JPS6229797A - Turbo molecule pump - Google Patents

Turbo molecule pump

Info

Publication number
JPS6229797A
JPS6229797A JP60167571A JP16757185A JPS6229797A JP S6229797 A JPS6229797 A JP S6229797A JP 60167571 A JP60167571 A JP 60167571A JP 16757185 A JP16757185 A JP 16757185A JP S6229797 A JPS6229797 A JP S6229797A
Authority
JP
Japan
Prior art keywords
rotor
stator
exhaust
grooves
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167571A
Other languages
Japanese (ja)
Inventor
Takeshi Okawada
岡和田 剛
Shinjiro Ueda
上田 新次郎
Kazuaki Nakamori
中盛 数明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60167571A priority Critical patent/JPS6229797A/en
Priority to KR1019860005830A priority patent/KR890004933B1/en
Priority to US06/890,610 priority patent/US4735550A/en
Publication of JPS6229797A publication Critical patent/JPS6229797A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to exhaust at high speed even under low vacuum by arranging a wedge-shaped vortex flow groove on both the outer periphery of a rotor and the inner periphery of a stator respectwely, and communicating one partition of the vortex flow groove to a suction side stage and its other partition to an exhaust side stage. CONSTITUTION:In a rotor 1, a moving blade groove 4 and a wedge-shaped vortex flow groove 5 are dug on a suction side and an exhaust side respectively. On a stator 3 opposite to the rotor 1, a stationary blade 6 and the wedge-shaped vortex flow groove 7 are dug on the suction side and the exhaust side respectively. The moving blade groove and stationary blade groove can perform both functions as an axial flow blade and a screw groove type molecule pump to produce practicable high compression ratio and high speedy exhaust function. Consequently, since the exhaust function can be effectively carried out up to about 10 Torr, a higher exhaust speed can be taken even under low vacuum state.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はターボ分子ポンプに係シ、特に低真空側の作動
範囲の広いターボ分子ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a turbo-molecular pump, and particularly to a turbo-molecular pump having a wide operating range on the low vacuum side.

〔発明の背景〕[Background of the invention]

従来のターボ分子ポンプは、一般には分子流領域で排気
性能の優れている軸流翼を用いたものである。しかし、
この型式のターボ分子ポンプは10””〜10−”To
rr以上の圧力になると急激に排気速度が低下するとい
う欠点があった。このため、10−”〜10−’ To
rrの高真空と10〜10−” Torrの低真空を短
時間に繰り返すドライエツチングのような半導体製造プ
ロセスの排気ポンプとして用いる場合には低真空での排
気速度が小さいために低真空から高真空までの排気時間
が長くなシ、スループットの向上をさまたげていた。以
上の欠点を解決すべく、特公昭47−33446号に開
示されているような他流分子ポンプとねじ溝分子ポンプ
を組み合わせた複合型式のターボ分子ポンプが提案され
、排気速度の低下の少ない領域を10−’〜10−”T
orrの低真空領まで広げている。しかし、この複合型
式のポンプにおいても10−1Torr以上の粘性流領
域では十分大きな排気速度が得られておらず、1゜To
rr程度まで大きな排気速度を有するターボ分子ポンプ
が望まれている。
Conventional turbomolecular pumps generally use axial flow blades that have excellent pumping performance in the molecular flow region. but,
This type of turbomolecular pump is 10” to 10-”To
There was a drawback that when the pressure reached rr or more, the pumping speed suddenly decreased. For this reason, 10-"~10-' To
When used as an exhaust pump in a semiconductor manufacturing process such as dry etching, which repeats a high vacuum of RR and a low vacuum of 10 to 10-'' Torr in a short period of time, the exhaust speed at low vacuum is low, so The evacuation time was long, which hindered the improvement of throughput.In order to solve the above drawbacks, we combined the other flow molecular pump and the screw groove molecular pump as disclosed in Japanese Patent Publication No. 47-33446. A composite type turbomolecular pump has been proposed, and the range where the pumping speed decreases less is 10-' to 10-''T.
It has expanded to the low vacuum area of orr. However, even with this composite type pump, a sufficiently large pumping speed cannot be obtained in the viscous flow region of 10-1 Torr or more, and the
A turbomolecular pump having a pumping speed as high as rr is desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、1’0Torr程度の低真空でも十分
大きな排気速度を有する低真空側の作動範囲の広いター
ボ分子ポンプを提供することにある。
An object of the present invention is to provide a turbomolecular pump that has a sufficiently high pumping speed even in a low vacuum of about 1'0 Torr and has a wide operating range on the low vacuum side.

〔発明の概要〕[Summary of the invention]

本発明はケーシング内にその軸線方向に延びる円筒状の
ロータと、とのロータの対向面に位置するステータとに
それぞれ配置された多段の翼群によって排気作用を行う
ターボ分子ポンプにおいて、ロータ外局面とこれに対向
するステータ内周面にそれぞれくさび状の渦流溝を周方
向に複数配置し、ステータの周方向の一部分に隣接する
渦流溝を区゛ 画しロータと僅かな間隙を隔てた円筒面
をなす仕切部を設け、仕切部両側の一方の渦流溝は吸気
側段に、他方は排気側段に連通ずるように構成したこと
を特徴とするものである。
The present invention provides a turbo-molecular pump that performs an exhaust action using a multi-stage group of blades disposed on a cylindrical rotor extending in the axial direction within a casing and a stator located on the opposite surface of the rotor. A plurality of wedge-shaped swirl grooves are arranged in the circumferential direction on the internal circumferential surface of the stator and the inner circumferential surface of the stator facing the stator, and a cylindrical surface is formed that separates the adjacent swirl grooves in a part of the circumferential direction of the stator and is separated from the rotor by a small gap. The present invention is characterized in that a partition portion is provided, and one of the swirl grooves on both sides of the partition portion is configured to communicate with the intake side stage, and the other vortex groove communicates with the exhaust side stage.

第1図に示すような渦流要素は、粘性流領域において単
段で10前後のかなシ大きな圧縮比が得られることが知
られている・aはロータ、bはステータである。しかし
、この渦流要素を多段に重ねて高圧縮を得ようとする場
合、ステータを半割れにしなくてはならないこと、ロー
タとステータの間の軸方向のギャップを性能低下を招か
ないように小さく保たなければならないことなどの問題
がちり一般的には多段で用いられることがなかった。第
2図は、ロータaの外周面とステータbの内周面にそれ
ぞれくさび状の渦流溝CFdを局方向に複数設けてなる
本発明の基本構成を示すもの    ゛で、第2図の矢
印eの示すような渦流を起こすととによシ排気作用を行
うものである。すなわち、ロータaに設けたくさび状の
渦流溝Cで流体に与えられた速度ヘッドをステータbに
設けたくさび状の渦流溝dで静圧ヘッドにかえることに
よシ圧力上昇を行いながら、渦が回転方向に進んでいく
という過程で排気作用を行なう。第3図は排気側段に連
通ずる渦流溝dの断面を示したものであシ、第4図は仕
切部以外の渦流溝c、dの対向断面のを示したものであ
る。以上の構成をターボ分子ポンプの排気側に多段に設
けると、10TOrr程度の粘性流領域の低真空におい
ても排気作用が持続され10TOrr程度の粘性流領域
においても十分大きな排気速度を得ることができる。ま
た、上記の構成では、ステータを半割孔にする必要がな
く、多段の渦流溝を一体に裏作できる上に軸方向のギャ
ップを小さくしなければなちないところがないので製作
上の問題点もない。
It is known that the vortex element shown in FIG. 1 can obtain a large compression ratio of around 10 in a single stage in a viscous flow region.A is a rotor, and b is a stator. However, when stacking these vortex elements in multiple stages to obtain high compression, the stator must be split in half, and the axial gap between the rotor and stator must be kept small to avoid deteriorating performance. Due to problems such as the number of steps required, it was not generally used in multiple stages. FIG. 2 shows the basic configuration of the present invention, in which a plurality of wedge-shaped swirl grooves CFd are provided in the outer circumferential surface of the rotor a and the inner circumferential surface of the stator b, respectively, in the local direction. When a vortex is generated as shown in the figure, it performs an exhaust effect. That is, by converting the speed head given to the fluid by the wedge-shaped vortex groove C provided in the rotor a into a static pressure head by the wedge-shaped vortex groove d provided in the stator b, the vortex is increased while increasing the pressure. Exhaust action occurs in the process of progressing in the direction of rotation. FIG. 3 shows a cross section of the swirl groove d communicating with the exhaust side stage, and FIG. 4 shows a cross section of the swirl grooves c and d facing each other other than the partition portion. When the above configuration is provided in multiple stages on the exhaust side of a turbo-molecular pump, the exhaust action is maintained even in a low vacuum in a viscous flow region of about 10 TOrr, and a sufficiently high pumping speed can be obtained even in a viscous flow region of about 10 TOrr. In addition, with the above configuration, there is no need to make the stator half a hole, multi-stage swirl grooves can be fabricated in one piece, and there are no manufacturing problems because there is no need to reduce the axial gap. do not have.

〔発明の実施例〕[Embodiments of the invention]

一以下、本発明の一実施例を第5図により説明するり第
5図において、ロニタ1はケーシング2内に′配置され
その軸線゛方向に延び円筒状をなしている。このロータ
1の対向面にはステータ3が配置されケーシング2に取
付けられている。ロータ1には、吸甑側では動翼溝4、
排気側ではくさび状の渦流溝5が掘設され、この対向面
のステータ3には吸気側では静翼溝6、排気側ではくさ
び状の渦流溝7が掘設されている。動翼溝と静翼溝につ
いては後で詳しく説明する。また、ロータ1は回転軸8
にナツト9で締結されている。回転軸は、軸受押さえ1
0、バネ11、バネ押さえ12を介して下ケーシング1
3に支えられている軸受14とハウジング15に支えら
れている軸受16によって支承されている。軸受の潤滑
は、グリース潤滑により行う。
One embodiment of the present invention will now be described with reference to FIG. 5. In FIG. 5, a ronita 1 is disposed within a casing 2 and extends in the direction of its axis, forming a cylindrical shape. A stator 3 is arranged on the opposite surface of the rotor 1 and attached to the casing 2. The rotor 1 has a rotor blade groove 4 on the suction side;
A wedge-shaped vortex groove 5 is dug on the exhaust side, a stator blade groove 6 is dug on the opposite surface of the stator 3 on the intake side, and a wedge-shaped vortex groove 7 is formed on the exhaust side. The rotor blade groove and stationary blade groove will be explained in detail later. In addition, the rotor 1 has a rotating shaft 8
It is concluded with Natsuto 9. The rotating shaft has bearing holder 1
0, lower casing 1 via spring 11 and spring retainer 12
3 and a bearing 16 supported by the housing 15. The bearing is lubricated by grease lubrication.

グリースの補給は、“下ケーシングとカバー17にそれ
ぞれ設けられたグリース注入口18.19よシ行う。
Grease is supplied through grease inlets 18 and 19 provided in the lower casing and cover 17, respectively.

ロータの駆動は、モータロータ20.モータステータ2
1よシなる高周波モータによシ行なう。モータの給電は
、給電コネクター22を介して行なう。
The rotor is driven by motor rotor 20. Motor stator 2
This is done using a high frequency motor. Power is supplied to the motor via a power supply connector 22.

動翼溝4は第6図にその詳細を示すように、ロータ1の
外周面にロータ軸心z −z’に対し角度θ傾斜して掘
設され軸方向の始端縁4a1後端縁4bは周方向に揃え
て形成される。従って、θ。
As shown in detail in FIG. 6, the rotor blade groove 4 is dug on the outer circumferential surface of the rotor 1 at an angle θ with respect to the rotor axis z-z', and the starting edge 4a1 and the trailing edge 4b in the axial direction are They are formed aligned in the circumferential direction. Therefore, θ.

は鋭角に、θ2は鈍角になる。静翼溝6は、動翼溝4と
逆方向にロータ軸心z−z’に対し角度θ′に形成され
ており、また、動翼溝4と一部が軸方向に重なシ合うよ
うに配列される。また、動翼溝4と静翼溝6の翼溝はそ
の始端部4a+6aあるいは後端部4b、6bから溝底
面4c、6cは滑らかな曲面Rで結ばれている。このよ
うな構成の動翼溝と静翼溝ば、軸流翼とねじ溝分子ポン
プの両件用があるので高圧縮比、高排気速度が期待でき
る。以上に説明した構成で、ロータ1がN方向に高速駆
動されると、吸入口23よシ排気口24へ気体分子を排
気し、接続フランジ25を介して接続される真空チャン
バを高真空にすることができる。また、半導体プロセス
のようなチャンバ内が低真空と高真空を繰シ返す場合に
おいても、くさび状の渦流溝5とくさび状の渦流溝7の
作用により10Torr程度までの排気作用があるので
低真空でも排気速度が十分大きく低真空から高真空まで
の排気が短時間でできる。以上に述べた排気性能の特徴
とともに実施例のターボ分子ポンプではステータがロー
タの外周面の外側に配置されるので、多段の構成の場合
でもステータは半・割れ構造の必要がなく、製作も容易
である。
is an acute angle, and θ2 is an obtuse angle. The stator blade groove 6 is formed in the opposite direction to the rotor blade groove 4 at an angle θ' with respect to the rotor axis zz', and is formed so that a portion thereof overlaps with the rotor blade groove 4 in the axial direction. Arranged in Further, the blade grooves of the rotor blade groove 4 and the stator blade groove 6 are connected by a smooth curved surface R from the starting end 4a+6a or the rear end 4b, 6b to the groove bottom surfaces 4c, 6c. Since the rotor blade groove and stator blade groove configured in this manner can be used for both axial flow blades and screw groove molecular pumps, high compression ratios and high pumping speeds can be expected. With the configuration described above, when the rotor 1 is driven at high speed in the N direction, gas molecules are exhausted from the suction port 23 to the exhaust port 24, and the vacuum chamber connected via the connection flange 25 is made to have a high vacuum. be able to. Furthermore, even when the inside of a chamber is repeatedly cycled between low vacuum and high vacuum, such as in a semiconductor process, the wedge-shaped vortex grooves 5 and 7 have an evacuation effect up to about 10 Torr, so it is possible to maintain a low vacuum. However, the pumping speed is sufficiently high that pumping from low vacuum to high vacuum can be achieved in a short time. In addition to the above-mentioned characteristics of exhaust performance, in the turbomolecular pump of the example, the stator is placed outside the outer peripheral surface of the rotor, so even in the case of a multi-stage configuration, the stator does not need to have a half/split structure, and manufacturing is easy. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、くさび状の渦流連作用によシ10To
rr程度までの粘性流領域でも排気速度が十分大きくと
れ、低真空から高真空までの排気時間を短縮する効果が
ある。
According to the present invention, 10To
The pumping speed can be sufficiently high even in the viscous flow region up to about rr, and has the effect of shortening the pumping time from low vacuum to high vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、渦流ポンプの側断面図、第2図は、くさび状
の渦流溝の軸方向矢視図、第3図第4図は、くさび型の
動翼溝と静翼溝の側断面図、第5図は、本発明の実施例
の断面図、第6図は動翼溝と静翼溝の円筒展開図である
Fig. 1 is a side sectional view of the vortex pump, Fig. 2 is an axial arrow view of the wedge-shaped vortex groove, Fig. 3 and 4 are side sectional views of the wedge-shaped rotor blade groove and stationary blade groove. 5 is a cross-sectional view of an embodiment of the present invention, and FIG. 6 is a cylindrical development view of the moving blade groove and the stator blade groove.

Claims (1)

【特許請求の範囲】 1、ケーシング内にその軸線方向に延びる円筒状のロー
タと、前記ロータの対向面に位置するステータとにそれ
ぞれ配置された多段の翼群によって排気作用を行うター
ボ分子ポンプにおいて、前記ロータ外周面とこれに対向
する前記ステータ内周面にそれぞれくさび状の渦流溝を
周方向に複数配置し、前記ステータの周方向の一部分に
隣接する渦流溝を区画し前記ロータと僅かな間隙を隔て
た円筒面をなす仕切部を設け、前記仕切部両側の一方の
渦流溝は吸気側段に、他方は排気側段に連通するように
構成したことを特徴とするターボ分子ポンプ。 2、特許請求の範囲第1項において、前記ロータ及びス
テータに渦流溝を設けて構成されるポンプの吸気側に動
翼溝及び静翼溝からなる翼群を配置して構成されるもの
で、前記動翼溝は前記ロータ外周面にロータ軸心に対し
特定の角度を有して配列し、前記静翼溝は前記ステータ
面に前記動翼溝と前記ロータ軸心に対し逆方向角度をな
すように配列し、前記動翼溝と前記静翼溝の一部が軸方
向に重なり合うように構成されていることを特徴とする
ターボ分子ポンプ。
[Claims] 1. In a turbo-molecular pump that performs an exhaust action using a multi-stage group of blades respectively arranged on a cylindrical rotor extending in the axial direction within a casing and a stator located on the opposite surface of the rotor. , a plurality of wedge-shaped swirl grooves are arranged in the circumferential direction on the outer circumferential surface of the rotor and the inner circumferential surface of the stator opposite thereto, and adjacent swirl grooves are defined in a part of the circumferential direction of the stator, and the swirl grooves are separated from the rotor slightly. 1. A turbo-molecular pump characterized in that a partition is provided with a cylindrical surface separated by a gap, and one of the swirl grooves on both sides of the partition is configured to communicate with an intake side stage and the other with an exhaust side stage. 2. According to claim 1, the pump is configured by arranging a blade group consisting of rotor blade grooves and stator blade grooves on the intake side of a pump configured by providing swirl grooves in the rotor and stator, The rotor blade grooves are arranged on the outer peripheral surface of the rotor at a specific angle with respect to the rotor axis, and the stator blade grooves are arranged on the stator surface at an opposite direction angle with respect to the rotor axis. A turbo-molecular pump characterized in that the rotor blade grooves and the stationary blade grooves are arranged so that a portion of the rotor blade grooves overlap in the axial direction.
JP60167571A 1985-07-31 1985-07-31 Turbo molecule pump Pending JPS6229797A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60167571A JPS6229797A (en) 1985-07-31 1985-07-31 Turbo molecule pump
KR1019860005830A KR890004933B1 (en) 1985-07-31 1986-07-18 Turbo molecular pump
US06/890,610 US4735550A (en) 1985-07-31 1986-07-30 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167571A JPS6229797A (en) 1985-07-31 1985-07-31 Turbo molecule pump

Publications (1)

Publication Number Publication Date
JPS6229797A true JPS6229797A (en) 1987-02-07

Family

ID=15852204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167571A Pending JPS6229797A (en) 1985-07-31 1985-07-31 Turbo molecule pump

Country Status (1)

Country Link
JP (1) JPS6229797A (en)

Similar Documents

Publication Publication Date Title
EP0568069B1 (en) Turbomolecular vacuum pumps
US5893702A (en) Gas friction pump
US5118251A (en) Compound turbomolecular vacuum pump having two rotary shafts and delivering to atmospheric pressure
US5020969A (en) Turbo vacuum pump
US4732529A (en) Turbomolecular pump
EP0445855B1 (en) Improved turbomolecular pump
JP2002515568A (en) Friction vacuum pump with stator and rotor
US5611660A (en) Compound vacuum pumps
US6698929B2 (en) Turbo compressor
EP0226039A1 (en) Vacuum pump apparatus
KR890004933B1 (en) Turbo molecular pump
US4732530A (en) Turbomolecular pump
US6884047B1 (en) Compact scroll pump
JPS60204997A (en) Composite vacuum pump
JPS6355396A (en) Turbo vacuum pump
JPS6229797A (en) Turbo molecule pump
CN1025574C (en) Runoff type molecule pump
JPH02264196A (en) Turbine vacuum pump
CN112814927B (en) Turbomolecular pump and dustproof rotor element thereof
JPS6385290A (en) Vacuum pump
JP2761486B2 (en) Circumferential groove vacuum pump
JP2557495B2 (en) Multi-stage circumferential flow type vacuum pump
KR20010011629A (en) Diffuser for turbo compressor
JPH05133386A (en) Turbo vacuum pump
JPH01170795A (en) Vortex turbo-machinery