JPH0223297A - Circular groove vacuum pump - Google Patents

Circular groove vacuum pump

Info

Publication number
JPH0223297A
JPH0223297A JP17414888A JP17414888A JPH0223297A JP H0223297 A JPH0223297 A JP H0223297A JP 17414888 A JP17414888 A JP 17414888A JP 17414888 A JP17414888 A JP 17414888A JP H0223297 A JPH0223297 A JP H0223297A
Authority
JP
Japan
Prior art keywords
rotating disk
ventilation passage
partition wall
intake port
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17414888A
Other languages
Japanese (ja)
Other versions
JP2761486B2 (en
Inventor
Tatsuji Ikegami
池上 達治
Tetsuo Obayashi
哲郎 大林
Keiichi Yoshida
恵一 吉田
Masashi Iguchi
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP63174148A priority Critical patent/JP2761486B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH0223297A publication Critical patent/JPH0223297A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,365 priority patent/US5217346A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,463 priority patent/US5160250A/en
Application granted granted Critical
Publication of JP2761486B2 publication Critical patent/JP2761486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To provide high exhaust speed over the region from a molecular flow to viscous flow by providing a partition wall projecting from a stator in a ventilating path to afford communication between the leading end of the ventilating path at the one side of the partition wall and an intake port and between the trailing end of same path at the other side and an exhaust port. CONSTITUTION:A rotary disk 3 is rotated in the direction of arrow A by driving a motor with as high as 0.1-1.0 time the probability average speed of the peripheral speed of gas molecules. Then, since ventilating paths 7, 7 are formed in the peripheral part of the rotary disk 3, gas molecules in these ventilating paths 7, 7 collide with both surfaces of notch step portions 4, 4 of the rotary disk 3 rotating with the highest speed to produce a transportation effect by a molecular drag effect due to gas molecule friction. The gas molecules are thus transported from an intake port 9 as shown by the arrow b through the ventilating paths 7, 7 as shown by the arrow C and compressed and exhausted from an exhaust port 10 as shown by the arrow D so that the gas molecules have an exhaust action in the pressure region from the molecular flow to the viscous flow.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は粒子加速器、プラズマ物理等の実験研究装置、
電子顕微鏡、表面分析計等及び半導体製造用真空装置等
の工業用真空装置において分子流から粘性流にわたる領
域即ち高真空から中真空にわたる圧力範囲で有用な円周
溝真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial field of application The present invention is applicable to particle accelerators, experimental research equipment for plasma physics, etc.
The present invention relates to a circumferential groove vacuum pump useful in a pressure range from molecular flow to viscous flow, that is, from high vacuum to medium vacuum, in industrial vacuum equipment such as electron microscopes, surface analyzers, and vacuum equipment for semiconductor manufacturing.

(2)従来の技術 従来の真空ポンプの1例として第23図の如く筐体(a
)内に回転板(b)を有する回転軸(C)を軸支し、該
回転板(b)の両面の対向する前記筐体(a)の両内面
にスパイラル状の溝(d)(d)を形成し、これら溝(
d)(d)の外方端を吸気口(e)に又内方端を排気口
(f)に連通し、前記回転板(b)の回転に伴って吸気
口(e)からの気体を溝(d)(d)において圧縮しな
がら排気口(f)より排気するものが知られている。
(2) Prior art As an example of a conventional vacuum pump, the housing (a
) in which a rotating shaft (C) having a rotating plate (b) is pivotally supported, and spiral grooves (d) (d ) and these grooves (
d) The outer end of (d) is connected to the intake port (e) and the inner end is communicated to the exhaust port (f), so that the gas from the intake port (e) is communicated with the rotation of the rotary plate (b). It is known that the compressor is compressed in the groove (d) (d) and exhausted from the exhaust port (f).

(3)発明が解決しようとする問題点 この従来の真空ポンプによれば筐体(a)の内面に渦巻
状の溝(d)(d)を形成する式であり、圧縮性能を上
げるために溝を長くする必要から、該溝(d)(d)の
幅を大にすることができず、一方溝の深さを幅に比して
大きくとることは排気性能を損なうから溝の断面積を大
にすることができず、その上、圧縮比を上げるために多
段式を考えると、回転円板の両面に対向する渦巻溝を設
けて並列に排気する方式では、次の段への連絡通路が複
雑な構造となり、回転円板の両面を並列に作動させられ
ないことになるから排気速度を大とすることが困難であ
り、又仮に排気速度を大にすべく前記溝(d)(ci)
の断面積を大にするとこれに応じて前記回転円板(b)
の径を大にする必要があり真空ポンプが大型となる問題
点を有していた。
(3) Problems to be solved by the invention According to this conventional vacuum pump, spiral grooves (d) (d) are formed on the inner surface of the housing (a), and in order to improve compression performance. Because the groove needs to be long, the width of the groove (d) (d) cannot be increased, and on the other hand, making the depth of the groove larger than the width impairs exhaust performance, so the cross-sectional area of the groove is However, when considering a multi-stage system to increase the compression ratio, it is difficult to connect spiral grooves to the next stage with a parallel exhaust system with opposing spiral grooves on both sides of the rotating disc. Since the passage has a complicated structure and it is impossible to operate both sides of the rotating disk in parallel, it is difficult to increase the exhaust speed. ci)
When the cross-sectional area of the rotating disk (b) is increased, the rotating disk (b)
The problem was that the diameter of the vacuum pump had to be increased, making the vacuum pump large.

本発明はこれらの問題点を解消し分子流から粘性流にわ
たる領域で大きな排気速度が得られる小型の真空ポンプ
を提供することを目的とする。
An object of the present invention is to solve these problems and provide a small-sized vacuum pump that can obtain a high pumping speed in a range from molecular flow to viscous flow.

(4)問題点を解決するための手段 この目的を達成すべく第1発明は吸気口と排気口を有す
る筐体内に回転円板を有する回転軸を軸支すると共に、
該筐体内に、該回転円板が介入される四部を有するステ
ータを固定し、該回転円板の両面の周辺部に切込段部を
或いはこれら周辺部に対向する位置の凹部に環状溝を形
成してこれら切込段部或いは環状溝を通風路に形成し、
これら通風路に隔壁を前記ステータから突設し、該隔壁
の1側の該通風路の始端部を前記吸気口に該隔壁の他側
の該通風路の終端部を前記排気口に連通したことを特徴
とし、又第2発明は第1発明において前記通風路におけ
る前記回転円板側とステータ側の対向面間の距離をその
始端部から終端部に至るに従って徐々に小さくしたこと
を特徴とし、又第3発明は第1発明において前記通風路
に前記隔壁を0円周方向に等しい間隔をもって複数個前
記ステータから突設し、これら各隔壁の1側の該通風路
の始端部を前記吸気口に、これら各隔壁の他側の該通風
路の終端部を前記排気口に連通したことを特徴とし、又
第4発明は吸気口と排気口を有する筐体内に複数の回転
円板を有する回転軸を軸支すると共に、該筐体内に、こ
れら各回転円板が介入される凹部を有するステータを固
定し、これら回転円板の両面の周辺部に切込段部を或い
はこれら周辺部に対向する位置の凹部に環状溝を形成し
てこれら切込段部或いは環状溝を通風路に形成し、これ
ら通風路に前記ステータから隔壁を突設し、隣り合う回
転円板の通風路において吸気口側の回転円板の通風路の
隔壁の他側の終端部と排気口側の回転円板の通風路の隔
壁の1側の始端部との間を連通路により連結し、前記吸
気口に最も近い回転円板の通風路の隔壁の1側の始端部
を前記吸気口に連通ずると共に前記排気口に最も近い回
転円板の通風路の隔壁の他側の終端部を前記排気口に連
通したことを特徴とし、更に第5発明は第4発明におい
て前記各回転円板の通風路における該回転円板側とステ
ータ側の対向面間の距離は前記吸気口側から排気口側に
至るに従って順次小となるようにしたことを特徴とし、
又第6発明は第1発明又は第4発明において前記回転円
板の周辺部の肉厚をその外方位置になるのに従って薄く
すると共に前記通風路において該回転円板側とステータ
側の対向面間の距離を半径方向に一定にしたことを特徴
とする。
(4) Means for solving the problem In order to achieve this object, the first invention pivots a rotating shaft having a rotating disk within a housing having an intake port and an exhaust port, and
A stator having four parts in which the rotating disk is inserted is fixed in the housing, and cut steps are formed in the peripheral parts of both sides of the rotating disk, or annular grooves are formed in the recesses at positions opposite to these peripheral parts. and forming these cut steps or annular grooves into ventilation passages,
Partition walls are provided in these ventilation passages protruding from the stator, and a starting end of the ventilation passage on one side of the partition wall communicates with the intake port, and a terminal end of the ventilation passage on the other side of the partition wall communicates with the exhaust port. A second invention is characterized in that in the first invention, the distance between opposing surfaces of the rotating disk side and the stator side in the ventilation passage is gradually reduced from the starting end to the terminal end, A third aspect of the present invention is that in the first aspect, a plurality of partition walls are provided in the ventilation passage projecting from the stator at equal intervals in the circumferential direction, and a starting end of the ventilation passage on one side of each of these partition walls is connected to the intake port. The fourth invention is characterized in that the terminal end of the ventilation passage on the other side of each of these partitions is communicated with the exhaust port, and a fourth invention provides a rotating device having a plurality of rotating disks in a housing having an intake port and an exhaust port. In addition to supporting the shaft, a stator having a recessed portion in which each of these rotating disks is inserted is fixed in the housing, and notch steps are provided at the periphery of both sides of these rotating disks or facing these periphery portions. An annular groove is formed in the recess at the position where the cut step or annular groove is formed to form a ventilation passage, and a partition wall is provided protruding from the stator in these ventilation passages, and an inlet is formed in the ventilation passage of the adjacent rotating disk. A communicating passage connects the other end of the partition wall of the ventilation passage of the rotary disk on the side and the starting end of the partition on one side of the ventilation passage of the rotation disk on the exhaust port side, and A starting end on one side of the partition of the ventilation passage of the rotating disk closest to the rotating disk was communicated with the intake port, and a terminal end of the other side of the partition of the ventilation path of the rotating disk closest to the exhaust port was communicated with the exhaust port. Further, a fifth invention is characterized in that in the fourth invention, the distance between opposing surfaces of the rotating disc side and the stator side in the ventilation passage of each rotating disc is sequentially arranged from the intake port side to the exhaust port side. It is characterized by being made small,
In a sixth aspect of the present invention, in the first aspect or the fourth aspect, the wall thickness of the peripheral portion of the rotating disk is made thinner as the outer position thereof increases, and the opposing surfaces of the rotating disk side and the stator side in the ventilation passage are provided. The feature is that the distance between them is constant in the radial direction.

(5)作用 第1発明によれば、高速回転する回転円板で最も高速回
転移動する周辺部の両面により通風路の気体分子は気体
分子摩擦によるモレキュラードラッグ効果による輸送効
果を生じ、始端部から終端部に向って分子流或いは中間
流状態から粘性流となって吸気口より排気口に向って大
きな排気速度で圧縮排気される。
(5) Effect According to the first invention, the gas molecules in the ventilation path are transported by the molecular drag effect due to the friction of the gas molecules by both surfaces of the peripheral portion that rotates and moves at the highest speed in the rotating disk that rotates at high speed, and from the starting end. Toward the terminal end, the molecular flow or intermediate flow becomes a viscous flow, which is compressed and exhausted from the intake port toward the exhaust port at a high exhaust speed.

又第2発明によれば、始端部から終端部に向って圧力が
上昇するのに対応して回転円板の周辺部の面とこれに対
向するステータの面との距離すが小となり、かくてb/
入(λは気体の平均自由行程)が最適値に近い値を保ち
、輸送効果が更に大となって排気速度が更に増大すると
共に排気圧縮性能も向上する。
Further, according to the second invention, as the pressure increases from the starting end toward the terminal end, the distance between the peripheral surface of the rotating disk and the opposing surface of the stator decreases. teb/
The gas input (λ is the mean free path of the gas) is maintained close to the optimum value, and the transport effect is further increased, the exhaust speed is further increased, and the exhaust gas compression performance is also improved.

更に第3発明によれば複数の隔壁により仕切られた各通
風路において気体分子が排気できて排気速度が大となる
Furthermore, according to the third aspect of the invention, gas molecules can be exhausted from each ventilation path partitioned by a plurality of partition walls, increasing the exhaust speed.

又第4発明によれば各回転円板の通風路において気体分
子を順次圧縮排気して相当に大きな圧縮比が得られる。
Further, according to the fourth aspect of the invention, gas molecules are sequentially compressed and exhausted in the ventilation passages of each rotating disk, and a considerably large compression ratio can be obtained.

更に第5発明によれば最も大きい吸気口側の通風路から
吸入された気体が各回転円板の通風路に順次圧送される
に従って圧力が上昇し、これに対応してb/λが最適値
に近い値を保っbの値の各段の通風路で気体は効率よく
圧縮されて少い段数で高い圧縮性能を実現し、排気速度
も大きくすることができる。
Furthermore, according to the fifth invention, as the gas sucked in from the ventilation passage on the side of the largest intake port is sequentially pumped into the ventilation passages of each rotating disk, the pressure increases, and b/λ corresponds to the optimum value. The gas is efficiently compressed in the ventilation passages of each stage where the value of b is kept close to , and high compression performance can be achieved with a small number of stages, and the exhaust speed can also be increased.

又第6発明によれば回転円板の中心部に作用する遠心応
力の最大値が小となり、かくて該回転円板に強度の大の
材料が要求されない。
Further, according to the sixth invention, the maximum value of the centrifugal stress acting on the center of the rotating disk is small, and thus the rotating disk does not require a material with high strength.

(6)実施例 本発明の第1実施例を第1図乃至第4図に従って説明す
る。
(6) Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 4.

(1)は真空ポンプの筐体、(2)は該筐体(1)内に
軸支した回転軸を示し、該回転軸(2)はその下端部に
おいてモータが連結されていると共に上端部に回転円板
(3)がその中央部のボス部(3a)において固定され
ている。そして該回転円板(3)はその両面の周辺部を
切欠いて切込段部(4)(4)に形成した。又(5)は
前記筐体(1)に内面に固定したステータを示し、該ス
テータ(5)は前記回転円板(3)に相当する位置にお
いて該回転円板(3)が介入される環状の凹部(6)が
形成されており、該凹部(6)と前記切込段部(4)=
(4)により前記回転円板(3)の周辺部の両面に通風
路(7)(7)を形成した。そして前記凹部(6)に、
前記回転円板(3)の周辺部が通過する部分を截除した
隔壁(8)を前記ステータ(5)より突設して該隔壁(
8)により前記通風路(7)(7)を区切り、該隔壁(
8)の1側即ち上流側のこれら通風路(7)(7)の始
端部を吸入口(9)に連通ずると共に前記隔壁(8)の
他側即ち下流側のこれら通風路(7)(7)の終端部を
排気口(10)に連通した。
(1) shows the casing of the vacuum pump, and (2) shows a rotating shaft supported within the casing (1). The rotating shaft (2) is connected to a motor at its lower end, and its upper end A rotating disk (3) is fixed at a boss portion (3a) in the center thereof. The rotating disk (3) was cut out at the peripheral portions of both sides to form cut step portions (4) (4). Further, (5) indicates a stator fixed to the inner surface of the housing (1), and the stator (5) has an annular shape in which the rotating disk (3) is inserted at a position corresponding to the rotating disk (3). A recess (6) is formed, and the recess (6) and the cut step (4)=
By (4), ventilation passages (7) (7) were formed on both sides of the peripheral portion of the rotating disk (3). And in the recess (6),
A partition wall (8) with a portion through which the peripheral portion of the rotating disk (3) passes is cut out and protrudes from the stator (5).
The ventilation passages (7) (7) are separated by the partition wall (8).
The starting ends of these ventilation passages (7) (7) on one side, that is, the upstream side of the partition wall (8), are communicated with the suction port (9), and the starting ends of these ventilation passages (7) (7) on the other side, that is, the downstream side, of the partition wall (8) are communicated with the suction port (9). 7) was connected to the exhaust port (10).

かくて、モータの駆動により回転円板(3)をその周速
が気体分子の確率平均速度の0.1〜1.0倍の高速で
第1図のA矢印方向に回転させると、通風路(7)(7
)は回転円板(3)の周辺部に形成されているので、こ
れら通風路(7)(7)の気体分子は回転円板(3)の
周辺部の最も高速回転移動する切込段部(4)(4)の
両面に当ってこのときの気体分子摩擦によるモレキュラ
ードラッグ効果により輸送効果が生じ、かくて気体分子
は第1図及び第2図の矢印Bの如く吸気口(9)より通
風路(7)(7)を第1図の矢印Cの如く輸送され第1
図及び第4図の矢印りの如く排気口(10)より圧縮排
気され、分子流から粘性流にある圧力領域において排気
作用を有する。尚発明者の実験によれば1分子流から粘
性流の領域で10倍以上の圧縮比が得られた。
Thus, when the rotating disk (3) is driven by the motor and rotated in the direction of arrow A in Fig. 1 at a circumferential speed of 0.1 to 1.0 times the probability average speed of gas molecules, the ventilation path (7) (7
) are formed at the periphery of the rotating disk (3), so the gas molecules in these ventilation passages (7) (7) are distributed at the notch step portion, which rotates at the highest speed, at the periphery of the rotating disk (3). (4) When the gas molecules hit both sides of (4), a transport effect occurs due to the molecular drag effect caused by the friction of the gas molecules, and thus the gas molecules move from the inlet (9) as shown by arrow B in Figures 1 and 2. The ventilation passages (7) (7) are transported as shown by arrow C in Figure 1.
It is compressed and evacuated from the exhaust port (10) as indicated by the arrow in FIG. 4 and has an exhaust effect in the pressure range from molecular flow to viscous flow. According to the inventor's experiments, a compression ratio of 10 times or more was obtained in the range from a single molecule flow to a viscous flow.

第5図乃至第7図は第2実施例を示し、該実施例におい
ては、前記通風路(7)(7)における回転円板(3)
側とステータ(5)側の対向面間の距離すをその始端部
から終端部に向って徐々に小となるように形成した。か
くて前記第1実施例の如く回転円板(3)を高速に回転
すると、通風路(7)(7)内の気体はその始端部から
終端部に至るに従って高い圧力となって気体の平均自由
行程入が小となり、これに応じて前述の如く通風路(7
)(7)の距離すが徐々に小となるので、b/λが最適
値に近い値を保ち輸送効果が更に増大すると共に排気圧
縮性能が向上する。
5 to 7 show a second embodiment, in which the rotating disk (3) in the ventilation passage (7) (7)
The distance between the facing surfaces on the stator (5) side and the stator (5) side was formed so as to gradually become smaller from the starting end toward the ending end. Thus, when the rotating disk (3) is rotated at high speed as in the first embodiment, the pressure of the gas in the ventilation passages (7) increases from the starting end to the ending end, and the average pressure of the gas increases. The free stroke entry becomes small, and accordingly, as mentioned above, the ventilation passage (7
) (7) gradually becomes smaller, so that b/λ remains close to the optimum value, further increasing the transport effect and improving exhaust gas compression performance.

第8図乃至第10図は第3実施例を示し、該実施例にお
いては、前記回転円板(3)の周辺部の切込段部(4)
(4)の個所の肉厚を外方になるに従って徐々に薄く形
成すると共に、これら切込段部(4)(4)とこれらに
対向する前記凹部(6)の内面との間の距離すは半径方
向のいずれの位置でも等しくなるように該凹部(6)を
外方に向うのに従って間隔が狭くなるように形成ルてお
り、かくて前記回転円板(3)の周辺部の切込段部(4
)(4)の個所の肉厚が外方になるのに従って徐々に小
となっているので、該回転円板(3)が高速で回転して
もその中心部に作用する遠心応力の最大値が小となり、
従って該回転円板(3)にかなりの強度を要求されるこ
となく、該回転円板(3)の材質としてエンジニアリン
グプラスチックやセラミックス、或いは鋳造物であって
もよい。
FIG. 8 to FIG. 10 show a third embodiment, in which a notch step (4) on the periphery of the rotary disk (3) is shown.
The thickness of the part (4) is gradually made thinner as it goes outward, and the distance between these notch steps (4) (4) and the inner surface of the recess (6) facing them is also The recesses (6) are formed so that they are equal at any position in the radial direction, and the intervals become narrower as they go outward, thus making the notches in the peripheral part of the rotary disk (3) narrower. Stepped section (4
) Since the wall thickness at the point in (4) gradually decreases toward the outside, even if the rotating disk (3) rotates at high speed, the maximum value of the centrifugal stress that acts on its center. becomes small,
Therefore, the rotating disk (3) is not required to have considerable strength, and the rotating disk (3) may be made of engineering plastics, ceramics, or cast materials.

又第11図乃至第14図は第4実施例を示し、該実施例
においては前記吸気口(9)及び排気口(10)をそれ
ぞれ180度の間隔をもって2個所設けると共に、これ
に応じて隔壁(8)も2個所設けており、かくて隔壁(
8)(8)により仕切られた2個所の通風路(7)(7
)において気体分子が圧縮排気されるので、その排気速
度は略2倍になる。尚この実施例では2個の隔壁(8)
により通風路(7)(7)を2側所に区切った例を示し
たが、3個以上の隔壁(8)により通風路(7)(7)
を3個所以上に区切ってもよい。
Further, FIGS. 11 to 14 show a fourth embodiment, in which the intake port (9) and the exhaust port (10) are provided at two locations with an interval of 180 degrees, and a partition wall is provided accordingly. (8) is also provided in two places, thus partition wall (
8) Two ventilation channels separated by (8) (7) (7
), the gas molecules are compressed and exhausted, so the pumping speed is approximately doubled. In this embodiment, there are two partition walls (8).
An example is shown in which the ventilation passage (7) (7) is divided into two sides, but the ventilation passage (7) (7) is divided by three or more partition walls (8).
may be divided into three or more locations.

更に第15図乃至第22図は第5実施例を示し、該第5
実施例においては、3枚の回転円板(3)・・・(3)
をボス部(3a)において一体重に形成すると共に各回
転円板(3)の通風路における回転円板(3)側とステ
ータ(5)側の対向面間の距離が吸気口(9)側から排
気口(10)側に至るに従って順次小となるように形成
し、更にこれら通風路(7)(7)に突出の隔壁(8)
及び隣り合う通風路(7)(7)及び(7)(7)間を
連通ずる連通路(11)を吸気口(9)側から排気口(
10)側に至るに従ってその位置を順次ずらせて形成し
、かくて吸気口(9)からの気体分子は連通路(11)
を介して送られながら各通風路(7)(7)において順
次圧縮され、相当に高い圧縮比が得られる。ここで発明
者の実験によれば10’以上の大きな圧縮比が得られた
。尚、この実施例は3段の場合を示したが、更に多数段
に構成することにより更に大きな圧縮比が得られる。
Furthermore, FIGS. 15 to 22 show a fifth embodiment, and the fifth embodiment
In the example, three rotating disks (3)...(3)
are formed into a single piece at the boss portion (3a), and the distance between the facing surfaces of the rotating disk (3) side and the stator (5) side in the ventilation passage of each rotating disk (3) is set to the air intake port (9) side. The ventilation passages (7) (7) are formed so as to become smaller in size as they reach the exhaust port (10) side, and are further provided with partition walls (8) projecting from these ventilation passages (7) (7).
And the communication path (11) that communicates between the adjacent ventilation paths (7) (7) and (7) (7) is connected from the intake port (9) side to the exhaust port (
10), the positions of which are sequentially shifted as they reach the side, so that gas molecules from the intake port (9) flow through the communication path (11).
While being sent through the air passages (7), the air is sequentially compressed in each ventilation passage (7), resulting in a considerably high compression ratio. According to the inventor's experiments, a large compression ratio of 10' or more was obtained. Although this embodiment shows the case of three stages, an even larger compression ratio can be obtained by configuring a larger number of stages.

又前述したいずれの実施例も回転円板(3)の周辺部の
両面を切込んで切込段部(4)(4)を形成しているが
、回転円板の周辺部には切込みを設けず、代りに該周辺
部に対向するステータ(5)の凹部の内面に環状溝を形
成してもよい。
Furthermore, in all of the embodiments described above, the cut steps (4) (4) are formed by cutting both sides of the peripheral portion of the rotating disk (3). Instead, an annular groove may be formed on the inner surface of the concave portion of the stator (5) facing the peripheral portion.

(7)発明の効果 このように第1発明によると回転円板の両面の周縁部に
切込段部を形成するか或いは該回転円板が介入されるス
テータの凹部で該回転円板の両面の周辺部に対向する位
置に環状溝を形成して通風路を形成し、該通風路に隔壁
を突設して該隔壁の1側の該通風路の始端部を吸気口に
又該隔壁の他側の該通風路の終端部を排気口に連通した
ので、有効な大吸気口が形成できると共に回転円板の特
に高速に回転する周辺部により該周辺部に形成の通風路
の気体分子が気体分子摩擦によるモレキュラードラッグ
効果で効率的な輸送効果を生じて大きな排気速度が得ら
れ、又第2発明によれば前記通風路における回転円板側
とステータ側の対向面間の距離をその始端部から終端部
に至るに従って徐々に小としたので、始端部と終端部に
向って圧力が上昇するのに対応して前記距離が小となり
、かくてb/入が最適値に近い値を保って更に高速流と
なって輸送効果が更に増大し、更に第3発明によれば前
記通風路を円周方向に等しい間隔をもって複数の隔壁に
よって仕切りこの仕切られた各通風路の始端部を吸気口
に又終端部を排気口に連通したので、各通風路を介して
の排気が可能となって排気速度を大きくすることができ
、又第4発明によれば同一回転軸に複数の回転円板を固
定し、これら回転円板の通風路において隣り合う回転円
板の通風路の始端部と次段の終端部を連通路によりそれ
ぞれ連通し、吸気口に最も近い回転円板の通風路の始端
部を該吸気口に連通ずると共に排気口に最も近い回転円
板の通風路の終端部を該排気口に連通し。
(7) Effects of the Invention As described above, according to the first invention, the cut steps are formed on the peripheral edges of both sides of the rotating disk, or the recesses of the stator in which the rotating disk is inserted are formed on both sides of the rotating disk. An annular groove is formed at a position facing the peripheral portion of the partition wall to form a ventilation passage, a partition wall is provided protruding from the ventilation passage, and the starting end of the ventilation passage on one side of the partition wall is used as an intake port. Since the end of the ventilation passage on the other side is communicated with the exhaust port, an effective large intake port can be formed, and gas molecules in the ventilation passage formed in the peripheral part of the rotating disk, which rotates at a particularly high speed, can be The molecular drag effect caused by the friction of gas molecules produces an efficient transport effect and a large exhaust speed can be obtained, and according to the second invention, the distance between the opposing surfaces of the rotating disk side and the stator side in the ventilation passage is set to the starting point. Since the distance is gradually decreased from the beginning to the end, the distance becomes smaller as the pressure increases toward the beginning and end, and thus b/in remains close to the optimum value. Furthermore, according to the third aspect of the present invention, the ventilation passages are partitioned by a plurality of partition walls at equal intervals in the circumferential direction, and the starting end of each partitioned ventilation passage is connected to an intake port. Furthermore, since the terminal end is communicated with the exhaust port, it is possible to exhaust air through each ventilation path, increasing the exhaust speed.According to the fourth aspect of the invention, a plurality of rotating disks can be connected to the same rotating shaft. are fixed, and in the ventilation passages of these rotating disks, the starting ends of the ventilation passages of adjacent rotating disks and the terminal ends of the next stage are connected through communication passages, and the starting ends of the ventilation passages of the rotating disks closest to the intake ports are connected. The terminal portion of the rotary disk ventilation passage closest to the exhaust port is communicated with the exhaust port.

高速回転する回転円板により各通風路において気体分子
を順次圧縮排気するようにしたので、相当に大きな圧縮
比が得られ、更に第5発明によればこれら各回転円板の
通風路における回転円板側とステータ側の対向する面間
の距離を吸気口側から排気口側に至るに従って順次小と
なるように形成したので、輸送効果が増大して排気速度
が更に大となると共に相当に大きな圧縮比が得られ、第
6発明によれば回転円板の周辺部の肉厚を外方に向うに
従って徐々に薄くしたので、該回転円板を高速に回転し
てもその中心部に作用する遠心応力の、最大値が小とな
り、かくて該回転円板を格別に強度の大きい材料を使用
する必要がなくて安価な材料と加工法で製造でき、耐食
性材料を使用することも可能となり、又いずれの発明に
おいても回転円板の周辺部の両面に通風路を形成して両
道風路内の圧力が回転円板の各個所の両面で等しいので
1回転円板の端縁とこれに対向する凹部の内面との間に
シール性が要求されずにクリアランスを大きくすること
ができ、かくて高い加工精度が要求されず加工容易とな
り、更にポンプとして小型になる等の効果を有する。
Since the gas molecules are sequentially compressed and exhausted in each ventilation passage by a rotating disk rotating at high speed, a considerably large compression ratio can be obtained. Since the distance between the opposing surfaces of the plate side and the stator side is formed so that it becomes smaller sequentially from the intake port side to the exhaust port side, the transport effect increases and the exhaust speed becomes even higher, and it becomes considerably faster. According to the sixth invention, the thickness of the peripheral part of the rotating disk is gradually thinned toward the outside, so that even if the rotating disk is rotated at high speed, it will not act on the center part. The maximum value of centrifugal stress is small, and thus the rotating disk does not need to be made of particularly strong materials, and can be manufactured using inexpensive materials and processing methods, and it is also possible to use corrosion-resistant materials. Also, in both inventions, ventilation passages are formed on both sides of the peripheral portion of the rotating disc, and the pressure in both air passages is equal on both sides of each part of the rotating disc, so that the air passages are formed on both sides of the peripheral part of the rotating disc. It is possible to increase the clearance between the pump and the inner surface of the concave portion without requiring sealing performance, and thus, high processing accuracy is not required, making processing easier, and furthermore, the pump can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の要部の平面図、第2図は
第1図のニー■線面断面図、第3図は第1図の0−m線
截断面図、第4図は第1図の0−rllr線截断線図断
面図図は第2実施例の第2図に対応した截断面図、第6
図は同実施例の第3図に対応した截断面図、第7図は同
実施例の第4図に対応した截断面図、第8図は第3実施
例の第2図に対応した截断面図、第9図は同実施例の第
3図に対応した截断面図、第10図は同実施例の第4図
に対応した截断面図、第11図は第4実施例の要部の平
面図、第12図は第11図のニー■線面断面図、第13
図は第11図の■−■線截線面断面図14図は第11図
のV−VI線截断面図、第15図は第5実施例の要部の
平面図、第16図は第15図のI−II線線断断面図第
17図は第15図のo−m線截断面図、第18図は第1
5図の0−IT線線断断面図第19図は第15図のO−
v線面断面図、第20図は第15図の0−VI線截断面
図、第21図は第15図のO−■線面断面図、第22図
は第15図の0−■線面断面図、第23図は従来の真空
ポンプの断面図である。 第20図 (1)・・・真空ポンプ (2)・・・回転軸 (3)・・・回転円板 (4)・・・切込段部 (5)・・・ステータ (6)・・・凹部 (7)・・・通風路 (8)・・・隔壁 (9)・・・吸入口 (10)・・・排出口 (11)・・・連通路 第21図 出 願 人 株式会社大阪真空機器製作所 第22図 第23図
1 is a plan view of the main part of the first embodiment of the present invention, FIG. 2 is a sectional view taken along the knee line in FIG. 1, and FIG. 4 is a cross-sectional view of the 0-rllr line in FIG. 1; the cross-sectional view is a cross-sectional view corresponding to FIG. 2 of the second embodiment;
The figure is a cross-sectional view corresponding to FIG. 3 of the same embodiment, FIG. 7 is a cross-sectional view corresponding to FIG. 4 of the same embodiment, and FIG. 8 is a cross-sectional view corresponding to FIG. 2 of the third embodiment. 9 is a cross-sectional view corresponding to FIG. 3 of the same embodiment, FIG. 10 is a cross-sectional view corresponding to FIG. 4 of the same embodiment, and FIG. 11 is a main part of the fourth embodiment. Fig. 12 is a plan view of Fig. 11;
14 is a sectional view taken along the line V-VI in FIG. 11, FIG. 15 is a plan view of the main part of the fifth embodiment, and FIG. 15 is a sectional view taken along the line I-II. FIG. 17 is a sectional view taken along the line om in FIG.
19 is a sectional view taken along the 0-IT line in FIG. 5.
20 is a sectional view taken along the 0-VI line in FIG. 15, FIG. 21 is a sectional view taken along the O-■ line in FIG. 15, and FIG. 22 is a sectional view taken along the 0-■ line in FIG. 15. FIG. 23 is a sectional view of a conventional vacuum pump. Figure 20 (1)...Vacuum pump (2)...Rotating shaft (3)...Rotating disk (4)...Notch step (5)...Stator (6)...・Concavity (7)...Ventilation passage (8)...Partition wall (9)...Intake port (10)...Outlet port (11)...Communication path Figure 21 Applicant: Osaka Vacuum Co., Ltd. Equipment manufacturing facility Fig. 22 Fig. 23

