JPS6028194A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPS6028194A
JPS6028194A JP58136382A JP13638283A JPS6028194A JP S6028194 A JPS6028194 A JP S6028194A JP 58136382 A JP58136382 A JP 58136382A JP 13638283 A JP13638283 A JP 13638283A JP S6028194 A JPS6028194 A JP S6028194A
Authority
JP
Japan
Prior art keywords
resistance
heating element
mosi2
resistance value
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58136382A
Other languages
Japanese (ja)
Other versions
JPH044715B2 (en
Inventor
伊藤 信衛
欣也 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58136382A priority Critical patent/JPS6028194A/en
Publication of JPS6028194A publication Critical patent/JPS6028194A/en
Publication of JPH044715B2 publication Critical patent/JPH044715B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、耐酸化性にすぐれ、熱衝撃性、高温強度も良
好で抵抗温度係数も大きく、例えばグロープラグ川発熱
体として用い得る導電性のセラミックヒータに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive ceramic heater that has excellent oxidation resistance, good thermal shock resistance, high-temperature strength, and a large temperature coefficient of resistance, and can be used, for example, as a glow plug river heating element. .

従来より発熱体としては、金属の場合にはニッケルーク
ロム合金、鉄−クロム−アルミニウム合金等の耐熱合金
が使用され、セラミックの場合には炭化珪素、珪化モリ
ブデン等が使用されている。
Conventionally, heat-resistant alloys such as nickel-chromium alloys and iron-chromium-aluminum alloys have been used as heating elements in the case of metals, and silicon carbide, molybdenum silicide, etc. have been used in the case of ceramics.

しかしながら全屈発熱体の場合には使用温度は1000
〜1100°C程度が限界であり、それ以上の高温では
酸化腐食、溶断などが生して使用不可能である。炭化珪
素(S i C)の場合は1600℃、珪化モリブデン
(MoSi2)のばしは1800°C程度まで使用可能
なものの、炭化珪素は・比抵抗が極めて高いので小型化
に問題があり、珪化モリブデンは1300℃以上で軟化
が始まり、高温強度、熱衝撃性の面で問題があり、例え
ば自動車のグロープラグ等の要求仕様を満足することが
できなかった。
However, in the case of a fully bent heating element, the operating temperature is 1000
The upper limit is about 1100°C, and at higher temperatures, oxidation corrosion, fusing, etc. occur, making it unusable. Silicon carbide (S i C) can be used up to 1,600°C, and molybdenum silicide (MoSi2) can be used up to about 1,800°C, but silicon carbide has an extremely high resistivity, so miniaturization is a problem, and molybdenum silicide can be used up to 1,800°C. It begins to soften at temperatures above 1300°C, causing problems in terms of high-temperature strength and thermal shock resistance, and has not been able to meet the required specifications for, for example, automobile glow plugs.

本発明は、2珪化モリブデンの極めて優れた耐熱性を利
用すると同時に熱(重量部に弱い欠点を除去し、又抵抗
温度係数が大きいセラミックヒータを提供することを目
的とするものである。
An object of the present invention is to provide a ceramic heater that utilizes the extremely excellent heat resistance of molybdenum disilicide, eliminates the disadvantage of being weak in heat (weight part), and has a large temperature coefficient of resistance.

以下、本発明の詳細を実験例に基づいて説明する。The details of the present invention will be explained below based on experimental examples.

第5図に示す各種高温材料を1000°C115時間の
条件で電気炉中で酸化テストを行なった。
An oxidation test was conducted on various high-temperature materials shown in FIG. 5 in an electric furnace at 1000° C. for 115 hours.

各材料の重量変化率およびテスト前の初期比抵抗を同図
に示す。試料としては材(゛」粉末をホノトプレスによ
り理論密度90%以上の密度に焼結させたものを各々同
一形状に切出した試料を用い、重量変化率はテスト終了
後に試料をアセトンで洗浄し重量変化を測定してめた。
The weight change rate and initial resistivity before testing of each material are shown in the same figure. The samples used were material (゛) powder that was sintered to a density of 90% or more of the theoretical density using a photopress, and each sample was cut into the same shape.The rate of weight change was determined by washing the sample with acetone after the test was completed. I measured it and found it.

なお、Ni−Cr材料は市販品を用いた。Note that a commercially available Ni-Cr material was used.

第5図より、SiCとMoSi2は耐酸化性が極めて良
好であり、他の材料はかなり酸化されることがわかる。
From FIG. 5, it can be seen that SiC and MoSi2 have extremely good oxidation resistance, while other materials are considerably oxidized.

しかしながら、SiCは初期比抵抗が非常に高く、例え
ばグロープラグのように小型で低電圧電源により作動す
る性質の発熱体への適用は極めて困難である。なお表中
、M o B 2の重量変化率がマイナスであるのは、
アセトン洗浄中に酸化部分が剥離したことによるものと
認められる。
However, SiC has a very high initial resistivity, and it is extremely difficult to apply it to a small heating element such as a glow plug, which is operated by a low-voltage power source. In the table, the weight change rate of M o B 2 is negative because
It is recognized that this is due to the oxidized part peeling off during acetone cleaning.

以上より、M o S i 2は耐酸化性能、比抵抗の
点で最も優れたヒータ材料であるが、熱衝撃性に著しく
劣っており、また1000℃以上の高温域で軟化すると
いう欠点を有する。発明者らはこの欠点を改善するため
、2珪化モリブデンと窒化珪素とよりなるヒータを考案
した。但し、M o S i2とS i 3N4の混合
焼結体を得るには製造面で制約があり、特にM o S
 i 2とS i 3N4の混合体が焼成時の雰囲気に
よって強く、影響をうけることを発見した。第2図はそ
の影響を説明するものである。第2図は、その第2図に
列記した出発原料に複数の有機溶剤を加えて混合し、ド
クターブレード法により成形したシートをラミネートし
、第2図に示す各々の雰囲気で1600′cxlHr、
500kg/caでホントプレスした後の生成した2珪
化モリブデン(MoSi2)と3珪化5モリブデン(M
o5Si3)の比率を示したものである。
From the above, M o Si 2 is the best heater material in terms of oxidation resistance and specific resistance, but it has the disadvantage of being significantly inferior in thermal shock resistance and softening at high temperatures of 1000°C or higher. . In order to improve this drawback, the inventors devised a heater made of molybdenum disilicide and silicon nitride. However, there are restrictions in manufacturing in order to obtain a mixed sintered body of M o S i2 and S i 3N4.
It has been discovered that the mixture of i 2 and S i 3N4 is strongly affected by the atmosphere during firing. Figure 2 explains the effect. Fig. 2 shows that the starting materials listed in Fig. 2 are mixed with a plurality of organic solvents, and a sheet formed by the doctor blade method is laminated, and the sheets are heated for 1600'cxlHr in each atmosphere shown in Fig. 2.
Molybdenum disilicide (MoSi2) and molybdenum trisilicide (M
o5Si3).

ただし、この比率はX線回析のM o S i 2とM
However, this ratio is determined by the X-ray diffraction M o S i 2 and M
.

5Si3との最も強いピーク (Mo S i 2 (
dA72.02) Mo s S i 3 (dA=2
.156) lの高さの比であり、本当のモル比率では
ない。アルミナとマグネシアのスピネル(MgAβ2o
4)は、焼結助剤として少量添加したものであり、MO
金属18.7モル%、Si金属37.5%/l/%、5
f3N443.8モル%の比率は焼成後M o S i
 230モル%、5f3N470モル%の比率に相当す
る。第2図より、M o S i 2とSi 3 N 
aの混合物をポットプレスすると窒素中では大部分Mo
5Si3が生成されるのに対し、アルゴン中では大部分
MoSi2のままで存在することが判明する。また、出
発原料としてMoSi2100%にした場合はN2中で
もMo5Si3の生成はほとんどおこらない。また、焼
結助剤の影響は本現象にはほとんど無いことがわかる。
The strongest peak with 5Si3 (Mo Si 2 (
dA72.02) Mo s S i 3 (dA=2
.. 156) It is the height ratio of l, not the true molar ratio. Alumina and magnesia spinel (MgAβ2o
4) is a small amount added as a sintering aid, and MO
Metal 18.7 mol%, Si metal 37.5%/l/%, 5
The ratio of f3N443.8 mol% is M o Si after firing.
230 mol%, corresponding to a ratio of 5f3N470 mol%. From Figure 2, M o S i 2 and Si 3 N
When the mixture of a is pot-pressed, most of the Mo
5Si3 is produced, whereas in argon it is found that most of the MoSi2 remains as it is. Furthermore, when MoSi2 is used as a starting material at 100%, almost no Mo5Si3 is generated even in N2. Furthermore, it can be seen that the sintering aid has almost no effect on this phenomenon.

また、M o S i 2の原料であるMo金属とSt
金金属出発原料とし3 i 3 N 4を添加した場合
も、N2中ではMo5Si3を生成し、Ar中ではM 
o S i 2を生成する。以上のことからM o S
 i 2がM o s S i 3へ変化する反応には
窒素の寄与が非常に大きく、且つ珪素の存在により本反
応は著しく促進されることがvt認された。Mo3i2
1QQ%の場合、上記反応はN2中でむほとんどおこら
ないため、MO312のM O5S i 3へのN2存
在下での変換+;t、Mo5i2とS i 3 N 4
の混合体において特徴的であると考えられる。モリブデ
ン珪化物が耐酸化性にすぐれるのは、酸化雰囲気で加熱
された場合、表面層に5i02の被膜を形成し、その被
膜により内部への酸化の進行を防止するためである。
In addition, Mo metal, which is the raw material for Mo Si 2, and St
Even when 3i3N4 is added as a gold metal starting material, Mo5Si3 is generated in N2, and M in Ar.
o Generate S i 2. From the above, M o S
It has been found that nitrogen makes a very large contribution to the reaction in which i 2 changes to Mo s S i 3, and that this reaction is significantly accelerated by the presence of silicon. Mo3i2
In the case of 1QQ%, since the above reaction hardly occurs in N2, the conversion of MO312 to M O5S i 3 in the presence of N2 +; t, Mo5i2 and S i 3 N 4
It is considered to be characteristic in a mixture of The reason why molybdenum silicide has excellent oxidation resistance is that when heated in an oxidizing atmosphere, a 5i02 film is formed on the surface layer, and this film prevents oxidation from progressing to the inside.

この酸化被膜はSi含有量が関係し、Si含有量が少な
いものはS t O2の生成が少ないため耐酸化性は低
くなる。MoSi2とM o 5S i 3とを比較す
ると、Si量の比率はM o S i 2の方がMo5
Si3に比べかなり高く、そのため耐酸化性に優れる。
This oxide film is related to the Si content, and when the Si content is low, the oxidation resistance is low because less S t O2 is generated. Comparing MoSi2 and Mo5S i 3, the ratio of Si amount is higher in MoSi2 than in Mo5
It is considerably higher than Si3, and therefore has excellent oxidation resistance.

従って、耐酸化性を考慮ずればてきるだけM o 5 
S i 3の変換をなくすように発熱体を製作する必要
がある。
Therefore, if oxidation resistance is considered, M o 5
It is necessary to fabricate the heating element so as to eliminate the conversion of S i 3.

第2図には、窒素分圧を徐々に上昇させ、M。In FIG. 2, the nitrogen partial pressure is gradually increased and M.

Si2のM o 5 S i 3への変換の様子を示し
たデータも合わせである(1〜K)。窒素分圧の上昇と
共にM o 53 i 3への変換は進行する。
The data showing the state of conversion of Si2 to M o 5 S i 3 is also included (1 to K). Conversion to M o 53 i 3 proceeds as the nitrogen partial pressure increases.

第1図は第2図の条件で製作した発熱体をff11図に
示した試料寸法に研摩し、通電加熱耐久した後の抵抗の
変化を示したものである。各々の試料は通電することで
直径2鶴の細い部分か1400℃になるように加熱し、
100 Hr連続耐久した。
FIG. 1 shows the change in resistance after the heating element manufactured under the conditions shown in FIG. 2 was polished to the sample dimensions shown in FIG. ff11 and subjected to electrical heating. Each sample was heated to 1,400 degrees Celsius by applying electricity to a thin part with a diameter of 2 cranes.
Durable for 100 hours continuously.

第1図はその耐久後の抵抗値と初期抵抗との比率を示し
たもので、1.0であれば抵抗変化が無かったことにな
る。M o 5 S i 3の場合(試料B)、MOS
i2(試料A、G)に比べ抵抗値は増加する。また、窒
素分圧を変化させた場合も、N2分圧0.3気圧の条件
で製作した試料にのあたりから抵抗の増加がみられる。
FIG. 1 shows the ratio between the resistance value after durability and the initial resistance, and if it is 1.0, it means that there was no change in resistance. In the case of M o 5 S i 3 (sample B), MOS
The resistance value increases compared to i2 (sample A, G). Furthermore, even when the nitrogen partial pressure is changed, an increase in resistance is observed starting from the sample produced under the condition of N2 partial pressure of 0.3 atm.

第3図は第1図で用いた試料の温度に対する抵抗の増加
率を示したものである。各々の試料の1000°Cの抵
抗値と常温の抵抗値の比を示した。
FIG. 3 shows the rate of increase in resistance of the sample used in FIG. 1 with respect to temperature. The ratio of the resistance value of each sample at 1000°C and the resistance value at room temperature is shown.

M05Si3の比が増加するにつれ抵抗の増加率は減少
する。発熱体の抵抗値を検出しこれをフィードバックし
て発熱体温度を制御するシステムでは抵抗温度係数は大
きい程よく、その制御限界は(1000℃のR/常温の
R)で2.3程度である。
As the ratio of M05Si3 increases, the rate of increase in resistance decreases. In a system that detects the resistance value of a heating element and feeds it back to control the temperature of the heating element, the larger the resistance temperature coefficient is, the better, and the control limit is (R at 1000° C./R at room temperature) about 2.3.

以上のことよりM o S i 2.とS i 3N4
との混合焼結体よりなる発熱体は、窒素分圧0.3気圧
以下の非酸化雰囲気で製造する必要があることが判明し
た。なお、窒素を含まない非酸化雰囲気であるヘリウム
、および真空雰囲気下でもアルゴンと同様、MOSi2
の分解防止には有効であることが確認されている。本実
施例では焼結助剤としてMgAl2O3を使用したが、
他にアルミナ(Aj!203)あるいはアルミナとマグ
ネシア(MgO)との混合物などを使用してもよい。ま
た本実施例では、例えばN2分圧0.2気圧、Ar分圧
0.8気圧の旧1気圧の雰囲気で焼成したが、N2分圧
0゜2気圧、Ar分圧9.8気圧の6110気圧下のよ
うな高圧下で焼成してもかまわない。たたし、N2分圧
はその場合も0.3気圧以下である。
From the above, M o S i 2. and S i 3N4
It has been found that the heating element made of a mixed sintered body with nitrogen must be manufactured in a non-oxidizing atmosphere with a nitrogen partial pressure of 0.3 atm or less. It should be noted that MOSi2 can be
It has been confirmed that it is effective in preventing the decomposition of In this example, MgAl2O3 was used as a sintering aid, but
In addition, alumina (Aj!203) or a mixture of alumina and magnesia (MgO) may be used. In addition, in this example, firing was performed in an atmosphere of 1 atm with a N2 partial pressure of 0.2 atm and an Ar partial pressure of 0.8 atm. Firing may be performed under high pressure such as atmospheric pressure. However, the N2 partial pressure is also 0.3 atm or less in that case.

第4図にM o S i 2とSi3N4とを種々の割
合で混合し、有機溶剤を加えて製作したシートをアルゴ
ンガス中で1600℃X LHr、500 kg/ c
lの条件でホットプレスしたものの特性値を示す。抗折
強度は1300°Cでの3点曲げ試料が破壊もしくは変
形したときの荷重であり、抗折強度試験は40X3X4
mmに切出した試料をクロスヘッド速度Q、 5 mm
 / minにして行なった。熱膨張係数は室温〜80
0°Cの平均熱膨張係数である。第4図よりM o S
 i 2にS i 3N4を添加することで熱膨張係数
が減少し且つ強度も増加することが確認された。熱衝撃
性は熱膨張係数が小さい程、また破壊強度即ち抗折強度
が大きい程良好になる。
Figure 4 shows a sheet made by mixing M o Si 2 and Si3N4 in various proportions and adding an organic solvent to it in an argon gas atmosphere at 1600°C X LHr and 500 kg/c.
The characteristic values of the product hot-pressed under the conditions of 1 are shown. The bending strength is the load when a three-point bending sample is broken or deformed at 1300°C, and the bending strength test is 40X3X4.
Crosshead speed Q, 5 mm
/min. Thermal expansion coefficient is room temperature ~ 80
It is the average coefficient of thermal expansion at 0°C. From Figure 4, M o S
It was confirmed that the addition of S i 3N4 to i 2 reduces the coefficient of thermal expansion and increases the strength. Thermal shock resistance becomes better as the coefficient of thermal expansion becomes smaller and as the breaking strength, that is, the bending strength becomes larger.

従って本発明の発熱体は、M OS i 2のすぐれた
耐酸化性能を維持し、且つM o S i 2単独で構
成した発熱体の最大の欠点である熱衝撃性に弱いという
欠点を兄事に解決した発熱体である。グロープラグのよ
うな車載用ヒータとして使用する場合の発熱体の抵抗値
は、常温で1×10−3〜1×10−1Ωcmの範囲で
あり、第4図よりMoSi2の量は5〜50モル%の範
囲となる。なお、窒化珪素の添加については、単に熱膨
張係数を低下するだけであれば、窒化珪素以外にもコー
ジェライトなどの添加が考えられるが、窒化珪素はセラ
ミックの中で最も強度的に優れる構造材であり、従って
強度の向上に最も有効であり、またMOSi2の焼成条
件として1600°C前後が最適であるため、融点が低
い物質は多量に添加す、ることができない。なお、本実
施例の中でも述べているが、窒素を含まない非酸化雰囲
気中で焼成しても少量のM o +33 i 3は生成
するが、大部分はM o S i 2の状態であり、そ
の量を規定する範囲として1000℃の抵抗値が常温の
抵抗値の2.3倍量」二になるものを本発明の発熱体と
した。また、Mo5i7゜S i 3N4の他に焼結助
剤を加える場合もあるが、窒化珪素の添加効果を阻害し
ない範囲でならその添加はかまわない。また、Mo S
 i 2. S i 3N4の他にSi金属を過剰に加
える場合も過剰Si金属の量が数%程度であれば、それ
ほど耐酸化性能を劣化させないため、かまわない。実施
例の中では、M o S i 2を形成する原料として
Si金属とMo金属を用いたが、それ以外でもMoSi
2を形成する原料があれば、それを出発原料としてもか
まわない。なお、本発明を述べた温度はパイロメータで
計測した値で放射率(ε)−1,00としての値である
。なお、M o S i 2とS i 3 N 4の混
合焼結体は、窒素分圧0.3気圧以下の非酸化雰囲気で
焼成してはじめてできるものであり、この条件以上の窒
素の存在下ではM o 5 S i 3を大量に生成し
、耐酸化性能を劣化させ、抵抗温度係数を低下させる。
Therefore, the heating element of the present invention maintains the excellent oxidation resistance of M OS i 2, and overcomes the disadvantage of being weak against thermal shock, which is the biggest drawback of heating elements composed of M OS i 2 alone. This is a heating element that solved the problem. The resistance value of the heating element when used as a car heater such as a glow plug is in the range of 1 x 10-3 to 1 x 10-1 Ωcm at room temperature, and from Figure 4, the amount of MoSi2 is 5 to 50 mol. % range. Regarding the addition of silicon nitride, if the purpose is simply to lower the coefficient of thermal expansion, it is possible to add cordierite in addition to silicon nitride, but silicon nitride is a structural material with the highest strength among ceramics. Therefore, since it is most effective for improving strength, and the optimal firing condition for MOSi2 is around 1600°C, it is not possible to add a large amount of a substance with a low melting point. As mentioned in this example, even if fired in a non-oxidizing atmosphere that does not contain nitrogen, a small amount of M o +33 i 3 is generated, but the majority is in the state of M o S i 2, The heating element of the present invention has a resistance value at 1000° C. that is 2.3 times the resistance value at room temperature. Further, in addition to Mo5i7°S i 3N4, a sintering aid may be added, but it may be added as long as it does not impede the effect of adding silicon nitride. Also, MoS
i2. Even if Si metal is added in excess in addition to S i 3N4, there is no problem as long as the amount of excess Si metal is on the order of several percent, since the oxidation resistance performance will not be deteriorated so much. In the examples, Si metal and Mo metal were used as raw materials for forming MoSi2, but other materials such as MoSi
If there is a raw material that forms 2, it may be used as the starting raw material. Note that the temperature described in the present invention is a value measured with a pyrometer and is a value given as emissivity (ε)−1,00. The mixed sintered body of M o Si 2 and S i 3 N 4 can only be produced by firing in a non-oxidizing atmosphere with a nitrogen partial pressure of 0.3 atm or less, and in the presence of nitrogen above this condition. In this case, a large amount of M o 5 S i 3 is produced, which deteriorates the oxidation resistance and lowers the temperature coefficient of resistance.

100%M a S i 2の場合は、このような反応
がないため、この反応はM o S i 2とS i 
3N4との混合体において特に顕著にあられれる。そし
て、上記の条件下で製造することにより、1000°C
における抵抗値が常温の抵抗値の2,3倍以上となる。
In the case of 100% M a S i 2, there is no such reaction, so this reaction is a combination of M o S i 2 and S i
It is particularly noticeable in a mixture with 3N4. By manufacturing under the above conditions, 1000°C
The resistance value at is two to three times or more than the resistance value at room temperature.

以」二述べたごとく、本発明によれば、2珪化モリブデ
ンの極めて優れた耐熱性を利用できるとともに窒化珪素
の極めて優れた熱衝撃性を利用でき、かつ抵抗温度係数
が大きくてグロープラグのごとき自動車用のヒータとし
て最適である。
As described above, according to the present invention, it is possible to utilize the extremely excellent heat resistance of molybdenum disilicide, the extremely excellent thermal shock resistance of silicon nitride, and its large temperature coefficient of resistance makes it suitable for use in glow plugs. Ideal as a heater for automobiles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の説明に供する特性図である。 代理人弁理士 岡 部 隆 1 to 5 are characteristic diagrams for explaining the present invention. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 2珪化モリブデンと窒化珪素との焼結体で構成され、1
000℃における電気抵抗値が常温の抵抗値の2.3倍
以上であり、かつ前記2珪化モリブデンと窒化珪素との
2成分系において2珪化モリブデンの占める割合を5〜
50モル%としたセラミックヒータ。
Composed of a sintered body of molybdenum disilicide and silicon nitride,
The electrical resistance value at 000°C is 2.3 times or more the resistance value at room temperature, and the proportion of molybdenum disilicide in the two-component system of molybdenum disilicide and silicon nitride is 5 to 5.
Ceramic heater with 50 mol%.
JP58136382A 1983-07-25 1983-07-25 Ceramic heater Granted JPS6028194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136382A JPS6028194A (en) 1983-07-25 1983-07-25 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136382A JPS6028194A (en) 1983-07-25 1983-07-25 Ceramic heater

Publications (2)

Publication Number Publication Date
JPS6028194A true JPS6028194A (en) 1985-02-13
JPH044715B2 JPH044715B2 (en) 1992-01-29

Family

ID=15173843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136382A Granted JPS6028194A (en) 1983-07-25 1983-07-25 Ceramic heater

Country Status (1)

Country Link
JP (1) JPS6028194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182596A (en) * 1985-02-04 1986-04-26 Showa Electric Wire & Cable Co Ltd Separator circuit of interpolation multiple signal
JPS6282685A (en) * 1985-10-04 1987-04-16 株式会社デンソー Ceramic heating element for heater
JPH01317170A (en) * 1988-03-29 1989-12-21 Nippon Denso Co Ltd Electrically conductive ceramic material
EP0874534A3 (en) * 1997-04-23 1999-06-16 NGK Spark Plug Co. Ltd. A ceramic heater, a method of making the same and a ceramic glow plug having the ceramic heater
EP0933342A3 (en) * 1998-01-30 1999-11-03 Ngk Spark Plug Co., Ltd Ceramic heater and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146184A (en) * 1983-02-08 1984-08-21 株式会社デンソー Ceramic heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146184A (en) * 1983-02-08 1984-08-21 株式会社デンソー Ceramic heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182596A (en) * 1985-02-04 1986-04-26 Showa Electric Wire & Cable Co Ltd Separator circuit of interpolation multiple signal
JPS6282685A (en) * 1985-10-04 1987-04-16 株式会社デンソー Ceramic heating element for heater
JPH0527958B2 (en) * 1985-10-04 1993-04-22 Nippon Denso Kk
JPH01317170A (en) * 1988-03-29 1989-12-21 Nippon Denso Co Ltd Electrically conductive ceramic material
EP0874534A3 (en) * 1997-04-23 1999-06-16 NGK Spark Plug Co. Ltd. A ceramic heater, a method of making the same and a ceramic glow plug having the ceramic heater
EP0933342A3 (en) * 1998-01-30 1999-11-03 Ngk Spark Plug Co., Ltd Ceramic heater and method of manufacturing the same
US6143238A (en) * 1998-01-30 2000-11-07 Ngk Spark Plug Co., Ltd. Method for manufacturing a ceramic heater

Also Published As

Publication number Publication date
JPH044715B2 (en) 1992-01-29

Similar Documents

Publication Publication Date Title
JP2804393B2 (en) Ceramic heater
JP3230793B2 (en) Ceramic heating element
JP3933345B2 (en) Heating resistor, heating resistor for ceramic heater, method for manufacturing the same, and ceramic heater
EP0180928B1 (en) Refractory composition and products resulting therefrom
JPS6028194A (en) Ceramic heater
JPH0212893B2 (en)
JPS6028193A (en) Ceramic heater
JP2537606B2 (en) Ceramic Heater
JPS58128687A (en) Ceramic heater
JP3398274B2 (en) Ceramic heater
JP2512818Y2 (en) Ceramic heater
JPH0697631B2 (en) Ceramic heater and method for producing the same
JP2767568B2 (en) Ceramic heater
JPS61225801A (en) Far infrared radiation heat generating body
JPS6337587A (en) Ceramic heater
JP4874038B2 (en) Electrode built-in ceramic structure
JPS63136485A (en) Ceramic heater
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same
JP3009166B2 (en) Surface treatment method for ceramics
JPH0812435A (en) Ceramic and its use
JPS6282685A (en) Ceramic heating element for heater
JPH10106728A (en) Ceramic heater and its manufacture
JPH05117065A (en) Composite sintered product and its production
JPH04308680A (en) Aln ceramic heater
JPH05174948A (en) Ceramic heating unit