JPH026999B2 - - Google Patents

Info

Publication number
JPH026999B2
JPH026999B2 JP15776482A JP15776482A JPH026999B2 JP H026999 B2 JPH026999 B2 JP H026999B2 JP 15776482 A JP15776482 A JP 15776482A JP 15776482 A JP15776482 A JP 15776482A JP H026999 B2 JPH026999 B2 JP H026999B2
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
heat exchanger
oxidation
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15776482A
Other languages
Japanese (ja)
Other versions
JPS5946493A (en
Inventor
Hideyasu Matsuo
Hachiro Hashimoto
Kunio Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP15776482A priority Critical patent/JPS5946493A/en
Publication of JPS5946493A publication Critical patent/JPS5946493A/en
Publication of JPH026999B2 publication Critical patent/JPH026999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化珪素からなる熱交換器の改良にな
るものである。熱交換器は高温の流体の保有する
熱を隔壁を介して低温の流体を加熱するものであ
るため、隔壁を構成する部材には熱伝導の良好な
ものが使用される。この場合、低温用には銅、銅
合金が使用されることが多いが1000℃以下程度の
温度の場合にはインコネル、ハステロイ等の耐熱
金属が使用される。又、1000℃を越える高温で
は、金属材料は耐蝕性が極端に低下し、ほとんど
使用できない。このため炭素、炭化珪素、コージ
ライト等のセラミツクス材料の使用が考えられる
が、セラミツクは加工性、信頼性に乏しく複雑な
形状のものは得られない。例えば、炭化珪素は本
質的には耐酸化性のある材料であるが、従来の粘
土結合したような炭化珪素では特に高温における
荷重軟化に弱く、又、形成されたSiO2被膜が変
質し、SiO2の形成と共に内部と表面部との応力
の差が次第に増大し、ついには被膜が剥離する等
持てる特性を充分に発揮し得ない状態であつた。 本発明は炭化珪素の持つ特性を充分生かすべ
く、その欠点を究明し、これを改善することによ
つて従来に見られないすぐれた熱交換器を開発し
たもので、炭化珪素をホウ素成分及びAl、Be、
Mg、Ti等の焼結助剤を使用して焼結炭化珪素と
したものである。 即ち、炭化珪素の酸化は炭化珪素自体が酸化さ
れ、その表面にSiO2被膜が形成され、このSiO2
の被膜が剥離すると新に露出した炭化珪素が酸化
を受けるという過程で進行する。この場合、生成
したSiO2被膜が剥離することなく存在すれば、
炭化珪素の酸化は停止するが、このSiO2被膜は
Fe2O3、Na2O等の不純物が存在すると熱的に不
安定な組成に転化し、SiO2の被膜の剥離につな
がることが明らかとなつた。しかも、この現象は
成形体の表面のみでなく気孔を介して内部に迄酸
化が拡散するので気孔の存在状態も耐酸化性に大
きな影響を与える。 従つて、本発明のものにおいては炭化珪素成形
体自体を緻密化することによつて酸化を表面部の
みに特定し、もつて長寿命化をはかつたもので、
緻密化させるためには炭化珪素紛の焼結に際し、
ホウ素成分をBに換算して0.05〜5.50重量%を加
えたもので、これを更に焼結晶の熱伝導性を改善
するために、金属に換算してAl、Be、Mg、Ti
のうち少なくとも一成分を0.05〜5.50重量%添加
するものである。 即ち、ホウ素成分及びAl、Be、Mg、Ti等の
成分の少なくとも一種をそれぞれ0.05〜5.50重量
%を焼結助剤として添加した炭化珪素紛を成形焼
成することによつて炭化珪素紛が自己焼結し、粒
界のきわめて少ない緻密な成形体となるため、熱
的、化学的に炭化珪素より特性の劣る部分が実質
的に存在せず、結局酸化反応は成形体の表面層の
みに限定されることになる。これが成形体の寿命
延長に寄与し、かつ高熱伝導率を有する焼結体と
なるものである。 本発明において、Bを添加するのはサブミクロ
ンのSiC紛末を焼結するための助剤とするため
で、この割合を逸脱するとガス不透過性の緻密な
焼結体が得られない。又、金属でも酸化物でもよ
いが金属に換算してAl、Be、Mg、Tiのうち少
なくとも一つの成分を添加するのは、Bで自己焼
結させた炭化珪素成形体の熱伝導性を改善するた
めのものであり、0.05重量%以下ではその効果が
ほとんど認められず、又、5.50重量%以上では焼
結性に悪影響を及ぼし緻密なものとなりにくいば
かりでなく、焼結体の粒界部分に存在するこれら
添加物は炭化珪素粒子の部分と比較して侵蝕を受
け易く、結局耐蝕性のある焼結体とはなりにく
い。 以下に本発明の実施例につき説明する。 平均粒径0.5μのα−SiC紛末にBを2.5重量%及
びBeを2.5重量%となるように配合し、フエノー
ルレジン2重量%を一次結合剤として混合成形
し、これを2050℃で焼結することによつて嵩比重
3.13g/c.c.、熱伝導率200w/m.kの物性を有する
ものであつた。これは従来のBe無添加の焼結体
と比較して約4倍の熱伝導率を示すものである。 この試料を空気中1250℃に加熱して酸化による
クラツク発生までの寿命測定を行なつた所、88日
であつた。 比較のためBeの添加割合のみを変えた試料を
作成し、その物性を以下の表に示す。
The present invention is an improvement on a heat exchanger made of silicon carbide. Since the heat exchanger heats the low-temperature fluid by using the heat held by the high-temperature fluid through the partition walls, materials with good heat conductivity are used for the members forming the partition walls. In this case, copper and copper alloys are often used for low temperatures, but heat-resistant metals such as Inconel and Hastelloy are used for temperatures below 1000°C. Furthermore, at high temperatures exceeding 1000°C, the corrosion resistance of metal materials is extremely reduced, making them almost unusable. For this reason, it is possible to use ceramic materials such as carbon, silicon carbide, and cordierite, but ceramics have poor workability and reliability, and complex shapes cannot be obtained. For example, silicon carbide is essentially an oxidation-resistant material, but conventional clay-bonded silicon carbide is particularly susceptible to softening under load at high temperatures, and the formed SiO 2 film changes in quality, resulting in SiO With the formation of No. 2 , the difference in stress between the inside and the surface gradually increased, and eventually the coating peeled off, making it impossible to fully demonstrate its properties. In order to make full use of the characteristics of silicon carbide, the present invention has investigated its shortcomings and improved them to develop an excellent heat exchanger that has never been seen before. ,Be,
Sintered silicon carbide is made using sintering aids such as Mg and Ti. That is, in the oxidation of silicon carbide, silicon carbide itself is oxidized, a SiO 2 film is formed on its surface, and this SiO 2
When the coating peels off, the newly exposed silicon carbide undergoes oxidation. In this case, if the generated SiO 2 film exists without peeling off,
Oxidation of silicon carbide stops, but this SiO 2 film
It has become clear that the presence of impurities such as Fe 2 O 3 and Na 2 O transforms the composition into a thermally unstable composition, leading to peeling of the SiO 2 film. In addition, this phenomenon causes oxidation to diffuse not only to the surface of the molded product but also to the inside through the pores, so the state of the pores also has a great effect on the oxidation resistance. Therefore, in the present invention, by making the silicon carbide molded body itself dense, oxidation is limited to only the surface area, thereby extending the life of the product.
In order to make it dense, when sintering silicon carbide powder,
0.05 to 5.50% by weight of boron is added in terms of B, and in order to further improve the thermal conductivity of the fired crystal, it is added to Al, Be, Mg, Ti in terms of metals.
At least one component is added in an amount of 0.05 to 5.50% by weight. That is, silicon carbide powder is self-sintered by molding and firing silicon carbide powder to which 0.05 to 5.50% by weight of each of at least one of Al, Be, Mg, and Ti is added as a sintering aid. This results in a dense compact with very few grain boundaries, so there is virtually no part with thermally or chemically inferior properties to silicon carbide, and the oxidation reaction is ultimately limited to the surface layer of the compact. That will happen. This contributes to extending the life of the molded body and results in a sintered body having high thermal conductivity. In the present invention, B is added to serve as an auxiliary agent for sintering submicron SiC powder, and if the proportion is outside this range, a dense sintered body that is gas-impermeable cannot be obtained. In addition, adding at least one component among Al, Be, Mg, and Ti, which may be a metal or an oxide, in terms of metal improves the thermal conductivity of the silicon carbide molded body self-sintered with B. If it is less than 0.05% by weight, almost no effect will be observed, and if it is more than 5.50% by weight, it will not only adversely affect the sinterability and make it difficult to form a dense product, but also reduce the grain boundary area of the sintered body. These additives present in the silicon carbide particles are more susceptible to corrosion than the silicon carbide particles, and as a result, it is difficult to form a corrosion-resistant sintered body. Examples of the present invention will be described below. 2.5% by weight of B and 2.5% by weight of Be were blended into α-SiC powder with an average particle size of 0.5μ, mixed and molded with 2% by weight of phenol resin as a primary binder, and this was sintered at 2050°C. By tying the bulk density
It had physical properties of 3.13g/cc and thermal conductivity of 200w/mk. This shows a thermal conductivity approximately four times higher than that of a conventional sintered body without the addition of Be. This sample was heated to 1250°C in air to measure its lifespan until cracks occurred due to oxidation, and it was 88 days. For comparison, samples were prepared in which only the addition ratio of Be was changed, and their physical properties are shown in the table below.

【表】 表において寿命(日)はクラツクの発生が目視
されるまでの日数である。 又、Beに変えてAl、Mg、Tiについても比較
試験を行つたがほゞ同等の結果が得られた。 本発明によつて期待できる効果は、二重管式の
みならず、多管式のもの、或いは自動車用等のガ
スタービンエンジンの蓄熱式、伝熱式等のものへ
の応用が可能である。 又、本発明の焼結体表面に更にCVD(化学蒸着
法)によつて炭化珪素膜をコーテイングしたもの
は、その被覆が緻密にかつ強固に形成されている
ため耐酸化性が更に向上し寿命の延長をはかるこ
とができる。
[Table] In the table, lifespan (days) is the number of days until cracks are visually observed. Comparative tests were also conducted on Al, Mg, and Ti instead of Be, and almost the same results were obtained. The effects that can be expected from the present invention can be applied not only to double-tube type engines, but also to multi-tube types, or heat storage type, heat transfer type, etc. of gas turbine engines for automobiles. Furthermore, in the case of the sintered body of the present invention, which is further coated with a silicon carbide film by CVD (chemical vapor deposition), the coating is formed densely and firmly, which further improves oxidation resistance and extends the lifespan. can be extended.

Claims (1)

【特許請求の範囲】 1 高温流体によつて隔壁を介して低温流体を加
熱する方式の熱交換器において、該隔壁の少なく
とも一部が炭化珪素粉に対し、ホウ素成分をBに
換算して0.05〜5.50重量%及び金属に換算して
Al、Be、Mg、Tiのうち少なくとも一成分を0.05
〜5.50重量%含む焼結炭化珪素質材料を用いるこ
とを特徴とする炭化珪素質熱交換器。 2 少なくとも表面の一部にCVD法による炭化
珪素膜が被覆されていることを特徴とする特許請
求の範囲第1項記載の炭化珪素質熱交換器。
[Claims] 1. In a heat exchanger that heats a low-temperature fluid with a high-temperature fluid through a partition wall, at least a portion of the partition wall contains silicon carbide powder with a boron component of 0.05 in terms of B. ~5.50% by weight and in terms of metal
At least one component among Al, Be, Mg, and Ti is 0.05%
A silicon carbide heat exchanger characterized by using a sintered silicon carbide material containing ~5.50% by weight. 2. The silicon carbide heat exchanger according to claim 1, wherein at least a part of the surface is coated with a silicon carbide film formed by a CVD method.
JP15776482A 1982-09-10 1982-09-10 Heat exchanger of silicon carbide material Granted JPS5946493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15776482A JPS5946493A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15776482A JPS5946493A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide material

Publications (2)

Publication Number Publication Date
JPS5946493A JPS5946493A (en) 1984-03-15
JPH026999B2 true JPH026999B2 (en) 1990-02-14

Family

ID=15656799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15776482A Granted JPS5946493A (en) 1982-09-10 1982-09-10 Heat exchanger of silicon carbide material

Country Status (1)

Country Link
JP (1) JPS5946493A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260056A (en) * 1988-11-15 1993-11-09 Sanwa Kagaku Kenkyusho Co. Ltd. Composition for enhancing biosynthesis of interferon
EP3326988B1 (en) * 2015-08-28 2019-11-06 Kyocera Corporation Flow path member

Also Published As

Publication number Publication date
JPS5946493A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPS62153169A (en) Silicon nitride ceramic sintered body
JPH026999B2 (en)
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP2634612B2 (en) Silicon carbide honeycomb filter and method for producing the same
JPS60186468A (en) Ceramic structural material and manufacture
JP3740544B2 (en) Silicon carbide based heating element
JPS5826076A (en) Ceramic sintered body and manufacture
JP2005097007A (en) Non-oxide ceramic structure having high-temperature-corrosion-resistant layer and method for producing the same
JPH027000B2 (en)
JP3108362B2 (en) High-strength inorganic fiber molded body
JPS58128687A (en) Ceramic heater
JP2508511B2 (en) Alumina composite
JPS6121964A (en) Alumina sintered body and manufacture
JP2004002130A (en) Ceramic porous body and its forming process
JPH0238880B2 (en) TANKAKEISOSHITSUNETSUKOKANKI
JPS5864271A (en) Silicon nitride sintered body
JPH026998B2 (en)
JPH11139877A (en) Heat insulating silicon nitride-base sintered compact and its production
JPH0459652A (en) Multifunctional and multi-dimensional ceramics
JPH11335169A (en) Carbon-containing ceramic sintered compact
JPH07172958A (en) Surface-coated heat-resistant silicon nitride member
JPS62241874A (en) Immersion protective pipe for molten metal
JPH11263667A (en) Silicon carbce sintered compact and its production
JPH107466A (en) Ceramic with low thermal conductivity
JPH07187865A (en) Surface-coated silicon nitride-based heat resistant member