JPS58128687A - Ceramic heater - Google Patents
Ceramic heaterInfo
- Publication number
- JPS58128687A JPS58128687A JP1123982A JP1123982A JPS58128687A JP S58128687 A JPS58128687 A JP S58128687A JP 1123982 A JP1123982 A JP 1123982A JP 1123982 A JP1123982 A JP 1123982A JP S58128687 A JPS58128687 A JP S58128687A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- mixture
- heating element
- molybdenum silicide
- aluminum oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明社、耐酸化性にすぐれ、スポーリング特性および
高温強度も良好で、電気炉用発熱体やグロープラグ用発
熱体等として用い得る導電性のセラミック発熱体に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a conductive ceramic heating element that has excellent oxidation resistance, good spalling characteristics and high-temperature strength, and can be used as a heating element for electric furnaces, glow plugs, etc. It is.
従来より発熱体としては、金属の場合にはニッケルーク
ロム合金、鉄−クロム−アル之ニウム合金等の耐熱合金
が使用され、セラミックの場合には炭化珪素、珪化モリ
ブデン等が使用されている。Conventionally, heat-resistant alloys such as nickel-chromium alloys and iron-chromium-aluminum alloys have been used as heating elements in the case of metals, and silicon carbide, molybdenum silicide, etc. have been used in the case of ceramics.
しかしながら金属発熱体の場合KFi使用温度は100
0〜1100℃程度が限界であ抄、それ以上の高温では
酸化腐食、溶断などが生じて使用不可能である0炭化珪
素(StO)の場合は1600℃、珪化モリブデン(m
os5)の場合は1800°C程度まで使用可能なもの
の、炭化珪素は比抵抗が極めて高いので小型化に間融が
あり、珪化モリブデンは1300℃以上で軟化が始まり
、高温強度、ス+N−IJング特性の面で問題があり、
例えば自動車のグロープラグ等の要求仕様を満足するこ
とが゛できなかった。However, in the case of metal heating elements, the KFi operating temperature is 100
0 to 1100℃ is the limit for papermaking, and higher temperatures cause oxidation corrosion, fusing, etc., making it unusable.In the case of silicon carbide (StO), the temperature is 1600℃, and molybdenum silicide (m
os5) can be used up to about 1800°C, but silicon carbide has extremely high resistivity, so there is a delay in miniaturization, and molybdenum silicide begins to soften at temperatures above 1300°C, resulting in high-temperature strength, S+N-IJ There are problems with the performance of
For example, it was not possible to meet the required specifications for glow plugs in automobiles.
本発明は珪化モリブデンの極めてすぐれた耐酸化性を利
用すると同時に高温で軟化する欠点を除去し、かつ熱膨
張係数を低下させスポーリング特性を改善したセラミッ
ク発熱体を提供することを目的とするものである。そし
てこの目的を達成するため本発明は耐酸化性にすぐれた
導電材である珪化モリブデンに11気絶縁材で熱W#膜
係数が小さく、すぐれた耐熱性高1材である窒化珪素(
515M< )を混合し焼結したセラミック発熱体を提
供する。更に具体的には本発明は、70重量96(以下
、単に%とする)以下の窒化珪素、也部珪化モリブデン
の混合物を焼結してなるセラミック発熱体を提供する。It is an object of the present invention to provide a ceramic heating element that utilizes the extremely excellent oxidation resistance of molybdenum silicide, eliminates the drawback of softening at high temperatures, lowers the coefficient of thermal expansion, and improves spalling characteristics. It is. To achieve this objective, the present invention combines molybdenum silicide, which is a conductive material with excellent oxidation resistance, with silicon nitride, which is a 11C insulating material with a small thermal W# film coefficient and has an excellent heat resistance.
515M< ) is mixed and sintered to provide a ceramic heating element. More specifically, the present invention provides a ceramic heating element formed by sintering a mixture of silicon nitride and molybdenum silicide in an amount of 70% by weight or less (hereinafter simply referred to as %).
史に本発明は上記の如く改善された特性を有するととも
に、常圧焼結可能なセラミック発熱体を提供することを
目的とし、7096以下の窒化珪素の他に、10%以下
の酸化アルミニウム< ht*os )、#化アルミニ
ウムと酸化マグネシウム(Mg0)の混合物、酸化アル
ミニウムと酸化マグネシウムのスピネル(Mg*t s
o 4 )の少くともIIIIllを含み、残部珪化モ
リブデンの混合物を焼結してなるセラミック発熱体を提
供する。The purpose of the present invention is to provide a ceramic heating element which has improved characteristics as described above and which can be sintered under normal pressure. *os), mixture of aluminum oxide and magnesium oxide (Mg0), spinel of aluminum oxide and magnesium oxide (Mg*ts
A ceramic heating element is provided by sintering a mixture containing at least IIIll of o 4 ) with the balance being molybdenum silicide.
以下、本発明の詳細を実験例に基いて説明する。The details of the present invention will be explained below based on experimental examples.
第1表に示す各檀高温材料tl−1000℃、15時間
の条件で電気炉中で学化テストを行なった。Chemical tests were conducted on each of the high-temperature materials shown in Table 1 in an electric furnace at tl-1000°C for 15 hours.
各材料の重量変化率およびテスト前の初期比抵抗を同表
に示す。試料としては材料粉末をホットプレスにより理
論密度90優以上の密度に焼結させたものを各々同一形
状に切出した試料を用い、重量変化率はテスト終了後に
試料をアセトンで洗浄し171置変化を測定して求めた
。なおNi−0r材料は市販品を用いた。The weight change rate and initial resistivity before testing of each material are shown in the same table. The samples used were material powders sintered by hot pressing to a theoretical density of 90 or higher, each cut into the same shape.The rate of weight change was determined by washing the samples with acetone after the test and changing the temperature by 171 degrees. It was determined by measurement. Note that a commercially available Ni-0r material was used.
第1表より、S10とMo51gは耐酸化性が極めて良
好であり、他の材料は可成り酸化されることがわかる。From Table 1, it can be seen that S10 and Mo51g have extremely good oxidation resistance, and the other materials are considerably oxidized.
しかしながらSiOは初期比抵抗が非常に高く、これを
用いて発熱体を形成すると大型化するので実用性に劣る
。なお表中、MoB1の重量変化率がiイナスであるの
け、アセトン洗浄中に酸化部分が剥離したことによるも
のと認められる。However, SiO has a very high initial resistivity, and if a heating element is formed using it, the size of the heating element increases, making it impractical. In the table, although the weight change rate of MoB1 is i-minus, it is recognized that this is due to the oxidized portion being peeled off during the acetone cleaning.
第2表にMo1l、 とSi、N4の粉末を&女の割
合で混合し、ホットプレスにより焼結した焼結晶の物性
値を示す。重量変化率は第1表の場合と同様、空気中1
000’C,15時間の条件で酸化テストをした際の重
量変化率であり、抗折強度は1300℃での3点曲げ試
験で試料が破壊もしくは変形したときの荷重を示す。抗
折強度試験は40X3X4鵠に切出した試料をクロスヘ
ッド速度α5■/m i nにして行なった。Table 2 shows the physical properties of sintered crystals obtained by mixing powders of Mo11, Si, and N4 in the proportions of 1 and 2 and sintering by hot pressing. As in Table 1, the weight change rate is 1 in air.
This is the rate of weight change when an oxidation test was conducted at 000'C for 15 hours, and the bending strength is the load when the sample was broken or deformed in a 3-point bending test at 1300°C. The bending strength test was carried out using a sample cut into a 40×3×4 size at a crosshead speed of α5/min.
熱膨張係数は室温〜800’Cの平均熱膨張係数である
。試料は圧力1501I910ISQ度1500〜17
oO°Cのホットプレスによね焼結し焼結−度(嵩密麿
/理論密度)90%以上としたものを用いた。The coefficient of thermal expansion is the average coefficient of thermal expansion from room temperature to 800'C. The sample is pressure 1501I910ISQ degree 1500~17
The material was sintered in a hot press at 0°C to a degree of sintering (bulk density/theoretical density) of 90% or more.
第2表に示されるように、酸化による重量変化はいずれ
の試料もMo5txjl独の場合と同様81 、M 、
の混入によってもほとんどないことがわかる。比抵抗は
、811N、単独(Mo81i=O)では完全に絶縁体
であるが、Mo5itの混入により急激に減少し、Mo
81g 30%以上で実用し得る程度まで減少する。高
温抗折強度は81゜M4の混入割合が増加するにつれて
急速に増大し、熱膨張係数は81.M4の混入割合が増
加するKつれて減少し81.N、自体のそれに近づく。As shown in Table 2, the weight change due to oxidation is the same for all samples as in the case of Mo5txjl, 81, M,
It can be seen that there is almost no amount due to contamination. The specific resistance of 811N is completely insulating when it is alone (Mo81i=O), but when Mo5it is mixed in, it rapidly decreases, and when Mo
81g It decreases to a practical level at 30% or more. The high-temperature bending strength increases rapidly as the mixing ratio of 81°M4 increases, and the thermal expansion coefficient becomes 81. As the proportion of M4 increases, it decreases.81. N, approaches that of itself.
このように、Mo81mと81.N4の混合物の焼結体
は、Mo81m単独のものに比し、比抵抗は増加するも
のの実用可能な比抵抗を示すSt。In this way, Mo81m and 81. Although the sintered body of the N4 mixture has a specific resistance that is higher than that of Mo81m alone, it shows a practical resistivity.
N、の添加幅は広く、また81.N、の混入により高1
強度が増加し、熱膨張係数も減少してスホ゛−リング特
性も向上するというすぐれた効果を発揮する。混合物に
おけるSi、N、量は70優以下とすべきで、70%を
こえると比抵抗の増大により実用上間層がある。また、
81sN4添加量はたとえ微少でもMo 81m単独よ
りも抗折強度を上げ熱膨張係数を低下せしめてスホ゛−
リング特性を向上せしめるが、これ等の特性を顕著に改
善するにFilo%以上の添加が望ましい。The addition range of N is wide, and 81. High level of 1 due to the contamination of N.
It exhibits excellent effects such as increased strength, decreased coefficient of thermal expansion, and improved spreading properties. The amount of Si and N in the mixture should be less than 70%; if it exceeds 70%, an interlayer will appear in practice due to an increase in specific resistance. Also,
Even if the amount of 81sN4 added is small, it increases the bending strength and lowers the thermal expansion coefficient than Mo 81m alone.
Although it improves the ring properties, it is desirable to add Filo% or more to significantly improve these properties.
次に、上記のようにMo81Bとsl、 M4の混合物
の焼結体はすぐれた特性を示すが、その焼結はホットプ
レスあるいはホットアイソスタティックプレス等の加圧
焼成によらなければ焼成できない。因みに発明者らの実
験では、上記混合物を常圧により焼成した場合、焼結度
はせいぜい70%であった。そこで発明者らは更に実験
研究を行なった結果、上記混合物に更にkl。Next, although the sintered body of the mixture of Mo81B, sl, and M4 exhibits excellent properties as described above, it cannot be sintered unless it is sintered under pressure such as hot press or hot isostatic press. Incidentally, in experiments conducted by the inventors, when the above mixture was fired under normal pressure, the degree of sintering was at most 70%. As a result of further experimental research, the inventors added kl to the above mixture.
0” SA l @ OsとMgOの混合物、’IKA
l、O,の少くとも1椙を加えた混合物は常圧焼成でも
高い焼結度が得られることを確認した。0” SA l @ mixture of Os and MgO, 'IKA
It was confirmed that a mixture containing at least 1 scoop of 1 and 0 can achieve a high degree of sintering even when fired under normal pressure.
図は実験結果を示すものである。1〜dは常圧焼結で、
・〜hはホットプレスであって、混合物組成はaおよび
・がともに50%Mo55 +50%Si、N、、bお
よびfが45 優uos1=+50 * Si3N4+
5 * AjlOn、0およびgが45%Mo51g
+5 0% Si3N4+ 54(MgO+人l。The figure shows the experimental results. 1 to d are pressureless sintering,
・~h is a hot press, and the mixture composition is a and ・ both 50% Mo55 + 50% Si, N, , b and f are 45 dominant uos1=+50 *Si3N4+
5*AjlOn, 0 and g 45% Mo51g
+5 0% Si3N4+ 54 (MgO+personl.
0、)、dおよびhが45 %MO3il+5(lf8
1゜N4+5倦MgA!、04である。常圧焼成条件は
N。0, ), d and h are 45% MO3il+5(lf8
1゜N4+5〦MgA! , 04. Normal pressure firing conditions were N.
中1気圧で1600℃、2時間とし、ホットプレスの条
件は150に9/clll加圧1.1600℃、1時間
とした。The hot pressing conditions were 1,600° C. under 1 atm pressure of 150° C. for 2 hours, and 1,600° C. under 150/9/clll pressure for 1 hour.
&−%−dより知られるように常圧焼結の場合、上記ア
ルミナ系添加物を加えたものはMo5ilと5ilN4
のみのものに比べ極めて良好な焼結度を示す。また、ホ
ットプレスの場合で4上E添加物を加え゛たものは焼結
度が向トする。第3表はMgAl*Om k加えた場合
の酸化による重量変化率と抗折強度を示す。As is known from
It exhibits an extremely good degree of sintering compared to that of solid steel. In addition, in the case of hot pressing, the degree of sintering increases when the 4-E additive is added. Table 3 shows the weight change rate and bending strength due to oxidation when MgAl*Omk was added.
第 3 表 第2表の場合と同様、良好な結果が得られた。Table 3 As in the case of Table 2, good results were obtained.
なお、上記アルミナ系添加物の添加量は1096以下で
よく、それをこえると却って高温強度等の特性が低下す
る。アルミナ系添加物の添加量はたとえ微少でもそれな
りの焼結性向りを示すが、3優以上添加することが望ま
しい。Note that the amount of the alumina-based additive added may be 1096 or less, and if it exceeds that amount, properties such as high temperature strength will deteriorate. Even if the amount of alumina-based additives added is small, it shows a certain tendency to sinter, but it is desirable to add three or more.
以上説明したように、本発明の発熱体は珪化モリブデン
に所定割合の窒化珪素を混合し1これを焼結してなる焼
結体であって、耐酸化性にすぐれ、高1強度も良好であ
り、熱膨張係数も小さくスポーリング特性も良好である
。また、珪化モリブデンおよび窒化珪素に、更に酸化ア
ルミニウム、酸化アルミニウムと酸化マグネシウムの混
合物、およびこれ等のスピネルの少くとも1楠を所定割
合で添加しこれを焼結してなるセラミック発熱体は焼結
性にすぐれ、たとえ常圧焼結による場合でも極めて高い
焼結度を示詐
す。常圧焼結では褒雑形状の製品も賑佐可能であり、か
つ低コストとなる。As explained above, the heating element of the present invention is a sintered body made by mixing a predetermined proportion of silicon nitride with molybdenum silicide and sintering the mixture, and has excellent oxidation resistance and high strength. It has a small coefficient of thermal expansion and good spalling properties. Furthermore, a ceramic heating element is produced by adding aluminum oxide, a mixture of aluminum oxide and magnesium oxide, and at least one camphor of these spinels to molybdenum silicide and silicon nitride in a predetermined proportion, and sintering the mixture. It has excellent properties and exhibits an extremely high degree of sintering even when pressureless sintering is used. With pressureless sintering, it is possible to produce products with irregular shapes, and the cost is low.
図は本発明品および比較品の常圧焼結およびホントプレ
スによる焼結度を示す図である。
\;じ/The figure shows the degree of sintering of products of the present invention and comparative products by pressureless sintering and real press. \;character/
Claims (1)
の混合物を焼結してなる導電性セラミック発熱体 (z)qoyitt*%以下の窒化珪素、10重量%以
下の酸化アル文ニウム、酸化アルミニウムと酸化マグネ
シウムの混合物、酸化アル文ニウムと酸化マグネシウム
のスピネルの少くとも一榔、残部珪化モリブデンの混合
物を焼結してなる導電性セラミック発熱体。(1) Conductive ceramic heating element made by sintering a mixture of 70% by weight or less of silicon nitride and the balance of molybdenum silicide (z) qoyitt*% or less of silicon nitride, 10% by weight or less of aluminum oxide, aluminum oxide A conductive ceramic heating element made by sintering a mixture of aluminum oxide and magnesium oxide, at least one portion of spinel of aluminum oxide and magnesium oxide, and the balance molybdenum silicide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1123982A JPS58128687A (en) | 1982-01-27 | 1982-01-27 | Ceramic heater |
US06/460,651 US4486651A (en) | 1982-01-27 | 1983-01-24 | Ceramic heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1123982A JPS58128687A (en) | 1982-01-27 | 1982-01-27 | Ceramic heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58128687A true JPS58128687A (en) | 1983-08-01 |
Family
ID=11772376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1123982A Pending JPS58128687A (en) | 1982-01-27 | 1982-01-27 | Ceramic heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58128687A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219887A (en) * | 1983-05-27 | 1984-12-11 | 株式会社デンソー | Ceramic heater |
JPS6086787A (en) * | 1983-10-17 | 1985-05-16 | 株式会社デンソー | Ceramic heater |
JPS60216484A (en) * | 1984-04-09 | 1985-10-29 | 株式会社日本自動車部品総合研究所 | Ceramic heater |
JPS61210998A (en) * | 1985-03-15 | 1986-09-19 | 日本碍子株式会社 | Continuous melter for waste |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB902381A (en) * | 1958-04-29 | 1962-08-01 | Union Carbide Corp | Improvements in and relating to refractory articles |
JPS5864268A (en) * | 1981-10-12 | 1983-04-16 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
-
1982
- 1982-01-27 JP JP1123982A patent/JPS58128687A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB902381A (en) * | 1958-04-29 | 1962-08-01 | Union Carbide Corp | Improvements in and relating to refractory articles |
JPS5864268A (en) * | 1981-10-12 | 1983-04-16 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219887A (en) * | 1983-05-27 | 1984-12-11 | 株式会社デンソー | Ceramic heater |
JPH0439195B2 (en) * | 1983-05-27 | 1992-06-26 | ||
JPS6086787A (en) * | 1983-10-17 | 1985-05-16 | 株式会社デンソー | Ceramic heater |
JPS60216484A (en) * | 1984-04-09 | 1985-10-29 | 株式会社日本自動車部品総合研究所 | Ceramic heater |
JPH0251235B2 (en) * | 1984-04-09 | 1990-11-06 | Nippon Jidosha Buhin Sogo Kenkyusho Kk | |
JPS61210998A (en) * | 1985-03-15 | 1986-09-19 | 日本碍子株式会社 | Continuous melter for waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2804393B2 (en) | Ceramic heater | |
US5045237A (en) | Refractory electrical device | |
US4814581A (en) | Electrically insulating ceramic sintered body | |
JPS5823345B2 (en) | Method for manufacturing ceramic sintered bodies | |
JPH07135067A (en) | Silicon nitride quality ceramic heater | |
JP4808852B2 (en) | Silicon nitride / tungsten carbide composite sintered body | |
EP0180928B1 (en) | Refractory composition and products resulting therefrom | |
JPS62153169A (en) | Silicon nitride ceramic sintered body | |
EP1054577A2 (en) | Heating resistor, heating resistor for use in ceramic heater, and ceramic heater using the same | |
JPS58128687A (en) | Ceramic heater | |
US2747260A (en) | Metal-ceramic materials and method of making same | |
JPS6027653A (en) | Ceramic resistor material | |
JP2573230B2 (en) | Silicon nitride ceramics | |
JPS6028194A (en) | Ceramic heater | |
JPH1053459A (en) | Alumina porcelain composition | |
JPS61158866A (en) | Ceramic sintered body and manufacture | |
JPS6028193A (en) | Ceramic heater | |
US20060014624A1 (en) | High dielectric strength monolithic Si3N4 | |
JP2716530B2 (en) | High strength mica ceramics | |
JP2547423B2 (en) | Method for manufacturing conductive sialon | |
JPH05117019A (en) | Basic refractory brick | |
JPH0816030B2 (en) | Silicon Nitride-Titanium Nitride Composite Conductive Material | |
JP2732078B2 (en) | Silicon nitride sintered body | |
JPH09183658A (en) | Silicon carbide refractory | |
JPS61148792A (en) | Ceramic heater and manufacture thereof |