JPS62168994A - High vacuum exhaust device - Google Patents

High vacuum exhaust device

Info

Publication number
JPS62168994A
JPS62168994A JP60296830A JP29683085A JPS62168994A JP S62168994 A JPS62168994 A JP S62168994A JP 60296830 A JP60296830 A JP 60296830A JP 29683085 A JP29683085 A JP 29683085A JP S62168994 A JPS62168994 A JP S62168994A
Authority
JP
Japan
Prior art keywords
deflection member
molecules
suction port
high vacuum
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60296830A
Other languages
Japanese (ja)
Inventor
Morihiko Kimata
木俣 守彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60296830A priority Critical patent/JPS62168994A/en
Publication of JPS62168994A publication Critical patent/JPS62168994A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To prevent reverse diffusion to a suction port due to an end face in a molecule flow zone and improve an ultimate vacuum by providing a deflecting member whose tip end part is directed frontward on the suction side and having a wedge-shaped longitudinal section in the axial direction of a pump mechanism, in the vicinity of said suction port. CONSTITUTION:A deflecting member 9 having a wedge-shaped longitudinal section in the axial direction is installed in the vicinity of a suction port 5 with its tip end, i.e., the top part directed in front of the suction port 5 or the upper part of the port 5 in the figure. By this structure, the molecules of a gaseous body from the suction port 5 are introduced only to a zone in which a momentum in the specific direction is given to the molecules, due to the wedge shape of the deflecting member 9. In other words, an end face which causes the reverse diffusion of the flow-in molecules does not exist. Accordingly, the molecules of a gaseous body are prevented from being reflected, enabling an ultimate vacuum to be higher than ever. Also, by providing a cooling surface on the deflecting member 9, the reevaporation of gaseous molecules can be suppressed, obtaining a higher degree of vacuum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、気体分子に特定方向の運動量を与えて高真
空排気を行う真空排気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum evacuation device that performs high vacuum evacuation by imparting momentum in a specific direction to gas molecules.

こ従来の技術〕 高真空排気を行うために、気体分子に特定の方向の運動
量を与える機能を機械的手段により行わせるターボ分子
ポンプを利用する排気装置が知られているが、その場合
のターボ分子ポンプの構成は概略的には第5図に示すと
おりである。即ち、このターボ分子ポンプは回転翼車2
1と周定M22とが所定の関係で組み合わせ配置され、
回転翼車21がモータ23により高速で回転されること
により、ターボ機能を形成させ、吸気口24かろ吸入さ
れた気体分子に特定方向即ち、この場合、軸芯方向Aの
運動量を与える真空ポンプであって、運動量が与えられ
た気体分子は圧縮されてかり排気口25にまとまり、油
回転ポンプ等の補助ポンプ(図示せず)を経て大気中に
排出されるようになっている。
[Prior Art] In order to perform high vacuum evacuation, an evacuation device is known that uses a turbomolecular pump that mechanically performs the function of imparting momentum to gas molecules in a specific direction. The structure of the molecular pump is schematically shown in FIG. That is, this turbomolecular pump has a rotary impeller 2.
1 and the circumferential M22 are arranged in combination in a predetermined relationship,
The rotary impeller 21 is rotated at high speed by the motor 23 to form a turbo function, and is a vacuum pump that gives momentum to the gas molecules sucked in through the intake port 24 in a specific direction, that is, in this case, in the axial direction A. The gas molecules given momentum are compressed and collected at the exhaust port 25, and are discharged into the atmosphere via an auxiliary pump (not shown) such as an oil rotary pump.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このようなターボ分子ポンプは、吸気口24
を吸気側前方即ち第5図上方から見た第6図から明らか
なように、回転翼車21の吸気口側端面26は、回転翼
車21及び固定翼22と対応する翼群領域27Aと翼が
設けられていない領域27Bとを含んでいる。一般に、
分子流領域では、翼群領域27Aに飛び込んだ気体分子
のみに運動量が与えられ排気される。従って、この端面
26の領域27Bに飛び込んだ気体分子は、第5図にお
いて矢印Bで示すような反射したり、また吸着されたの
ち再蒸発したりして、吸気口24への逆拡散が発生する
。このような現象によって、高真空排気装置は、排気連
層が低下し、到達真空度が充分に高くならない問題点が
あった。
By the way, such a turbo molecular pump has an intake port 24.
As is clear from FIG. 6 when viewed from the front of the intake side, that is, from the top of FIG. It includes a region 27B where no is provided. in general,
In the molecular flow region, only the gas molecules that have jumped into the blade group region 27A are given momentum and are exhausted. Therefore, the gas molecules that have jumped into the region 27B of the end face 26 are reflected as shown by arrow B in FIG. do. Due to this phenomenon, the high vacuum evacuation apparatus has a problem in that the evacuation layer is reduced and the ultimate vacuum cannot be sufficiently high.

この発明は、分子流領域において端面による吸気口への
逆拡散を防止し、到達真空度を従来より高くできる高真
空排気装置を堤供するものである。
The present invention provides a high-vacuum evacuation device that prevents back-diffusion toward the inlet port due to the end face in the molecular flow region and can achieve a higher degree of vacuum than ever before.

〔問題点を解決するための手段〕[Means for solving problems]

回転翼と固定翼によるターボ機能によって気体分子に特
定方向の運動量を与えて排気を行うターボ分子ポンプ機
構の吸気口近傍に、その尖端部が吸気口側前方に向けら
れ、且つポンプ機構の軸芯方向縦断面形状がくさび状を
なした偏向部材を配設する。この偏向部材は、端面と近
接して設けるか、或いは端面に一体的に取り付ける。更
に、必要により、偏向部材の表面を冷却する。
Near the intake port of a turbo-molecular pump mechanism that gives momentum to gas molecules in a specific direction and exhausts gas using the turbo function of rotary blades and fixed blades, its tip is directed forward toward the intake port side, and the axis of the pump mechanism A deflection member having a wedge-shaped vertical cross-section is provided. This deflection member is provided close to the end surface or is integrally attached to the end surface. Furthermore, if necessary, the surface of the deflection member is cooled.

〔作用〕[Effect]

偏向部材のくさび形状によって、吸気口からの気体分子
は、分子に特定方向の運動量を与える領域のみに導かれ
る。即ち、流入分子流の逆拡散の原因となる端面がなく
なる。また、偏向部材の表面を冷却すると、この冷却面
に気体分子が吸着され、再蒸発が抑制される。
The wedge shape of the deflection member directs gas molecules from the inlet only to regions that impart momentum to the molecules in a particular direction. That is, there is no end face that causes back diffusion of the incoming molecular flow. Moreover, when the surface of the deflection member is cooled, gas molecules are adsorbed on this cooling surface, and re-evaporation is suppressed.

〔実施例〕〔Example〕

以下、この発明の構成を第1図に従って説明する。図に
おいて、lは、回転翼車2の周囲に設けられた回転翼部
で、円筒状のケース3の内面に固定された固定翼4に対
応されている。多数の回転翼部1及び固定翼4が交互に
配列され、この両者の相対的な高速回転によってターボ
機能が形成され、気体分子に特定方向の運動量を与える
。そして、この配列の上方に吸気口5が設けられると共
に、その下方に排気口が設けられる。
The configuration of the present invention will be explained below with reference to FIG. In the figure, l denotes a rotor blade section provided around the rotor wheel 2, which corresponds to a fixed blade 4 fixed to the inner surface of the cylindrical case 3. A large number of rotary blade sections 1 and fixed blades 4 are arranged alternately, and a turbo function is formed by the relative high speed rotation of the two, giving momentum to gas molecules in a specific direction. An intake port 5 is provided above this arrangement, and an exhaust port is provided below.

回転翼車2は、ケース3内底部から立設された七−タフ
の駆動軸8の一端に固着されている。モータ7は、一般
的には、駆動軸8にロータマグネットが固着されたアラ
クーロータ型の構成とされている。
The rotor wheel 2 is fixed to one end of a seven-tough drive shaft 8 that stands up from the inner bottom of the case 3 . The motor 7 generally has an Araku rotor type structure in which a rotor magnet is fixed to a drive shaft 8.

さて、この発明では、以上の構成において、吸気口5の
近傍に軸芯方向縦断面形状がくさび4にの偏向部材9が
設置される。この偏向部材9は、その尖端部即ち頂部が
吸気口5前方即ち図において吸気口上方に向けられて設
置されている。偏向部材9の底面の大きさは、回転翼車
2の回転翼部1と固定翼4とからなる翼群領域を被わな
い程度とされる。偏向部材9の頂部は、吸気口5の端面
より吸気側前方に突出しているが、端面より下方になる
ように配置しても良い。
Now, in the present invention, in the above configuration, a deflection member 9 having a wedge 4 longitudinal cross-sectional shape in the axial direction is installed near the intake port 5. This deflection member 9 is installed with its tip, or top, facing in front of the intake port 5, that is, above the intake port in the drawing. The size of the bottom surface of the deflection member 9 is set to such an extent that it does not cover the blade group region consisting of the rotary blade portion 1 and the fixed blades 4 of the rotary blade wheel 2 . Although the top of the deflection member 9 projects forward on the intake side from the end surface of the intake port 5, it may be arranged below the end surface.

第2図は、この発明をターボ分子ポンプ単体に実施した
例を示し、ケース3に偏向部材9が片持ち形で保持され
ている。尚、第2図の場合は、偏向部材9は、中空構造
とされ、その内部に注入孔10及び排出孔11を通じて
液体窒素等の冷媒が注入され、その表面は、使用される
冷媒に応した温度に冷却されるように構成されている。
FIG. 2 shows an example in which the present invention is applied to a single turbo-molecular pump, in which a deflection member 9 is held in a cantilevered manner by a case 3. In the case of FIG. 2, the deflection member 9 has a hollow structure, into which a refrigerant such as liquid nitrogen is injected through an injection hole 10 and a discharge hole 11, and its surface has a shape corresponding to the refrigerant used. It is configured to be cooled to a temperature.

なお、6は排気口である。Note that 6 is an exhaust port.

第3図は、この発明の池の実施例を示す。即ち、この他
の実施例では、偏向部材9をターボ分子ポンプを取り付
ける排気系具体的には、配管12に保持させた例を示し
ている。更に、この変形の延長として偏向部材9を被排
気室のフレームに保持させるようにすることもできる。
FIG. 3 shows an embodiment of the pond of the invention. That is, in this other embodiment, an example is shown in which the deflection member 9 is held in an exhaust system to which a turbo molecular pump is attached, specifically, in a pipe 12. Furthermore, as an extension of this modification, the deflection member 9 can be held by the frame of the chamber to be evacuated.

これらの実施例は、この発明をターボ分子ポンプ単体と
して構成しない例である。
These embodiments are examples in which the present invention is not constructed as a single turbomolecular pump.

また、第4図は、この発明の更に他の実施例を示す。即
ち第4図に示される構成は、この発明をターボ分子ポン
プの単体として構成した実施例を示し、回転翼車2の上
側端面2Aに偏向部材9が固着されている。従って、偏
向部材9は、回転翼車2と一体に回転し、その外周面形
状によって、気体分子の逆拡散が防止され真空度の向上
が図られる。
Further, FIG. 4 shows still another embodiment of the present invention. That is, the configuration shown in FIG. 4 shows an embodiment in which the present invention is configured as a single turbo-molecular pump, and a deflection member 9 is fixed to the upper end surface 2A of the rotary impeller 2. Therefore, the deflection member 9 rotates together with the rotary impeller 2, and the shape of its outer peripheral surface prevents back diffusion of gas molecules and improves the degree of vacuum.

この発明の特徴は、以上説明した通りであるが、上記並
びに図示例に限定されるものではなく、特に、偏向部材
9の形状は、円錐に限らず、角錐等の軸芯方向縦断面形
状がくさび状のものであれば良く、頂点から延びる二辺
が直線でなく、くの字形等でも良い。更に、第4図実施
例の場合、偏向部材を液体窒素等により、冷却すること
は困難であるが、加熱化を防止するための柚巡回による
冷却は可能である。ただこの発明においては、偏向部材
表面を冷却しない実施例をも包含する。また、この発明
は、回転軸が水平左回のターボ分子ポンプ置溝を有する
装置に対しても通用可能である。
The features of the present invention are as described above, but are not limited to the above and illustrated examples. In particular, the shape of the deflection member 9 is not limited to a cone, but may have an axial longitudinal cross-sectional shape such as a pyramid. It may be wedge-shaped, and the two sides extending from the apex may not be straight lines, but may be dogleg-shaped. Further, in the case of the embodiment shown in FIG. 4, it is difficult to cool the deflection member with liquid nitrogen or the like, but it is possible to cool the deflection member with a citron cycle to prevent heating. However, the present invention also includes embodiments in which the surface of the deflection member is not cooled. Further, the present invention can also be applied to an apparatus having a turbo-molecular pump groove in which the rotation axis is horizontally rotated to the left.

〔発明の効果〕〔Effect of the invention〕

この発明シよ以上詳述し1ことおりであるから、偏向部
材9によって、吸気口5から流入した気体分子が反射す
ることが防止され、到達真空度を従来に比してより斉(
することができる。また、偏向部材9を冷却面を有する
ものとすれば、気体分子の再蒸発が抑制され、真空度を
工り高(できる。
Since this invention has been described in detail above, the deflection member 9 prevents the gas molecules flowing in from the intake port 5 from being reflected, and the degree of vacuum achieved is more uniform (compared to the prior art).
can do. Moreover, if the deflection member 9 has a cooling surface, re-evaporation of gas molecules is suppressed and the degree of vacuum can be increased.

特に、ターボ分子ポンプ4i!1構と偏向部材との結合
によるものであるから、偏向部材の同定位置に制限がな
くターボ分子ポンプを利用した多用的な高真空排気装置
を提供することができる。
Especially the turbo molecular pump 4i! Since it is based on the combination of one structure and the deflection member, there is no restriction on the identification position of the deflection member, and a versatile high vacuum evacuation device using a turbo-molecular pump can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の原理的構成を示すYJ断面図、第2
図はこの発明の具体的構成を示す図、第3図及び第4図
は夫々この発明の池の実施例の縦断面図、第5図及び第
6図は従来のターボ分子ポンプの説明に用いる断面図及
び平面図である。 図面における主要な符号の説明 1:回転翼部、 2:回転翼車、 3:ケース、4:固
定翼、 5:吸気口、 6;排気口、7:モータ、 8
:駆動軸、 9:偏向部材。
Figure 1 is a YJ sectional view showing the basic configuration of this invention;
The figure shows a specific configuration of the present invention, Figures 3 and 4 are longitudinal sectional views of an embodiment of the pond of the present invention, and Figures 5 and 6 are used to explain a conventional turbo-molecular pump. They are a sectional view and a plan view. Explanation of main symbols in the drawings 1: Rotating blade section, 2: Rotary blade wheel, 3: Case, 4: Fixed blade, 5: Intake port, 6: Exhaust port, 7: Motor, 8
: Drive shaft, 9: Deflection member.

Claims (4)

【特許請求の範囲】[Claims] (1)固定翼に対し、回転翼車を高速回転させてそのタ
ーボ機能により気体分子に特定方向の運動量を与えるよ
うにしたターボ分子ポンプ機構と、その尖端部が吸気側
前方に向けられ、且つ上記ターボ分子ポンプ機構の軸芯
方向縦断面形状がくさび状をなした偏向部材とを具備し
、上記偏向部材を上記吸気口近傍に配設したことを特徴
とする高真空排気装置。
(1) A turbo molecular pump mechanism that rotates a rotary impeller at high speed relative to a fixed blade and uses its turbo function to impart momentum in a specific direction to gas molecules, and its tip is directed forward on the intake side, and A high vacuum evacuation device comprising: a deflection member having a wedge-shaped longitudinal cross-sectional shape in the axial direction of the turbo-molecular pump mechanism, the deflection member being disposed near the intake port.
(2)偏向部材の表面が冷却されていることを特徴とす
る特許請求の範囲第1項記載の高真空排気装置。
(2) The high vacuum evacuation device according to claim 1, wherein the surface of the deflection member is cooled.
(3)偏向部材が回転翼車と別体の部材として設置され
たことを特徴とする特許請求の範囲第1項又は第2項記
載の高真空排気装置。
(3) The high vacuum pumping device according to claim 1 or 2, wherein the deflection member is installed as a separate member from the rotary impeller.
(4)偏向部材が回転翼車の吸気口側端部に取り付けら
れたことを特徴とする特許請求の範囲第1項又は第2項
記載の高真空排気装置。
(4) The high vacuum pumping device according to claim 1 or 2, wherein the deflection member is attached to the end of the rotary impeller on the side of the intake port.
JP60296830A 1985-12-26 1985-12-26 High vacuum exhaust device Pending JPS62168994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296830A JPS62168994A (en) 1985-12-26 1985-12-26 High vacuum exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296830A JPS62168994A (en) 1985-12-26 1985-12-26 High vacuum exhaust device

Publications (1)

Publication Number Publication Date
JPS62168994A true JPS62168994A (en) 1987-07-25

Family

ID=17838709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296830A Pending JPS62168994A (en) 1985-12-26 1985-12-26 High vacuum exhaust device

Country Status (1)

Country Link
JP (1) JPS62168994A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025792A (en) * 1988-03-07 1990-01-10 Toshiba Corp Turbo molecular pump and its operating method
US4926648A (en) * 1988-03-07 1990-05-22 Toshiba Corp. Turbomolecular pump and method of operating the same
US5062271A (en) * 1989-05-09 1991-11-05 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
JPH07279888A (en) * 1994-04-07 1995-10-27 Applied Materials Inc Evacuator
US5483803A (en) * 1993-06-16 1996-01-16 Helix Technology Corporation High conductance water pump
USRE36610E (en) * 1989-05-09 2000-03-14 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
JP2002005079A (en) * 2000-05-15 2002-01-09 Pfeiffer Vacuum Gmbh Gas friction pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155297A (en) * 1981-12-14 1983-09-14 ユルトラ・ツエントリフユ−ゲ・ネ−デルランド・ナ−ムロ−ゼ・ヴエノ−トチヤツプ High-vacuum molecular pump
JPS6081485A (en) * 1983-10-11 1985-05-09 Tokuda Seisakusho Ltd Vacuum exhauster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155297A (en) * 1981-12-14 1983-09-14 ユルトラ・ツエントリフユ−ゲ・ネ−デルランド・ナ−ムロ−ゼ・ヴエノ−トチヤツプ High-vacuum molecular pump
JPS6081485A (en) * 1983-10-11 1985-05-09 Tokuda Seisakusho Ltd Vacuum exhauster

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025792A (en) * 1988-03-07 1990-01-10 Toshiba Corp Turbo molecular pump and its operating method
US4926648A (en) * 1988-03-07 1990-05-22 Toshiba Corp. Turbomolecular pump and method of operating the same
US5062271A (en) * 1989-05-09 1991-11-05 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
USRE36610E (en) * 1989-05-09 2000-03-14 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
US5483803A (en) * 1993-06-16 1996-01-16 Helix Technology Corporation High conductance water pump
JPH07279888A (en) * 1994-04-07 1995-10-27 Applied Materials Inc Evacuator
JP2002005079A (en) * 2000-05-15 2002-01-09 Pfeiffer Vacuum Gmbh Gas friction pump

Similar Documents

Publication Publication Date Title
JP5637919B2 (en) Compound vacuum pump
US8235678B2 (en) Multi-stage vacuum pumping arrangement
JP5913109B2 (en) Vacuum pump
JP4173637B2 (en) Friction vacuum pump with stator and rotor
JP2011106466A (en) Pumping arrangement
JP2000337290A (en) Vacuum pump
JP3047292B1 (en) Turbo molecular pump and vacuum device
US6672827B2 (en) Vacuum pump
JPS62168994A (en) High vacuum exhaust device
JP5027352B2 (en) Improvement of vacuum pump
WO1995028571A1 (en) Molecular pump
US20060177300A1 (en) Baffle configurations for molecular drag vacuum pumps
JPH1089284A (en) Turbo-molecular pump
JP2002168192A (en) Vacuum pump
JPS6131695A (en) Turbo molecular pump
US20230042886A1 (en) Vacuum pump, vacuum pump set for evacuating a semiconductor processing chamber and method of evacuating a semiconductor processing chamber
JPS6355396A (en) Turbo vacuum pump
JP2015124616A (en) Vacuum pump
JPH11107979A (en) Turbo-molecular pump
JPS61283794A (en) Turbo molecular pump
JPH05141389A (en) Vacuum pump
JPH11159493A (en) Molecular drag compressor having finned rotor structure
JP2802035B2 (en) Vacuum exhaust device
JP3787278B2 (en) Differential exhaust method and apparatus
JPS6125994A (en) Turbo-molecular pump and operating method thereof