JPS60182394A - Turbomolecular pump - Google Patents

Turbomolecular pump

Info

Publication number
JPS60182394A
JPS60182394A JP59038962A JP3896284A JPS60182394A JP S60182394 A JPS60182394 A JP S60182394A JP 59038962 A JP59038962 A JP 59038962A JP 3896284 A JP3896284 A JP 3896284A JP S60182394 A JPS60182394 A JP S60182394A
Authority
JP
Japan
Prior art keywords
screw rotor
spiral groove
rotor
pump
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59038962A
Other languages
Japanese (ja)
Inventor
Yasutaka Furuichi
古市 靖孝
Kiyoshi Narita
潔 成田
Juichi Kawaguchi
川口 重一
Hideto Nishikawa
秀人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59038962A priority Critical patent/JPS60182394A/en
Publication of JPS60182394A publication Critical patent/JPS60182394A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To spread the exhaust-enable range of a pump to the lower vacuum side by forming a spiral groove in the opposite direction to a spiral groove on a screw rotor, onto the inner peripheral surface of the peripheral wall surrounding the screw rotor, and increasing the compression-ratio increasing function for the screw rotor part. CONSTITUTION:On a screw rotor 5, not only a spiral groove 5a formed onto the outer peripheral surface, but a spiral groove 7a in the opposite direction to the spiral groove 5a is formed onto the peripheral wall surrounding the spiral groove 5a, keeping a minute gap, namely onto the inner surface of a spacer 7 fitted onto the inner peripheral surface of an outer frame 6 in the application drawing. Therefore, the spiral grooves 5a and 7a cross each other at each position turning by 180 deg., and the combined body parts 8a, 8b... constituted of the combined spaces of the grooves 5a and 7a are formed at the above-described positions as shown in the figure. These parts 8a, 8b... speedily revolve and lower to an exhaust port B side as the screw rotor 5 revolves at a high speed, and the combined body part pushes-out gas particles very strongly. Therefore, the exhaust speed efficiency is increased in comparison with the conventional.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、低真空領域でも優れた排気速度性能をケ11
シ得るターボ分子ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention provides excellent pumping speed performance even in the low vacuum region.
The present invention relates to a turbomolecular pump that can be obtained.

C口)従来技術 ターボ分子ポンプは、よく知られているように1機械的
に気体分子を吹き飛ばして超高真空を得るようにしたも
ので、このためにそのポンプ本体は、高速回転されるめ
る1■きを有するロータ(回転翼)と、それと逆向きの
傾きを有するステータ(回転翼)とを交互に通常多段に
配置してなる翼車群を具備してなる。
C) Conventional technology Turbomolecular pumps, as is well known, are designed to mechanically blow out gas molecules to create an ultra-high vacuum.For this purpose, the pump body is rotated at high speed. The rotor has a rotor (rotary blade) having a tilt in the opposite direction, and a stator (rotor blade) having an inclination in the opposite direction, which are usually arranged in multiple stages alternately.

ところが、この種のポンプではその翼車群での圧縮比が
低いことから、動作特性として低真空領域で排気速度性
能が著しく低下する不都合がある。具体的には、従来の
ターボ分子ポンプでは、101〜l 0−1Torr程
度の真空度からその排気速度が急激に悪化し、0.I 
Torr程度ではその排気速度が殆ど無に等しくなって
いる。このため、低真空域でターボ分子ポンプを作動す
る場合では、(ターボ分子ポンプ)+(メカニカルブー
ストポンプ)+(ロータリポンプ)のように適宜の補助
真空ポンプを連結してその排気能力をカバーする排気シ
ステムを採用するのが普通となっている。
However, since this type of pump has a low compression ratio in its blade group, there is a disadvantage in that the pumping speed performance is significantly reduced in a low vacuum region as an operating characteristic. Specifically, in conventional turbomolecular pumps, the pumping speed deteriorates rapidly from a vacuum level of about 101 to 10-1 Torr, and the pumping speed decreases to 0. I
At around Torr, the pumping speed is almost equal to nothing. For this reason, when operating a turbo molecular pump in a low vacuum region, it is necessary to connect an appropriate auxiliary vacuum pump such as (turbo molecular pump) + (mechanical boost pump) + (rotary pump) to cover its exhaust capacity. It is common to use an exhaust system.

一方、かかる補助真空を軽減するために開発されたもの
として、いわゆる複合型ターボ分子ポンプがある(特公
昭47−33446号公報等)。
On the other hand, a so-called composite turbo-molecular pump has been developed to alleviate such auxiliary vacuum (Japanese Patent Publication No. 47-33446, etc.).

すなわち、この複合型ポンプでは、その吸気口側にロー
タとステータとを交互に配置してなる翼車群を具備する
一方、その排気口側に前記翼車群からの排気を誘導する
らせん溝を外周に設けたネジロータを連設して構成され
、このらせん溝で気体分子を円周方向に案内しつつその
溝深さを排気口に向けて漸変(除々に溝深きを浅く)さ
せて、その圧縮比を高めるようにしたものである。しか
して、このものでは前記らせん溝の働きにより相当の圧
縮比増大効果が発揮Sれるものの、ネジロータを連設し
かつ精巧ならせん溝をその外周に形成することによって
招来される構造複雑化とコストアップの短所に比較すれ
ば、より大きな圧縮比増大効果を達成する目的では、そ
の複合型構造のものの長所を未だ十分に有効利用してい
ない憾みが残る。
That is, this compound pump is equipped with a group of impellers in which rotors and stators are arranged alternately on its intake port side, and has a spiral groove on its exhaust port side that guides the exhaust air from the group of impellers. It consists of a series of screw rotors installed on the outer periphery, and the spiral groove guides gas molecules in the circumferential direction while gradually changing the groove depth (gradually making the groove shallower) toward the exhaust port. The compression ratio is increased. Although this device achieves a considerable effect of increasing the compression ratio due to the function of the helical groove, the structure is complicated and the cost is increased by connecting screw rotors and forming elaborate helical grooves on the outer periphery. Compared to the disadvantages of the up-type compressor, it is regrettable that the advantages of the composite structure have not yet been fully utilized in order to achieve a greater effect of increasing the compression ratio.

(ハ)目的 本発明は、このような技術的背景をもとにしてなされた
もので、基本的には前記複合型ポンプの構成を採用しつ
つも、そのネジロータの外周に設けるらせん溝を更に改
良することにより、該ネジロータの部分の圧縮比増大機
能を倍加せしめ、これによってポンプの排気可能域をよ
り低真空側にまで拡張できるようにしたターボ分子ポン
プを提供することを目的とする。
(c) Purpose The present invention was made based on the above technical background, and basically adopts the configuration of the above-mentioned compound pump, but further adds a spiral groove provided on the outer periphery of the screw rotor. It is an object of the present invention to provide a turbo-molecular pump that can double the compression ratio increasing function of the screw rotor portion by improving the pump, thereby expanding the evacuable range of the pump to a lower vacuum side.

(ニ)構成 本発明は、このような目的を達成するために。(d) Configuration The present invention aims to achieve such an objective.

ロータとステータを交互に配置してなる翼車群の前記ロ
ータを高速回転して排気するターボ分子ポンプにおいて
、前記翼車群の排気口側に、前記ロータとともに高速回
転される外周面にらせん溝を設けたネジロータを連設す
るとともに、このネジロータを囲繞する周壁内周面に該
ネジロータのらせん溝と逆向きのらせん溝を設けたこと
を特徴としている。
In a turbo-molecular pump that rotates the rotor of a group of impellers in which rotors and stators are arranged alternately at high speed to exhaust air, a spiral groove is formed on the outer circumferential surface of the group of impellers, which rotates at high speed together with the rotor, on the exhaust port side of the group of impellers. The screw rotor is characterized in that screw rotors are provided in series, and a helical groove in the opposite direction to the helical groove of the screw rotor is provided on the inner circumferential surface of a peripheral wall surrounding the screw rotor.

(ホ)実施例 以下、本発明の一実施例を図面を参照して説明する。(e) Examples Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明に係るターボ分子ポンプの主要部の構成
を図示し、このポンプはその吸気口A側にロータ2とス
テータ3を組合わせてなる翼車群をJJ2備し、これに
連設してその排気口B側にネジロータ5を具備してなる
。すなわち、図中上方に位置する翼車群は、外周から所
定の傾斜角をもって枚射状に52 aを突設しかつその
基端部2bを中心に位置する駆動軸lに外嵌正大して該
軸l上に多段に固着されるロータ2と、このロータ2の
9R2a 、!l−逆向きの傾斜角の翼3aを有しかつ
該ロータ2を囲繞する外周からその基端部3dを外枠6
の内周面に段積みしたスペーサ4.4、に挟持させて位
置決め固定されるステータ3とを両者の翼2a、3aを
交互に配置して構成されている。かかる翼車群は、前記
ロータ質2aを駆動軸lに従動Sせて高速回転すると、
気体分子に衝突してこれに軸方向の運動量を与え、前記
ステータ翼3aとの協動作用の下にその一端の吸気口A
から他端側の排気口Bに向けて強制的に流れを発生し、
排気する作用を営むことになる。
FIG. 1 illustrates the configuration of the main parts of a turbomolecular pump according to the present invention, and this pump is equipped with a blade wheel group JJ2 consisting of a combination of a rotor 2 and a stator 3 on the intake port A side, and is connected to the impeller group JJ2. A screw rotor 5 is provided on the exhaust port B side. That is, the blade wheel group located at the upper side of the figure has a blade 52a projecting from the outer periphery at a predetermined angle of inclination, and the base end 2b of the blade wheel group is fitted externally to the drive shaft l located at the center. A rotor 2 fixed in multiple stages on the shaft l, and 9R2a of this rotor 2,! l- It has blades 3a with opposite inclination angles and extends its base end 3d from the outer periphery surrounding the rotor 2 to the outer frame 6.
The stator 3 is positioned and fixed by being sandwiched between spacers 4.4 stacked on the inner peripheral surface of the stator 3, and the blades 2a and 3a of the stator 3 are arranged alternately. When such a group of impellers rotates at high speed with the rotor mass 2a being driven by the drive shaft l,
It collides with the gas molecules to give them axial momentum, and the intake port A at one end of the stator blades 3a cooperates with the stator blades 3a.
A flow is forcibly generated from the exhaust port B at the other end,
It has the function of exhausting air.

一方、図中F方に位置するネジロータ5は、その上端を
前記翼車群の下端に隣設せしめて駆動軸1に連設されて
いる。このネジロータ5はその中心部を駆動軸lが貫通
し、前記ロータ2とともに高速回転されるように該駆動
軸lに固定されている。そして、このネジロータ5の外
周面には、その上端と下端とを結びかつ排気口B側に向
けて徐々に溝深さが浅くなるように形成したらせん溝(
ねじ溝)5aが設けられている。なお、このらせん溝5
aの向きは、駆動軸1の回転方向に対し、前記翼車群か
ら吐出された気体分子を該溝に沿って排気口B側に導出
される方向に形成しである。
On the other hand, the screw rotor 5 located in the F direction in the figure is connected to the drive shaft 1 with its upper end adjacent to the lower end of the impeller group. A drive shaft 1 passes through the center of the screw rotor 5, and is fixed to the drive shaft 1 so as to rotate at high speed together with the rotor 2. The outer circumferential surface of the screw rotor 5 is formed with a spiral groove that connects its upper and lower ends and gradually becomes shallower toward the exhaust port B side.
A thread groove) 5a is provided. In addition, this spiral groove 5
The direction a is such that the gas molecules discharged from the impeller group are directed toward the exhaust port B along the grooves with respect to the rotational direction of the drive shaft 1.

さて、従来の複合型ポンプにおいては、このネジロータ
5の外周面もしくはこのネジロータ5を囲繞する周壁の
内周面のいずれか一方にのみ、前記のようならせん溝5
aを設けるようにしている。これに対し、本発明に係る
ものでは、ネジロータ5の外周面のみならず、これを微
小な間隙をもって囲繞している周壁、図示実施例では外
枠6の内周面に嵌着されたスペーサ7の内周面にもらせ
ん溝7aが設けられている。このらせん溝7aは、やは
り排気口B側に向けてその溝深さが浅ぐ形成されている
とともに、そのらせん溝7aの向きが対面する前記ネジ
ロータ5のらせん溝5aと反対向きのものに形成5れて
いる。したがって、らせん溝5a、7aは芽いに180
度旋回する位置毎に交差し、その部分に図示の如く、両
者の溝5a、7aの空間が合体した合体部8a、8b・
・・が形成されることになる。
Now, in the conventional compound pump, the above-described helical groove 5 is formed only on either the outer peripheral surface of the screw rotor 5 or the inner peripheral surface of the peripheral wall surrounding the screw rotor 5.
I am trying to provide a. In contrast, in the present invention, the spacer 7 is fitted not only to the outer circumferential surface of the screw rotor 5 but also to the circumferential wall surrounding it with a minute gap, and in the illustrated embodiment, to the inner circumferential surface of the outer frame 6. A spiral groove 7a is also provided on the inner circumferential surface. The helical groove 7a is also formed so that its groove depth becomes shallower toward the exhaust port B side, and the direction of the helical groove 7a is opposite to that of the helical groove 5a of the screw rotor 5 that faces it. 5. Therefore, the spiral grooves 5a and 7a are 180 mm deep in the bud.
As shown in the figure, the spaces between the two grooves 5a and 7a intersect at each position where the two grooves turn.
... will be formed.

次に、このターボ分子ポンプの作動について説明する。Next, the operation of this turbomolecular pump will be explained.

前記駆動軸lを下方側に内蔵したモータにより回転駆動
し、該軸1上の前記ロータ2とネジロータ5とを高速回
転させて運転状態におく。すると、前述のように、吸気
口Aからとり込まれた気体分子が強制的に翼車群を通過
され、次いで前記ネジロータ5外周のらせん溝5a、7
aに誘導ごれる。ここにおいて、従来の複合型ポンプと
同様に、高速回転するネジロータ5は衝突する気体分子
にそのらせん溝5aに沿う円周方向の運動量を与えて圧
縮しつつ排気するとともGこ、このさ1/)牛与に前記
スペーサ7に対面して設けた逆向きのらせん溝7aがそ
の効果を倍加する役割を果すこと番となる。
The drive shaft 1 is rotationally driven by a motor built in the lower side, and the rotor 2 and the screw rotor 5 on the shaft 1 are rotated at high speed and put into operation. Then, as described above, the gas molecules taken in from the intake port A are forced to pass through the impeller group, and then the helical grooves 5a and 7 on the outer periphery of the screw rotor 5.
It will lead you to a. Here, similar to the conventional compound pump, the screw rotor 5 rotating at high speed imparts momentum to the colliding gas molecules in the circumferential direction along the spiral grooves 5a, compressing them and exhausting them. ) The reverse spiral groove 7a provided facing the spacer 7 serves to double the effect.

すなわち、この対面交差するらせん溝5aと7aとによ
って形成される前記合体部8a、8b・・・は、この部
分でらせん溝5aかつくる排気通路に断続的に気体分子
の貯留部を形成することになるとともに、気体分子に最
も有効に円周方向の連動薄を与えることになる半径方向
の壁面をつくり出し、しかもそれらの各合体部8a、8
b−・・がネジロータ5の高速回転とともに急速番と排
気口B側に回転降下してきて1気体分子を非常に強力に
押し出す機能を発揮することになるからである。いま、
前記ネジロータ5の回転下におけるらせん溝5aと7a
の合体部8a、8b・拳・の運動について説明すると、
第2図にその展開図を示すように、両者の交差位置に1
80度間隔で形成される合体部8a、8b・・0は、ネ
ジロータ5が回転すると(図中らせん溝5aが下方に平
行移動する運動で示される)1図示矢印で示すように、
それぞれ8a−+8a ’−+8a” 、8b+8b′
→8b”、・・Φとその位相を変えながら下方に移動し
ていく。このさい、各合体部の軸方向への移動速度は、
らせん溝5aと7aが逆向きに設けられているかららせ
ん溝5a単独の場合における溝の移動速度に比較すると
2倍となる。したがって、これにより大きな圧縮比を与
えてもネジロータ5の部分で十分大きな排気速度が得ら
れることになる。
That is, the combined portions 8a, 8b, . . . formed by the helical grooves 5a and 7a that intersect with each other form intermittently gas molecule storage portions in the exhaust passage formed by the helical groove 5a. At the same time, a wall surface in the radial direction is created which gives the gas molecules the most effective interlocking thickness in the circumferential direction.
This is because as the screw rotor 5 rotates at a high speed, the screws b--. rotate rapidly and descend toward the exhaust port B side, exerting the function of pushing out one gas molecule very strongly. now,
Spiral grooves 5a and 7a under rotation of the screw rotor 5
To explain the movement of the combined parts 8a, 8b and fist,
As shown in the developed diagram in Figure 2, 1 is located at the intersection of the two.
When the screw rotor 5 rotates, the combined portions 8a, 8b, .
8a-+8a'-+8a", 8b+8b', respectively
→8b”,...Moves downward while changing the Φ and its phase.At this time, the moving speed of each combined part in the axial direction is
Since the spiral grooves 5a and 7a are provided in opposite directions, the movement speed of the groove is twice as high as that in the case where the spiral groove 5a is used alone. Therefore, even if a large compression ratio is given, a sufficiently large exhaust speed can be obtained at the screw rotor 5 portion.

このようなターボ分子ポンプでは、このネジロータ5の
外周に設けられた対面交差するらせん溝5aと7aとが
前記のような独特の相乗的作用効果を発揮して、従来の
複合型のもの番と比較すると、その排気速度能力を倍加
し、その複合型構造のものの特長を最大限に活用発揮せ
しめたものといえる。また、このものでは通常のターボ
分子ポンプに比較すると、もとよりその排気速度曲線を
低真空側に大きく延長した排気速度能力の大きなものが
得られる。具体的には、この構成を具備せしめると、1
0づ〜l O−” Torr程度の真空度でも10−I
Torr以1の真空度と同程度の排気速度か確保され、
0.I Torr付近でもある程度の排気速度を持続す
る。したがって、このポンプを使用する場合には、従来
のように、真空補助のために多段に補助ポンプを接続す
る必要は勿論なく、簡易な排気システムでも十分使用で
き、この点排気システムの簡易化とコストダウンが図ら
れる。また、従来の複合型ポンプに比較しても、能力が
大幅にアップされることに反し、その構造は殆ど複雑さ
の程度で変りない。
In such a turbo molecular pump, the spiral grooves 5a and 7a provided on the outer periphery of the screw rotor 5, which face each other and intersect with each other, exert a unique synergistic effect as described above, and are different from the conventional composite type pump. In comparison, it can be said that the pumping speed capability has been doubled and the features of the composite structure have been fully utilized. Moreover, compared to a normal turbo-molecular pump, this pump has a large pumping speed capability by extending its pumping speed curve toward the low vacuum side. Specifically, with this configuration, 1
10-I even at a vacuum level of 0-10 Torr
The vacuum level is less than 1 Torr and the same pumping speed is ensured.
0. A certain amount of exhaust speed is maintained even at around I Torr. Therefore, when using this pump, there is no need to connect auxiliary pumps in multiple stages for vacuum support as in the past, and a simple exhaust system can be used. Cost reduction will be achieved. Moreover, even when compared to conventional compound pumps, although the capacity is greatly increased, the structure remains almost the same in complexity.

なお、図示実施例では、便宜的にらせん溝5a、7aを
粗大なものに示しているが、これは実施上細幅のもので
溝長さの大きいものに形成することができる。また、溝
断面の形状は図例の矩形のもの以外にも、種々改変する
ことが可能である。さらに、らせん溝5aと7aは互い
に逆向きのものであればよく、溝5aの方向は前記実施
例の場合に限らない。
In the illustrated embodiment, the spiral grooves 5a and 7a are shown to be coarse for convenience, but in practice, they can be formed to have a narrow width and a long groove length. Further, the cross-sectional shape of the groove can be modified in various ways other than the rectangular shape shown in the figure. Further, the spiral grooves 5a and 7a may be oriented in opposite directions, and the direction of the grooves 5a is not limited to that in the above embodiment.

(へ)効果 本発明は、以上に述べた構成を具備するものから、従来
の複合型ポンプと比較してさほど構造複雑化を招来しな
いものであるにもかかわらず、これに比較すると一段階
大きな排気速度能力をもたすことが可能で、これにより
単独でも低真空域に対し優れた排気速度を発揮するター
ボ分子ポンプが提供された。
(F) Effect The present invention has the above-mentioned configuration, and although it does not cause much structural complexity compared to conventional compound pumps, it is one step larger than conventional compound pumps. It is possible to provide a pumping speed capability, thereby providing a turbomolecular pump that can exhibit excellent pumping speed in a low vacuum region even when used alone.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すポンプ主要部の縦断面
図である。第2図はそのネジロータの外周に設けられる
らせん溝の動作を説明するための展開図である。 l−φ・馴動軸 2φ・φロータ 3・拳・ステータ 50拳11おシロータ 5a、7a・1らせん溝 7・・・スペーサ(周壁) 代理メ 弁理士 赤澤−博 LI J uJ 。
FIG. 1 is a longitudinal sectional view of the main part of a pump showing one embodiment of the present invention. FIG. 2 is a developed view for explaining the operation of the spiral groove provided on the outer periphery of the screw rotor. l-φ, adjusting shaft 2φ, φ rotor 3, fist, stator 50 fist 11, rotor 5a, 7a, 1 spiral groove 7... spacer (peripheral wall) agent patent attorney Hiroshi Akazawa LI JuJ.

Claims (1)

【特許請求の範囲】[Claims] ロータとステータを交ずに配置してなる翼車群の前記ロ
ータを高速回転して排気するターボ分子ポンプにおいて
、前記翼車群の排気口側に、前記ロータとともに高速回
転される外周面にらせん溝を設けたネジロータを連設す
るとともに、このネジロータを囲繞する周壁内周面に該
ネジロータのらせん溝と逆向きのらせん溝を設けたこと
を特徴とするタープ分子ポンプ。
In a turbo-molecular pump that rotates and exhausts the rotor of a group of impellers in which the rotor and stator are arranged without intersecting each other, the rotor is rotated at high speed to exhaust the rotor. A tarp molecular pump characterized in that a screw rotor provided with a groove is arranged in series, and a helical groove in the opposite direction to the helical groove of the screw rotor is provided on the inner circumferential surface of a peripheral wall surrounding the screw rotor.
JP59038962A 1984-02-29 1984-02-29 Turbomolecular pump Pending JPS60182394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59038962A JPS60182394A (en) 1984-02-29 1984-02-29 Turbomolecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59038962A JPS60182394A (en) 1984-02-29 1984-02-29 Turbomolecular pump

Publications (1)

Publication Number Publication Date
JPS60182394A true JPS60182394A (en) 1985-09-17

Family

ID=12539796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59038962A Pending JPS60182394A (en) 1984-02-29 1984-02-29 Turbomolecular pump

Country Status (1)

Country Link
JP (1) JPS60182394A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341695A (en) * 1986-08-07 1988-02-22 Seiko Seiki Co Ltd Turbo-molecular pump
US4732530A (en) * 1984-07-25 1988-03-22 Hitachi, Ltd. Turbomolecular pump
US4797062A (en) * 1984-03-24 1989-01-10 Leybold-Heraeus Gmbh Device for moving gas at subatmospheric pressure
US4878813A (en) * 1987-03-18 1989-11-07 Seiki Seiki Kabushiki Kaisha Vacuum pump
JPH0227194A (en) * 1988-07-15 1990-01-29 Daikin Ind Ltd Vacuum pump
JPH0220798U (en) * 1988-07-27 1990-02-13
JPH0257156U (en) * 1988-10-14 1990-04-25
JPH0475196U (en) * 1990-11-09 1992-06-30
US5553998A (en) * 1992-05-16 1996-09-10 Leybold Ag Gas friction vacuum pump having at least three differently configured pump stages releasably connected together

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916903A (en) * 1972-06-09 1974-02-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916903A (en) * 1972-06-09 1974-02-14

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797062A (en) * 1984-03-24 1989-01-10 Leybold-Heraeus Gmbh Device for moving gas at subatmospheric pressure
US4732530A (en) * 1984-07-25 1988-03-22 Hitachi, Ltd. Turbomolecular pump
JPS6341695A (en) * 1986-08-07 1988-02-22 Seiko Seiki Co Ltd Turbo-molecular pump
EP0256739A1 (en) * 1986-08-07 1988-02-24 Seiko Seiki Kabushiki Kaisha Turbo-molecular pump
US4826393A (en) * 1986-08-07 1989-05-02 Seiko Seiki Kabushiki Kaisha Turbo-molecular pump
US4878813A (en) * 1987-03-18 1989-11-07 Seiki Seiki Kabushiki Kaisha Vacuum pump
JPH0227194A (en) * 1988-07-15 1990-01-29 Daikin Ind Ltd Vacuum pump
JPH0220798U (en) * 1988-07-27 1990-02-13
JPH0257156U (en) * 1988-10-14 1990-04-25
JPH0475196U (en) * 1990-11-09 1992-06-30
US5553998A (en) * 1992-05-16 1996-09-10 Leybold Ag Gas friction vacuum pump having at least three differently configured pump stages releasably connected together

Similar Documents

Publication Publication Date Title
JP3584305B2 (en) High performance turbo molecular vacuum pump
US5052887A (en) Turbomolecular vacuum pump
JPS6341695A (en) Turbo-molecular pump
JPS60182394A (en) Turbomolecular pump
KR102214000B1 (en) Component for vacuum pump, siegbahn type exhaust mechanism, and compound vacuum pump
JP3048583B2 (en) Pump stage for high vacuum pump
US7445422B2 (en) Hybrid turbomolecular vacuum pumps
US4732530A (en) Turbomolecular pump
WO1995028571A1 (en) Molecular pump
JPS60204997A (en) Composite vacuum pump
JPS6355396A (en) Turbo vacuum pump
JPS61283794A (en) Turbo molecular pump
JPS61226596A (en) Turbo particle pump
JP2865888B2 (en) Multi-turbo type vacuum pump
JPS6361799A (en) Turbo molecular pump
JP3978001B2 (en) Turbo molecular pump
JP6850846B2 (en) Vacuum pumps and composite vacuum pumps
JPH05133386A (en) Turbo vacuum pump
JPH0452879B2 (en)
JP2761486B2 (en) Circumferential groove vacuum pump
JP2680156B2 (en) Vacuum pump
JPS63147991A (en) Combination vacuum pump
JPH02502840A (en) molecular vacuum pump
JPS60243395A (en) Turbo molecular pump
JPH065076B2 (en) Turbo molecular pump