Claims (6)

【特許請求の範囲】[Claims] (1)吸気口と排気口を有する筐体内に回転円板を有す
る回転軸を軸支すると共に、該筺体内に、該回転円板が
介入される凹部を有する ステータを固定し、該回転円板の両面の周辺部に切込段
部を或いはこれら周辺部に対向する位置の凹部に環状溝
を形成してこれら切込段部或いは環状溝を通風路に形成
し、これら通風路に隔壁を前記ステータから突設し、該
隔壁の1側の該通風路の始端部を前記吸気口に該隔壁の
他側の該通風路の終端部を前記排気口に連通したことを
特徴とする円周溝真空ポンプ。
(1) A rotating shaft having a rotating disk is pivotally supported in a housing having an intake port and an exhaust port, and a stator having a recess in which the rotating disk is inserted is fixed in the housing, and the rotating shaft is Cut steps or annular grooves are formed in the periphery of both sides of the plate or annular grooves are formed in the recesses located opposite these peripheries to form ventilation passages, and partition walls are provided in these ventilation passages. A circumference projecting from the stator, the starting end of the ventilation passage on one side of the partition wall communicating with the intake port, and the terminal end of the ventilation passage on the other side of the partition wall communicating with the exhaust port. groove vacuum pump.
(2)前記通風路における前記回転円板側とステータ側
の対向面間の距離をその始端部から終端部に至るに従っ
て徐々に小さくしたことを特徴とする特許請求の範囲第
1項記載の円周溝真空ポンプ。
(2) A circle according to claim 1, characterized in that the distance between opposing surfaces of the rotating disk side and the stator side in the ventilation passage is gradually reduced from the starting end to the terminal end thereof. Circumferential groove vacuum pump.
(3)前記通風路に前記隔壁を円周方向に等しい間隔を
もって複数個前記ステータから突設し、これら各隔壁の
1側の該通風路の始端部を前記吸気口に、これら各隔壁
の他側の該通風路の終端部を前記排気口に連通したこと
を特徴とする特許請求の範囲第1項記載の円周溝真空ポ
ンプ。
(3) A plurality of partition walls are provided in the ventilation passage protruding from the stator at equal intervals in the circumferential direction, and the starting end of the ventilation passage on one side of each of these partition walls is set as the intake port, and the other partition walls of each of these partition walls are 2. The circumferential groove vacuum pump according to claim 1, wherein a terminal end of said ventilation passage is connected to said exhaust port.
(4)吸気口と排気口を有する筐体内に複数の回転円板
を有する回転軸を軸支すると共に、該筐体内に、これら
各回転円板が介入される凹部を有するステータを固定し
、これら回転円板の両面の周辺部に切込段部を或いはこ
れら周辺部に対向する位置の凹部に環状溝を形成してこ
れら切込段部或いは環状溝を通風路に形成し、これら通
風路に前記ステータから隔壁を突設し、隣り合う回転円
板の通風路において吸気口側の回転円板の通風路の隔壁
の他側の終端部と排気口側の回転円板の通風路の隔壁の
1側の始端部との間を連通路により連結し、前記吸気口
に最も近い回転円板の通風路の隔壁の1側の始端部を前
記吸気口に連通すると共に前記排気口に最も近い回転円
板の通風路の隔壁の他側の終端部を前記排気口に連通し
たことを特徴とする円周溝真空ポンプ。
(4) A rotary shaft having a plurality of rotating disks is pivotally supported within a housing having an intake port and an exhaust port, and a stator having a recessed portion in which each of these rotating disks is inserted is fixed within the housing, Cut steps or annular grooves are formed in the peripheries of both sides of these rotating disks or annular grooves are formed in the recesses at positions opposite to these peripheries to form ventilation passages. A partition wall is provided protruding from the stator, and in the ventilation passages of adjacent rotating discs, the other end of the partition wall of the ventilation passage of the rotating disc on the intake port side and the partition wall of the ventilation passage of the rotating disc on the exhaust port side. A starting end on one side of the partition wall of the rotary disk that is closest to the intake port is connected to the starting end on one side of the rotating disk by a communication passage, and a starting end on the first side of the partition wall of the ventilation passage of the rotating disk closest to the intake port is connected to the intake port and the starting end of the partition wall on the first side is closest to the exhaust port. A circumferential groove vacuum pump characterized in that the other end of the partition wall of the ventilation passage of the rotating disk is communicated with the exhaust port.
(5)前記各回転円板の通風路における該回転円板側と
ステータ側の対向面間の距離は前記吸気口側から排気口
側に至るに従って順次小となるようにしたことを特徴と
する特許請求の範囲第4項記載の円周溝真空ポンプ。
(5) The distance between the opposing surfaces of the rotating disk side and the stator side in the ventilation passage of each rotating disk is configured to become smaller sequentially from the intake port side to the exhaust port side. A circumferential groove vacuum pump according to claim 4.
(6)前記回転円板の周辺部の肉厚をその外方位置にな
るのに従って薄くすると共に前記通風路において該回転
円板側とステータ側の対向面間の距離を半径方向に一定
にしたことを特徴とする特許請求の範囲第1項又は第4
項記載の円周溝真空ポンプ。
(6) The wall thickness of the peripheral portion of the rotating disk is made thinner as the outer position increases, and the distance between opposing surfaces on the rotating disk side and the stator side in the ventilation passage is made constant in the radial direction. Claim 1 or 4 characterized in that
Circumferential groove vacuum pump as described in section.
JP63174148A 1988-07-13 1988-07-13 Circumferential groove vacuum pump Expired - Fee Related JP2761486B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63174148A JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174148A JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump

Publications (2)

Publication Number Publication Date
JPH0223297A true JPH0223297A (en) 1990-01-25
JP2761486B2 JP2761486B2 (en) 1998-06-04

Family

ID=15973515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174148A Expired - Fee Related JP2761486B2 (en) 1988-07-13 1988-07-13 Circumferential groove vacuum pump

Country Status (1)

Country Link
JP (1) JP2761486B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815606U (en) * 1971-06-30 1973-02-22
JPS5468210U (en) * 1977-10-25 1979-05-15
JPS5759098A (en) * 1980-08-11 1982-04-09 Mireron Nooman Molecule driving apparatus
JPS5762995A (en) * 1980-10-01 1982-04-16 Hitachi Ltd Molecular pump
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6385291A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815606U (en) * 1971-06-30 1973-02-22
JPS5468210U (en) * 1977-10-25 1979-05-15
JPS5759098A (en) * 1980-08-11 1982-04-09 Mireron Nooman Molecule driving apparatus
JPS5762995A (en) * 1980-10-01 1982-04-16 Hitachi Ltd Molecular pump
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6385291A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump

Also Published As

Publication number Publication date
JP2761486B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP3971821B2 (en) Gas friction pump
JP3584305B2 (en) High performance turbo molecular vacuum pump
JPH037039B2 (en)
CA2774601C (en) Vacuum pump
JPH04209980A (en) Molecular vacuum pump
KR102123137B1 (en) Clamped circular plate and vacuum pump
EP0445855A1 (en) Improved turbomolecular pump
EP3076021B1 (en) Vacuum pump with siegbahn type pumping stage
WO2015098275A1 (en) Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
US7445422B2 (en) Hybrid turbomolecular vacuum pumps
JP4599061B2 (en) Vacuum pump with improved impeller shape
US20080056886A1 (en) Vacuum pumps with improved pumping channel cross sections
WO1995028571A1 (en) Molecular pump
JP2005030209A (en) Vacuum pump
JPH10141277A (en) Double discharge-type gas friction pump
JPH0223297A (en) Circular groove vacuum pump
JP2628351B2 (en) Compound molecular pump
JP2696370B2 (en) Circumferential groove vacuum pump
JPH11159493A (en) Molecular drag compressor having finned rotor structure
JP2724840B2 (en) Compound vacuum pump
JPS63266191A (en) Vacuum pump
JPH0275796A (en) Composite vacuum pump
JPS63192987A (en) Centrifugal high vacuum pump
JPH08247084A (en) Turbo-molecular pump
JPH0458098A (en) Exhaust element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees