cutting steps (4) and (4) are formed on both sides of the periphery of the rotating disk (3). Instead, an annular groove may be formed on the inner surface of the concave portion of the stator (5) facing the peripheral portion.

(7)発明の効果 このように第1発明によると回転円板の両面の周縁部
に切込段部を形成するか或いは該回転円板が介入される
ステータの凹部で該回転円板の両面の周辺部に対向する
位置に環状溝を形成して通風路を形成し、該通風路に隔
壁を突設して該隔壁の1側の該通風路の始端部を吸気口
に又該隔壁の他側の該通風路の終端部を排気口に連通し
たので、有効な大吸気口が形成できると共に回転円板の
特に高速に回転する周辺部により該周辺に形成の両通風
路の気体分子が気体分子摩擦によるモレキュラードラッ
グ効果で効率的な輸送効果を生じて大きな排気速度が得
られ、又第2発明によれば前記通風路における回転円板
側とステータ側の対向面間の距離をその始端部から終端
部に至るに従って徐々に小としたので、始端部と終端部
に向って圧力が上昇するのに対して前記距離が小とな
り、かくてb/λが最適値に近い値を保って更に圧縮輸送
効果が更に有効に維持され、又第3発明によれば同一回
転軸に複数の回転円板を固定し、これら回転円板の通風
路において隣り合う回転円板の通風路の始端部のと次段
の終端部を連通路によりそれぞれ連通し、吸気口に最も
近い回転円板の通風路の始端部を該吸気口に連通すると
共に排気口に最も近い回転円板の通風路の終端部を該排
気口に連通し、高速回転する回転円板により各通風路に
おいて気体分子を順次圧縮排気するようにしたので、相
当に大きな圧縮比が得られ、更に第4発明によればこれ
ら各回転円板の通風路における回転円板側とステータ側
の対向する面間の距離を吸気口側から排気口側に至るに
従って順次小となるように形成したので、輸送効果が増
大して排気速度が更に大となると共に相当に大きな圧縮
比が得られ、又いずれの発明においても回転円板の周辺
部の両面に通風路を形成して両通風路内の圧力が回転円
板の各個所の両面で等しいので、回転円板の端縁とこれ
に対向する凹部の内面との間にシール性が要求されずに
クリアランスを大きくすることができ、かくて高い加工
精度が要求されず加工容易となり、更にポンプとして小
型にある等の効果を有する。
(7) Advantageous Effects of the Invention According to the first aspect of the present invention, a notch step is formed on the peripheral edge of both surfaces of the rotating disk, or the both surfaces of the rotating disk are recessed in the stator where the rotating disk is interposed. An annular groove is formed at a position facing the peripheral portion of the partition wall to form a ventilation path, and a partition is protrudingly provided in the ventilation path. Since the end of the ventilation path on the other side is communicated with the exhaust port, an effective large intake port can be formed, and gas molecules of both ventilation paths formed around the periphery by the peripheral portion of the rotating disk that rotates particularly fast can be formed. According to the second aspect of the present invention, a large pumping speed can be obtained by generating an efficient transport effect by a molecular drag effect due to gas molecule friction. From the beginning to the end, As the pressure increases, the distance becomes smaller, and thus the b / λ maintains a value close to the optimum value, so that the compression transport effect is more effectively maintained. A plurality of rotating disks are fixed to the shaft, and in the ventilation path of these rotating disks, the starting end of the ventilation path of the adjacent rotating disk and the ending part of the next stage communicate with each other by a communication path, and are closest to the intake port. The start end of the ventilation path of the rotating disk communicates with the intake port, and the end of the ventilation path of the rotating disk closest to the exhaust port communicates with the exhaust port. Since the gas molecules are sequentially compressed and evacuated, a considerably large compression ratio can be obtained. According to the fourth invention, between the opposed surfaces of the rotating disk side and the stator side in the ventilation path of each rotating disk. The distance is gradually reduced from the intake port side to the exhaust port side As a result, the transport effect is increased, the exhaust speed is further increased, and a considerably large compression ratio is obtained. In any of the inventions, ventilation paths are formed on both sides of the peripheral portion of the rotating disk. Since the pressure in the ventilation path is equal on both sides of each part of the rotating disk, it is possible to increase the clearance without requiring a sealing property between the edge of the rotating disk and the inner surface of the concave portion opposed thereto. Thus, high processing accuracy is not required and processing becomes easy, and further, there is an effect that the pump is small in size.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の要部の平面図、第2図は
第1図のI−II線截断面図、第3図は第1図の0−III
線截断面図、第4図は第1図の0−IV線截断面図、第5
図は第2実施例の第2図に対応した截断面図、第6図は
同実施例の第3図に対応した截断面図、第7図は同実施
例の第4図に対応した截断面図、第8図は第3実施例の
要部の平面図、第9図は第8図のI−II線截断面図、第
10図は第8図の0−III線截断面図、第11図は第8図の
0−IV線截断面図、第12図は第8図の0−V線截断面
図、第13図は第8図の0−VI線截断面図、第14図は第8
図の0−VII線截断面図、第15図は第8図の0−VIII線
截断面図、第16図は従来の真空ポンプの断面図である。 (1)……真空ポンプ (2)……回転軸 (3)……回転円板 (4)……切込段部 (5)……ステータ (6)……凹部 (7)……通風路 (8)……隔壁 (9)……吸入口 (10)……排気口 (11)……連通路
1 is a plan view of a main part of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line I-II of FIG. 1, and FIG. 3 is a line 0-III of FIG.
FIG. 4 is a sectional view taken along the line 0-IV of FIG. 1, and FIG.
The figure is a sectional view corresponding to FIG. 2 of the second embodiment, FIG. 6 is a sectional view corresponding to FIG. 3 of the same embodiment, and FIG. 7 is a sectional view corresponding to FIG. 4 of the same embodiment. FIG. 8 is a plan view of a main part of the third embodiment, FIG. 9 is a sectional view taken along the line I-II of FIG.
10 is a sectional view taken along the line 0-III of FIG. 8, FIG. 11 is a sectional view taken along the line 0-IV of FIG. 8, FIG. 12 is a sectional view taken along the line 0-V of FIG. Is a sectional view taken along the line 0-VI of FIG. 8, and FIG.
FIG. 15 is a sectional view taken along line 0-VII, FIG. 15 is a sectional view taken along line 0-VIII in FIG. 8, and FIG. 16 is a sectional view of a conventional vacuum pump. (1) Vacuum pump (2) Rotating shaft (3) Rotating disk (4) Cutting step (5) Stator (6) Recess (7) Ventilation path (8) Partition wall (9) Suction port (10) Exhaust port (11) Communication passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 昌司 東京都八王子市椚田町1221 株式会社大 阪真空機器製作所八王子工場内 (56)参考文献 特開 昭60−116895(JP,A) 実開 昭48−15606(JP,U) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shoji Iguchi 1221 Kuginodacho, Hachioji-shi, Tokyo Inside the Osaka Vacuum, Ltd. Hachioji Plant (56) References JP-A-60-116895 (JP, A) Sho Akai Kai 48-15606 (JP, U)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気口と排気口を有する筐体内に回転円板
を有する回転軸を軸支すると共に、該筐体内に、該回転
円板が介入される凹部を有するステータを固定し、該回
転円板の両面の周辺部に切込段部を或いはこれら周辺部
に対向する位置の凹部に環状溝を形成してこれら切込段
部或いは環状溝を通風路に形成し、これら通風路に隔壁
を前記ステータから突設し、該隔壁の1側の該通風路の
始端部を前記吸気口に該隔壁の他側の該通風路の終端部
を前記排気口に連通したことを特徴とする円周溝真空ポ
ンプ。
A rotating shaft having a rotating disk in a housing having an intake port and an exhaust port, and a stator having a recess in which the rotating disk is interposed is fixed in the housing; A notch step is formed in the peripheral portion on both sides of the rotating disk, or an annular groove is formed in a concave portion at a position opposed to these peripheral portions, and the notch step portion or the annular groove is formed in a ventilation path, and these ventilation paths are formed. A partition wall protrudes from the stator, and a starting end of the ventilation path on one side of the partition wall communicates with the intake port, and a terminal end of the ventilation path on the other side of the partition wall communicates with the exhaust port. Circumferential groove vacuum pump.
【請求項2】前記通風路における前記回転円板側とステ
ータ側の対向面間の距離をその始端部から終端部に至る
に従って徐々に小さくしたことを特徴とする特許請求の
範囲第1項に記載の円周溝真空ポンプ。
2. The method according to claim 1, wherein the distance between the opposed surfaces of the rotating disk and the stator in the ventilation path is gradually reduced from a starting end to an end. A circumferential groove vacuum pump as described.
【請求項3】吸気口と排気口を有する筐体内に複数の回
転円板を有する回転軸を軸支すると共に、該筐体内に、
これら各回転円板が介入される凹部を有するステータを
固定し、これら回転円板の両面の周辺部に切込段部を或
いはこれら周辺部に対向する位置の凹部に環状溝を形成
してこれら切込段部或いは環状溝を通風路に形成し、こ
れら通風路に前記ステータから隔壁を突設し、隣り合う
回転円板の通風路において吸気口側の回転円板の通風路
の隔壁の他側の終端部と排気口側の回転円板の通風路の
隔壁の1側の始端部との間を連通路により連結し、前記
吸気口に最も近い回転円板の通風路の隔壁の1側の始端
部を前記吸気口に連通すると共に前記排気口に最も近い
回転円板の通風路の隔壁の他側の終端部を前記排気口に
連通したことを特徴とする円周溝真空ポンプ。
3. A rotating shaft having a plurality of rotating disks is rotatably supported in a housing having an intake port and an exhaust port.
A stator having a concave portion in which each of the rotary disks is interposed is fixed, and a notch step portion is formed in a peripheral portion on both sides of the rotary disk, or an annular groove is formed in a concave portion at a position opposed to these peripheral portions. A notch step or an annular groove is formed in a ventilation path, and a partition wall is protruded from the stator in these ventilation paths. In the ventilation path of the adjacent rotating disk, other partition walls of the ventilation path of the rotating disk on the intake port side are provided. The end of the side and the start of the partition of the ventilation path of the rotating disk on the exhaust port side are connected by a communication path, and one side of the partition of the ventilation path of the rotating disk closest to the intake port. A circular groove vacuum pump characterized in that a start end of the circular groove is communicated with the intake port and an end of the rotating disk closest to the exhaust port on the other side of the partition wall is communicated with the exhaust port.
【請求項4】前記各回転円板の通風路における該回転円
板側とステータ側の対向面間の距離は前記吸気口側から
排気口側に至るに従って順次小となるようにしたことを
特徴とする特許請求の範囲第3項記載の円周溝真空ポン
プ。
4. The distance between the rotating disk side and the facing surface on the stator side in the ventilation path of each of the rotating disks is gradually reduced from the intake port side to the exhaust port side. The circumferential groove vacuum pump according to claim 3, wherein:
JP63174148A 1988-07-13 1988-07-13 Circumferential groove vacuum pump Expired - Fee Related JP2761486B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63174148A JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174148A JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump

Publications (2)

Publication Number Publication Date
JPH0223297A JPH0223297A (en) 1990-01-25
JP2761486B2 true JP2761486B2 (en) 1998-06-04

Family

ID=15973515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174148A Expired - Fee Related JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump

Country Status (1)

Country Link
JP (1) JP2761486B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815606U (en) * 1971-06-30 1973-02-22
JPS5468210U (en) * 1977-10-25 1979-05-15
US4422822A (en) * 1980-08-11 1983-12-27 Norman Milleron Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith
JPS5762995A (en) * 1980-10-01 1982-04-16 Hitachi Ltd Molecular pump
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6385291A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump

Also Published As

Publication number Publication date
JPH0223297A (en) 1990-01-25

Similar Documents

Publication Publication Date Title
JP3584305B2 (en) High performance turbo molecular vacuum pump
JPH04209980A (en) Molecular vacuum pump
JPH037039B2 (en)
JP2636356B2 (en) Molecular pump
EP3076021B1 (en) Vacuum pump with siegbahn type pumping stage
US7445422B2 (en) Hybrid turbomolecular vacuum pumps
US6607351B1 (en) Vacuum pumps with improved impeller configurations
KR890004933B1 (en) Turbo molecular pump
JP2761486B2 (en) Circumferential groove vacuum pump
US4732530A (en) Turbomolecular pump
US20080056886A1 (en) Vacuum pumps with improved pumping channel cross sections
JPS60182394A (en) Turbomolecular pump
JPS60204997A (en) Composite vacuum pump
JP2696370B2 (en) Circumferential groove vacuum pump
JP2627437B2 (en) Compound vacuum pump
JPH11159493A (en) Molecular drag compressor having finned rotor structure
JP2724840B2 (en) Compound vacuum pump
JPH02264196A (en) Turbine vacuum pump
JP2587506B2 (en) Vacuum pump
JP2002070776A (en) Composite vacuum pump
JPS63192987A (en) Centrifugal high vacuum pump
JPS63266191A (en) Vacuum pump
JPH01170795A (en) Vortex turbo-machinery
JPS6229797A (en) Turbo molecule pump
JPS60243395A (en) Turbo molecular pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees