JP2696370B2 - Circumferential groove vacuum pump - Google Patents

Circumferential groove vacuum pump

Info

Publication number
JP2696370B2
JP2696370B2 JP31622788A JP31622788A JP2696370B2 JP 2696370 B2 JP2696370 B2 JP 2696370B2 JP 31622788 A JP31622788 A JP 31622788A JP 31622788 A JP31622788 A JP 31622788A JP 2696370 B2 JP2696370 B2 JP 2696370B2
Authority
JP
Japan
Prior art keywords
vacuum pump
circumferential groove
rotating disk
intake port
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31622788A
Other languages
Japanese (ja)
Other versions
JPH02163496A (en
Inventor
達治 池上
哲郎 大林
恵一 吉田
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP31622788A priority Critical patent/JP2696370B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH02163496A publication Critical patent/JPH02163496A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,463 priority patent/US5160250A/en
Priority to US07/769,365 priority patent/US5217346A/en
Application granted granted Critical
Publication of JP2696370B2 publication Critical patent/JP2696370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は、粒子加速器、プラズマ物理等の実験研究装
置、電子顕微鏡、表面分析計等及び半導体製造用真空装
置等の工業用真空装置において分子流から粘性流にわた
る領域即ち高真空から中真空にわたる圧力範囲で有用な
円周溝真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial application field The present invention relates to industrial vacuum equipment such as particle accelerators, experimental research equipment such as plasma physics, electron microscopes, surface analyzers, and semiconductor manufacturing vacuum equipment. The present invention relates to a circumferential groove vacuum pump useful in a range from molecular flow to viscous flow, that is, in a pressure range from high vacuum to medium vacuum.

(2)従来の技術 分子流から粘性流にわたる領域で有用な排気性能を有
する真空ポンプとして出願人は先に第12図乃至第19図に
示される円周溝真空ポンプを提案した(特願昭63−1741
48号)。即ちこの真空ポンプの第1実施例は第12図乃至
第14図の如く吸気口(a)と排気口(b)を有する筐体
内に回転円板(c)を有する回転軸を軸支すると共に、
該筐体内に、該回転円板(c)が介入される凹部を有す
るステータ(d)を固定し、該回転円板(c)の両面の
周辺部に切込段部(e)を或いはこれら周辺部に対向す
る位置の凹部に環状溝を形成してこれら切込段部(e)
或いは環状溝を通風路(f)に形成し、これら通風路
(f)に隔壁(g)を前記ステータ(d)から突設し、
該隔壁(g)の1側の該通風路(f)の始端部を前記吸
気口(a)に該隔壁(g)の他側の該通風路(f)の終
端部を前記排気口(b)に連通したものであり、又第2
実施例のポンプは第15図乃至第17図の如く吸気口(a)
及び排気口(b)をそれぞれ180度の間隔をもって2個
所設けると共に、これに応じて隔壁(g)も2個所設け
ており、かくて隔壁(g)(g)により仕切られた2個
所の通風路(f)(f)において気体分子が圧縮排気さ
れるので、その排気速度は略2倍になり、更に第3実施
例のポンプは第18図及び第19図の如く3枚の回転円板
(c)…(c)をボス部(h)において一体的に形成す
ると共に各回転円板(c)の通風路(f)における回転
円板(c)側とステータ(d)側の対向面間の距離が吸
気口(a)側から排気口(b)側に至るに従って順次小
となるように形成し、更にこれら通風路(f)(f)に
突出の隔壁(g)及び隣り合う通風路(f)(f)及び
(f)(f)間を連通する連通路(i)を吸気口(a)
側から排気口(b)側に至るに従ってその位置を順次ず
らせて形成し、かくて吸気口(a)からの気体分子は連
通路(i)を介して送られながら各通風路(f)(f)
において順次圧縮され、相当に高い圧縮比が得られるよ
うにしたものである。
(2) Prior Art As a vacuum pump having a useful evacuation performance in a range from a molecular flow to a viscous flow, the applicant has previously proposed a circumferential groove vacuum pump shown in FIGS. 63-1741
No. 48). That is, the first embodiment of this vacuum pump supports a rotating shaft having a rotating disk (c) in a housing having an inlet (a) and an outlet (b) as shown in FIGS. ,
A stator (d) having a concave portion in which the rotating disk (c) is interposed is fixed in the housing, and a notch step (e) or a cutting step (e) is provided on the periphery of both surfaces of the rotating disk (c). An annular groove is formed in a concave portion at a position opposed to the peripheral portion, and these cut step portions (e) are formed.
Alternatively, an annular groove is formed in the ventilation path (f), and a partition wall (g) is protruded from the stator (d) in the ventilation path (f),
The starting end of the ventilation path (f) on one side of the partition (g) is the intake port (a), and the end of the ventilation path (f) on the other side of the partition (g) is the exhaust port (b). ) And the second
The pump according to the embodiment has an intake port (a) as shown in FIGS.
And two outlets (b) are provided at intervals of 180 degrees, and two partitions (g) are provided in accordance with the two outlets. Thus, the ventilation at the two locations separated by the partitions (g) and (g) is provided. Since the gas molecules are compressed and evacuated in the passages (f) and (f), the evacuating speed is approximately doubled. Further, the pump of the third embodiment has three rotating disks as shown in FIGS. 18 and 19. (C) ... (c) is integrally formed in the boss portion (h), and the opposing surfaces of the rotating disk (c) and the stator (d) in the ventilation path (f) of the rotating disk (c). The distance between the air passages (f) and (f) is formed so that the distance between the air inlets (a) and the air outlets (b) becomes smaller gradually. The communication path (i) communicating between the roads (f) (f) and (f) (f) is connected to the intake port (a).
The positions are sequentially shifted from the side to the exhaust port (b) side, so that the gas molecules from the intake port (a) are sent through the communication path (i) while being passed through each ventilation path (f) ( f)
Are sequentially compressed so that a considerably high compression ratio can be obtained.

(3)発明が解決しようとする問題点 この先に出願人が提案した真空ポンプの第1実施例に
よれば吸気口(a)を大きくできるのでこれを大きくし
て排気速度を大にしようとしても通風路(f)の断面積
により排気速度が制限され、又第2実施例のポンプによ
れば圧縮作用をする円周溝即ち通風路(f)の有効長が
短くなり圧縮比が減少する問題点を有しており、更に第
3実施例のポンプによれば、各回転円板(c)の通風路
(f)における回転円板(c)側とステータ(d)側の
対向面間の距離を吸気口(a)側から排気口(b)側に
至るに従って小としているので、その製作が困難で製造
コストが大となる問題点を有している。
(3) Problems to be Solved by the Invention According to the first embodiment of the vacuum pump proposed by the applicant earlier, the intake port (a) can be made large, so that even if this is increased, the exhaust speed can be increased. The exhaust speed is limited by the cross-sectional area of the ventilation path (f), and according to the pump of the second embodiment, the effective length of the circumferential groove for performing the compression action, that is, the ventilation path (f) is shortened and the compression ratio is reduced. Further, according to the pump of the third embodiment, between the opposed surfaces of the rotating disk (c) side and the stator (d) side in the ventilation path (f) of each rotating disk (c). Since the distance is reduced from the side of the intake port (a) to the side of the exhaust port (b), there is a problem that the production is difficult and the production cost is increased.

本発明は、これらの問題点を解消し、圧縮比を大にす
ると共に排気速度を高め製造コストを低減した円周溝真
空ポンプを提供することを目的とする。
An object of the present invention is to provide a circumferential groove vacuum pump that solves these problems, increases the compression ratio, increases the pumping speed, and reduces the manufacturing cost.

(4)問題点を解決するための手段 上記の問題点を解決するため本発明は吸気口と排気口
を有する筐体内のステータ内において、高速回転する複
数段の回転円板の周辺部によりその対向する円周溝状の
通風路内の気体を順次圧縮排気する式の円周溝真空ポン
プにおいて、下記式で示される吸気口におけるクヌーセ
ン数(Kn)を4×10-3以上にすると共に、前記吸気口を
該吸気口側の2段以上の回転円板の通風路に共に連通さ
せたことを特徴とする。
(4) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a peripheral portion of a high-speed rotating multi-stage rotating disk in a stator in a housing having an intake port and an exhaust port. In a circumferential groove vacuum pump of a type in which gas in an opposed circumferential groove-shaped ventilation path is sequentially compressed and exhausted, the Knudsen number (Kn) at the intake port represented by the following equation is set to 4 × 10 -3 or more, The intake port is connected to the air passages of two or more rotating disks on the intake port side.

Kn=λ/b ……(1) 但しλは作動圧における気体分子の平均自由行路、b
は通風路の対向面間の距離。
Kn = λ / b (1) where λ is the mean free path of gas molecules at the operating pressure, b
Is the distance between the opposing surfaces of the ventilation path.

(5)作用 高速回転する複数段の回転円板の周辺部により通風路
内の気体は気体の分子摩擦によるモレキュラードラッグ
効果により輸送効果が生じて輸送されるが、クヌーセン
数(Kn)が4×10-3以上であるため大きい圧縮比が得ら
れると共に、吸気口側の2段以上の回転円板の通風路に
吸気口が共に連通しているため、大きな排気速度が得ら
れる。
(5) Action The gas in the ventilation path is transported by the molecular drag effect due to the molecular friction of the gas due to the peripheral portions of the multi-stage rotating disk rotating at high speed, and transported, but the Knudsen number (Kn) is 4 ×. Since it is 10 -3 or more, a large compression ratio can be obtained, and a large exhaust speed can be obtained because the intake ports are both connected to the ventilation passages of the two or more rotating disks on the intake port side.

(6)実施例 本発明の第1実施例を第1図乃至第4図に従って説明
する。
(6) Embodiment A first embodiment of the present invention will be described with reference to FIGS.

(1)は真空ポンプの筐体、(2)は該筐体(1)内
に軸支した回転軸を示し、該回転軸(2)はその下端部
においてモータが連結されていると共に上端部に回転円
板(3)がその中央部のボス部(3a)において共に固定
されている。そして該回転円板(3)はその両面の周辺
部を切欠いて切込段部(4)(4)に形成した。又
(5)は前記筐体(1)の内面に固定したステータを示
し、該ステータ(5)は前記回転円板(3)に相当する
位置において該回転円板(3)が介入される環状の凹部
(6)が形成されており、該凹部(6)と前記切込段部
(4)(4)により前記回転円板(3)の周辺部の両面
に通風路(7)…(7)を形成した。そして前記凹部
(6)に、前記回転円板(3)の周辺部が通過する部分
を截除した隔壁(8)を前記ステータ(5)より突設し
て該隔壁(8)により2段の回転円板(3)(3)の前
記通風路(7)…(7)を区切り、該隔壁(8)の側即
ち上流側のこれら2段の回転円板(3)(3)の通風路
(7)(7)の始端部を共に吸気口(9)に連通すると
共に前記隔壁(8)の他側即ち下流側のこれら2段の回
転円板(3)(3)通風路(7)…(7)の終端部を共
に排気口(10)に連通した構成とし、且つ作動圧におけ
る気体分子の平均自由行路をλとし、回転円板の通風路
に面する円環部の面とそれに対向するステータ面との間
の距離をbとしたときKn=λ/b(Knクヌーセン数とい
う)を4×10-3以上に定めた。
(1) shows a housing of the vacuum pump, (2) shows a rotating shaft supported in the housing (1), and the rotating shaft (2) has a motor connected at a lower end thereof and an upper end thereof. The rotating disk (3) is fixed together at a boss (3a) at the center thereof. Then, the rotating disk (3) was formed with notch steps (4) and (4) by cutting out the peripheral portions on both sides. Reference numeral (5) denotes a stator fixed to the inner surface of the housing (1). The stator (5) has an annular shape in which the rotating disk (3) is interposed at a position corresponding to the rotating disk (3). The recesses (6) are formed, and the recesses (6) and the notch steps (4) (4) form ventilation passages (7)... (7) on both sides of the peripheral portion of the rotating disk (3). ) Formed. In the recess (6), a partition (8) obtained by cutting off a portion through which the peripheral portion of the rotating disk (3) passes is protruded from the stator (5), and a two-stage partition is formed by the partition (8). The ventilation passages (7)... (7) of the rotating disks (3) and (3) are separated, and the ventilation passages of these two-stage rotating disks (3) and (3) on the side of the partition wall (8), that is, on the upstream side. (7) These two-stage rotating disks (3) (3) ventilation passages (7) communicating both the starting ends of (7) with the intake port (9) and the other side of the partition (8), that is, the downstream side. ... The end of (7) is connected to the exhaust port (10), and the mean free path of the gas molecules at the operating pressure is λ, and the annular surface facing the ventilation passage of the rotating disk and the Kn = λ / b (Kn Knudsen number) is set to 4 × 10 −3 or more, where b is the distance between the opposed stator surfaces.

かくて、モータの駆動により回転円板(3)をその周
速が気体分子の確率平均速度の0.1〜1.0倍の高速で第1
図のA矢印方向に回転させると、通風路(7)(7)は
回転円板(3)(3)の周辺部に形成されているので、
これら通風路(7)…(7)の気体分子は回転円反
(3)(3)の周辺部の最も高速回転移動する切込段部
(4)…(4)の両面に当ってこのときの気体分子摩擦
によるモレキュラードラッグ効果により輸送効果が生
じ、かくて気体分子は第1図及び第2図の矢印Bの如く
吸気口(9)より通風路(7)…(7)を第1図の矢印
Cの如く輸送され第1図及び第4図の矢印Dの如く排気
口(10)より圧縮排気され、分子流から粘性流にある圧
力領域において排気作用を有する。尚発明者の実験によ
れば、上記構成の円周溝真空ポンプの圧縮特性は第11図
のようになる。
Thus, the rotating disk (3) is driven by the motor so that its peripheral speed is 0.1 to 1.0 times the probability average speed of gas molecules.
When rotated in the direction of arrow A in the figure, the ventilation paths (7) and (7) are formed around the rotating disks (3) and (3).
The gas molecules in these ventilation paths (7)... (7) hit both surfaces of the cutting steps (4). The transport effect is produced by the molecular drag effect due to the friction of the gas molecules, so that the gas molecules pass through the ventilation passages (7)... (7) from the intake port (9) as shown by the arrow B in FIGS. And is compressed and evacuated from the exhaust port (10) as shown by the arrow D in FIGS. 1 and 4, and has an evacuating action in a pressure range from the molecular flow to the viscous flow. According to the experiment by the inventor, the compression characteristics of the circumferential groove vacuum pump having the above configuration are as shown in FIG.

即ち曲線(A)は(b)の寸法が5mmのときの円周溝
真空ポンプの圧縮特性を示すもので横軸は排気圧
(P2)、縦軸は吸気圧(P1)であり、直線R上では吸気
圧(P1)と排気圧(P2)が等しく圧縮比は1である。尚
横軸及び縦軸の実線部分はb=5mmの場合のKnの値を併
せて示してある。そして曲線(A)の如くP1≦10-1Torr
において約14倍の圧縮比が得られ、P1=1Torrにおいて
3倍の圧縮比が得られることを表しており、吸気口側の
Knの値が4×10-3〜10-3になる領域で圧縮性能が急激に
低下し、更にKnがこの領域より小であると圧縮性能が更
に低下して圧縮比が1に近づく。
That is, the curve (A) shows the compression characteristics of the circumferential groove vacuum pump when the dimension of (b) is 5 mm. The horizontal axis is the exhaust pressure (P 2 ), and the vertical axis is the intake pressure (P 1 ). On the straight line R, the intake pressure (P 1 ) and the exhaust pressure (P 2 ) are equal and the compression ratio is 1. Note that the solid line portions on the horizontal axis and the vertical axis also show the value of Kn when b = 5 mm. And P 1 ≦ 10 −1 Torr as shown in the curve (A).
, A compression ratio of about 14 times is obtained, and at P 1 = 1 Torr, a compression ratio of 3 times is obtained.
The compression performance sharply decreases in the region where the value of Kn is 4 × 10 −3 to 10 −3 , and when Kn is smaller than this region, the compression performance further decreases and the compression ratio approaches 1.

又、曲線(B)は(b)の寸法が20mmのときの円周溝
真空ポンプの圧縮性能を示し、鎖線及び[]内の数値は
この場合のKnの値を示す。曲線(B)の場合は排気速度
が(A)の場合の約4倍となる。そして作動圧力が上昇
してKnが4×10-3〜10-3になる領域では圧縮性能が急激
に低下し、更にKnがこの領域より小であると曲線(A)
のときと同様に圧縮性能が更に低下して圧縮比が1に近
づく。
Curve (B) shows the compression performance of the circumferential groove vacuum pump when the size of (b) is 20 mm, and the value indicated by the chain line and [] shows the value of Kn in this case. In the case of the curve (B), the pumping speed is about four times that in the case of (A). Then, in the region where the operating pressure rises and Kn becomes 4 × 10 −3 to 10 −3 , the compression performance drops sharply, and if Kn is smaller than this region, the curve (A)
As in the case of, the compression performance further decreases, and the compression ratio approaches 1.

以上のことから分子流から粘性流の領域でKnを4×10
-3以上とし2段の回転円板(3)の通風路(7)…
(7)を共通の吸気口(9)及び排気口(10)に連通す
ることにより高い圧縮比が得られると共に排気速度を高
めることができる。
From the above, Kn is 4 × 10 in the region from molecular flow to viscous flow.
-3 or more and two-stage rotating disk (3) ventilation path (7) ...
By connecting (7) to the common intake port (9) and exhaust port (10), a high compression ratio can be obtained and the exhaust speed can be increased.

又第5図乃至第10図は本発明の第2実施例を示し、こ
の実施例においては、3段の回転円板(3)(3′)
(3″)が共にボス部(3a)に固定され、吸気口(9)
側の2段の回転円板(3)(3′)の通風路(7)
(7′)に共に吸気口(9)を連通し、該吸気口(9)
からずれた位置においてこれら2段に回転円板(3)
(3′)の通風路(7)(7′)と排気口(10)側の回
転円板(3″)の通風路(7″)(7″)との間を連通
路(11)により連通すると共に、該連通路(11)からず
れた位置において、前記排気口(10)側の回転円板
(3″)の通風路(7″)(7″)に排気口(10)を連
通して構成されており、かくて吸気口(9)から吸入さ
れた気体分子は連通路を介して送られながら各通風路
(7)(7′)(7″)において順次圧縮されて高い圧
縮比が得られる。
5 to 10 show a second embodiment of the present invention. In this embodiment, a three-stage rotating disk (3) (3 ') is used.
(3 ″) are fixed to the boss (3a), and the air inlet (9)
Ventilation path (7) of two-stage rotating disk (3) (3 ') on the side
(7 ') is connected to the intake port (9).
Rotating disk (3)
A communication path (11) connects between the ventilation path (7) (7 ') of (3') and the ventilation path (7 ") (7") of the rotating disk (3 ") on the side of the exhaust port (10). The exhaust port (10) communicates with the ventilation path (7 ") (7") of the rotating disk (3 ") on the exhaust port (10) side at a position shifted from the communication path (11) while communicating with the communication path (11). Thus, the gas molecules sucked from the intake port (9) are sequentially compressed in each of the ventilation paths (7), (7 '), (7 ") while being sent through the communication path, so that high compression is achieved. The ratio is obtained.

尚、本発明による円周溝真空ポンプは、この作動原理
によるポンプ要素のみの真空ポンプばかりでなく、他の
動作原理による高真空ポンプ要素や低真空ポンプ要素と
同軸上に一体化して結合し、複合真空ポンプとして構成
することができ、例えば、出願人が先に提案した特願昭
63−186632号のターボ分子ポンプ部と円周溝真空ポンプ
部の複合真空ポンプの該円周溝真空ポンプ部に本発明を
適用することにより、この部分の排気速度を大にするこ
とができるから、大形機の場合に更に総合性能を向上す
ることができ、又出願人が先に提案した特願昭63−2041
28号の円周溝真空ポンプ部と渦流真空ポンプ部とからな
る複合真空ポンプの該円周溝真空ポンプ部に本発明を適
用することにより、前述と同様に総合性能を向上でき、
更に出願人が先に提案した特願昭63−226533号のターボ
分子ポンプ部と円周溝真空ポンプ部と渦流真空ポンプ部
とからなる複合真空ポンプの該円周溝真空ポンプ部に本
発明を適用することにより、前述と同様に総合性能を向
上できる。
In addition, the circumferential groove vacuum pump according to the present invention is not only a vacuum pump having only the pump element according to this operating principle, but also coaxially integrated and connected to a high vacuum pump element and a low vacuum pump element according to other operating principles, It can be configured as a composite vacuum pump, for example, as disclosed in Japanese Patent Application No.
By applying the present invention to the circumferential groove vacuum pump section of the combined vacuum pump section of the turbo molecular pump section and the circumferential groove vacuum pump section of No. 63-186632, the exhaust speed of this section can be increased. In the case of a large-sized machine, the overall performance can be further improved, and the applicant has previously proposed Japanese Patent Application No. 63-2041.
By applying the present invention to the circumferential groove vacuum pump section of the composite vacuum pump comprising the circumferential groove vacuum pump section and the vortex vacuum pump section of No. 28, the overall performance can be improved as described above,
Further, the present invention is applied to the circumferential groove vacuum pump section of a composite vacuum pump comprising a turbo molecular pump section, a circumferential groove vacuum pump section, and a vortex vacuum pump section of Japanese Patent Application No. 63-226533 previously proposed by the applicant. By applying this, the overall performance can be improved in the same manner as described above.

尚、前述したいずれの実施例も吸気口を該吸気口側の
2段の回転円板の通風路に共に連通したが、必要に応じ
て大きな排気速度を得るために吸気口を該吸気口側の3
段以上の回転板の通風路に共に連通するようにしてもよ
い。
In each of the embodiments described above, the intake port is connected to the ventilation passage of the two-stage rotating disk on the intake port side. However, if necessary, the intake port is connected to the intake port side to obtain a large exhaust speed. 3
You may make it communicate with the ventilation path of the rotating plate more than steps.

(7)発明の効果 このように本発明によると、クヌーセン数(Kn)が4
×10-3以上にしたので、大きな圧縮比が得らると共に、
吸気口側の2段以上の回転円板の通風路に吸気口が共に
連通するようにしたので、大きな排気速度が得られ、更
にこのために吸気口側から排気口側に至るいずれにおけ
る回転円板の通風路の回転円板とステータ間の距離を等
しくできるので、部品加工を標準化でき、ステータ等に
おいて鋳造用型の共通化が可能となり多段形式の真空ポ
ンプの製造コストを大巾に低減できる等の効果を有す
る。
(7) Effects of the Invention As described above, according to the present invention, the Knudsen number (Kn) is 4
X10 -3 or more, a large compression ratio can be obtained,
A large exhaust speed is obtained because the intake port is connected to the ventilation path of the two or more rotating disks on the intake port side, and furthermore, a rotating circle from the intake port side to the exhaust port side is obtained. Since the distance between the rotating disk and the stator in the plate ventilation path can be equalized, component processing can be standardized, the casting mold can be shared in the stator, etc., and the manufacturing cost of a multi-stage vacuum pump can be greatly reduced. And the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の要部の平面図、第2図は
第1図のI−II線截断面図、第3図は第1図の0−III
線截断面図、第4図は第1図の0−IV線截断面図、第5
図は第2実施例の要部の平面図、第6図は第5図のI−
II線截断面図、第7図は第5図の0−III線截断面図、
第8図は第5図の0−IV線截断面図、第9図は第5図の
0−V線截断面図、第10図は第5図の0−VI線截断面
図、第11図は圧縮特性を示すグラフ、第12図は従来の真
空ポンプの第1実施例の要部の平面図、第13図は第12図
のI−II線截断面図、第14図は第12図の0−III線截断
面図、第15図は従来の真空ポンプの第2実施例の要部の
平面図、第16図は第15図のI−II線截断面図、第17図は
第15図のIII−IV線截断面図、第18図は従来の真空ポン
プの第3実施例の要部の平面図、第19図は第18図のI−
II線截断面図である。 (1)……筐体 (3)……回転円板 (5)……ステータ (7)……通風路 (9)……吸気口 (10)……排気口
1 is a plan view of a main part of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line I-II of FIG. 1, and FIG. 3 is a line 0-III of FIG.
FIG. 4 is a sectional view taken along the line 0-IV of FIG. 1, and FIG.
FIG. 6 is a plan view of a main part of the second embodiment, and FIG.
FIG. 7 is a sectional view taken along line 0-III of FIG. 5,
8 is a sectional view taken along line 0-IV of FIG. 5, FIG. 9 is a sectional view taken along line 0-V of FIG. 5, FIG. 10 is a sectional view taken along line 0-VI of FIG. FIG. 12 is a graph showing compression characteristics, FIG. 12 is a plan view of a main part of the first embodiment of the conventional vacuum pump, FIG. 13 is a sectional view taken along the line I-II of FIG. 12, and FIG. FIG. 15 is a sectional view taken along line 0-III of FIG. 15, FIG. 15 is a plan view of a main part of a second embodiment of the conventional vacuum pump, FIG. 16 is a sectional view taken along line I-II of FIG. FIG. 15 is a sectional view taken along the line III-IV of FIG. 15, FIG. 18 is a plan view of a main part of a third embodiment of the conventional vacuum pump, and FIG.
FIG. 2 is a sectional view taken along the line II. (1) ... Housing (3) ... Rotating disk (5) ... Stator (7) ... Ventilation path (9) ... Intake port (10) ... Exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 昌司 東京都八王子市椚田町1221 株式会社大 阪真空機器製作所八王子工場内 (56)参考文献 特開 昭57−59098(JP,A) 特開 昭63−85297(JP,A) 特開 昭63−192987(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Iguchi 1221 Kuginodacho, Hachioji-shi, Tokyo Inside the Osaka Vacuum Equipment Co., Ltd. Hachioji Plant (56) References JP-A-57-59098 (JP, A) JP-A Sho 63-85297 (JP, A) JP-A-63-192987 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気口と排気口を有する筐体内のステータ
内において、高速回転する複数段の回転円板の周辺部に
よりその対向する円周溝状の通風路内の気体を順次圧縮
排気する式の円周溝真空ポンプにおいて、下記式で示さ
れる吸気口におけるクヌーセン数(Kn)を4×10-3以上
にすると共に、前記吸気口を該吸気口側の2段以上の回
転円板の通風路に共に連通させたことを特徴とする円周
溝真空ポンプ。 Kn=λ/b ……(1) 但しλは作動圧における気体分子の平均自由行路、bは
通風路の対向面間の距離。
In a stator in a housing having an intake port and an exhaust port, gas in an opposed circumferential groove-shaped ventilation path is sequentially compressed and exhausted by a peripheral portion of a plurality of rotating disks rotating at high speed. In the circumferential groove vacuum pump of the formula, the Knudsen number (Kn) at the suction port represented by the following formula is set to 4 × 10 −3 or more, and the suction port is connected to two or more rotary disks on the suction port side. A circumferential groove vacuum pump characterized in that it is connected to both ventilation passages. Kn = λ / b (1) where λ is the mean free path of the gas molecules at the operating pressure, and b is the distance between the facing surfaces of the ventilation path.
JP31622788A 1988-07-13 1988-12-16 Circumferential groove vacuum pump Expired - Fee Related JP2696370B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP31622788A JP2696370B2 (en) 1988-12-16 1988-12-16 Circumferential groove vacuum pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31622788A JP2696370B2 (en) 1988-12-16 1988-12-16 Circumferential groove vacuum pump

Publications (2)

Publication Number Publication Date
JPH02163496A JPH02163496A (en) 1990-06-22
JP2696370B2 true JP2696370B2 (en) 1998-01-14

Family

ID=18074724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31622788A Expired - Fee Related JP2696370B2 (en) 1988-07-13 1988-12-16 Circumferential groove vacuum pump

Country Status (1)

Country Link
JP (1) JP2696370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019042B (en) * 2014-06-05 2016-06-22 核工业理化工程研究院 Towed molecular pump within flush mounting

Also Published As

Publication number Publication date
JPH02163496A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US5893702A (en) Gas friction pump
JP4173637B2 (en) Friction vacuum pump with stator and rotor
JPH04209980A (en) Molecular vacuum pump
JPH037039B2 (en)
US5219269A (en) Vacuum pump
TW201118256A (en) Vacuum pump
EP0445855A1 (en) Improved turbomolecular pump
JP2696370B2 (en) Circumferential groove vacuum pump
US20060177300A1 (en) Baffle configurations for molecular drag vacuum pumps
WO1995028571A1 (en) Molecular pump
JP2761486B2 (en) Circumferential groove vacuum pump
JPS62258186A (en) Multi-stage type vacuum pump
WO1996001373A1 (en) Molecular pump with multiple air suction grooves
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
JPH11159493A (en) Molecular drag compressor having finned rotor structure
JP2627437B2 (en) Compound vacuum pump
JPS62168994A (en) High vacuum exhaust device
US5217346A (en) Vacuum pump
JP2724840B2 (en) Compound vacuum pump
US20030175114A1 (en) Vacuum pump
JPH02264196A (en) Turbine vacuum pump
JPS6385290A (en) Vacuum pump
JPH05141389A (en) Vacuum pump
JP3532653B2 (en) Turbo molecular pump
JPS63266191A (en) Vacuum pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees