JPH07187865A - Surface-coated silicon nitride-based heat resistant member - Google Patents

Surface-coated silicon nitride-based heat resistant member

Info

Publication number
JPH07187865A
JPH07187865A JP32752393A JP32752393A JPH07187865A JP H07187865 A JPH07187865 A JP H07187865A JP 32752393 A JP32752393 A JP 32752393A JP 32752393 A JP32752393 A JP 32752393A JP H07187865 A JPH07187865 A JP H07187865A
Authority
JP
Japan
Prior art keywords
silicon nitride
si3n4
powder
sintered body
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32752393A
Other languages
Japanese (ja)
Other versions
JP2828583B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5327523A priority Critical patent/JP2828583B2/en
Publication of JPH07187865A publication Critical patent/JPH07187865A/en
Application granted granted Critical
Publication of JP2828583B2 publication Critical patent/JP2828583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5042Zirconium oxides or zirconates; Hafnium oxides or hafnates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve oxidation resistance by coating the surface of an Si3N4- based sintered compact with ZrSiO4. CONSTITUTION:A mixture of Si3N4 powder with SiO2 and one or more kinds of oxides (RE2O3) of group IIIa elements of the Periodic Table such as Y2O3 and La2O3 is compacted. In the mixture, the molar ratio of SiO2 to RE2O3 is <=2. The resulting compact is fired in an N2 atmosphere to produce an Si3N4- RE2O3-SiO2 sintered compact consisting of about 0.1-10mol% RE2O3, about 0.2-40mol% (expressed in terms of SiO2) excess oxygen and the balance Si3N4. Prescribed amts. of ZrO2 powder and SiO2 powder are mixed and a binder is added to prepare the slurry. This slurry is applied to the surface of the Si3N4- based sintered compact, dried, allowed to remove the binder and fired in an Ar atmosphere to obtain the objective surface-coated Si3N4-based heat resistant member with a ZrSiO4 coating layer having about 10-1,000mum thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温での耐熱性と耐食
性に優れ、熱衝撃に優れる表面被覆層を有する窒化珪素
質耐熱部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride heat resistant member having a surface coating layer which is excellent in heat resistance and corrosion resistance at high temperatures and which is excellent in thermal shock.

【0002】[0002]

【従来技術】従来から窒化珪素質焼結体は、耐熱性、耐
熱衝撃性、及び耐酸化特性に優れることからエンジニア
リングセラミックス、特にガスタ−ビン用部材として応
用が進められている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have been applied to engineering ceramics, in particular, as members for gas turbines because of their excellent heat resistance, thermal shock resistance and oxidation resistance.

【0003】窒化珪素質焼結体は、窒化珪素に対してY
2 3 やAl2 3 などの焼結助剤を添加して焼成した
ものであり、焼結体に対しては室温強度、高温強度が要
求されるとともに、高温での耐酸化性も要求される。こ
のような要求に対して、従来から添加する焼結助剤の種
類を検討したり、それに伴い焼結体中の粒界相を結晶化
したりする等各種の方法が提案されている。
A silicon nitride based sintered body has a Y content with respect to silicon nitride.
Sintered materials such as 2 O 3 and Al 2 O 3 are added and fired. The sintered body is required to have room temperature strength and high temperature strength, as well as oxidation resistance at high temperature. To be done. In order to meet such demands, various methods have been proposed, such as studying the type of sintering aid to be added and crystallization of the grain boundary phase in the sintered body.

【0004】しかしながら、焼結体自体の改善によれ
ば、機械的な強度に対してはある程度の特性が得られる
ようになったが、耐酸化性についてはその使用条件がさ
らに過酷で且つ高酸化性雰囲気となりつつあることから
十分な耐久性を得るに至っていない。
However, although improvements in the sintered body itself have made it possible to obtain a certain level of mechanical strength, the oxidation resistance is more severe under high-oxidation conditions. Since it is becoming a sexual atmosphere, it has not yet obtained sufficient durability.

【0005】そこで、このような耐酸化性を付与するた
めの1つの方法として窒化珪素質焼結体の表面に耐熱性
および耐酸化性に優れた金属酸化物、例えばジルコニア
等を被覆することが特公平5−8152号で提案されて
いる。
Therefore, as one method for imparting such oxidation resistance, the surface of the silicon nitride sintered material is coated with a metal oxide having excellent heat resistance and oxidation resistance, such as zirconia. It is proposed in Japanese Examined Patent Publication No. 5-8152.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、ジル
コニアは窒化珪素質焼結体(熱膨張率3〜4×10-6
℃)に比べて熱膨張率が大きく(約10×10-6
℃)、昇温、降温の繰り返しにより、被覆層に剥離や亀
裂が発生し、耐熱性を大幅に劣化させてしまうという問
題があった。このような問題に対して、窒化珪素質焼結
体とジルコニアの間に中間的熱膨張特性を有する中間部
材を形成させることも考えられるが、実用的には上記問
題を解決するに至っていない。
However, zirconia is a silicon nitride sintered body (coefficient of thermal expansion of 3 to 4 × 10 -6 /
The coefficient of thermal expansion is higher than that of (° C) (about 10 × 10 -6 /
There is a problem that peeling or cracking occurs in the coating layer due to repetition of temperature rise and decrease, and heat resistance is significantly deteriorated. For such a problem, it is possible to form an intermediate member having an intermediate thermal expansion property between the silicon nitride sintered body and zirconia, but it has not been practically solved yet.

【0007】また、耐酸化性が低い窒化珪素質焼結体を
基体としてジルコニアを被覆した部材を長時間高温の酸
化性雰囲気中に暴露していると、被覆層を通して酸素の
拡散が起こり窒化珪素焼結体が酸化され、被覆層と焼結
体界面に低融点のガラスが形成し繰返し熱疲労で剥離が
生じてしまうという問題も生じる。
Further, when a member coated with zirconia using a silicon nitride sintered body having a low oxidation resistance as a base is exposed to a high temperature oxidizing atmosphere for a long time, diffusion of oxygen occurs through the coating layer and silicon nitride is produced. There is also a problem that the sintered body is oxidized and a low-melting glass is formed at the interface between the coating layer and the sintered body, and peeling occurs due to repeated thermal fatigue.

【0008】本発明は、上記のような問題点を解決し、
1000℃の高温酸化雰囲気に長時間保持されても熱疲
労に優れ、被覆層の剥離等が生じない耐食性と耐熱性に
優れた表面被覆窒化珪素質耐熱部材を提供することを目
的とするものである。
The present invention solves the above problems,
An object of the present invention is to provide a surface-coated silicon nitride heat-resistant member which is excellent in thermal fatigue even when kept in a high temperature oxidizing atmosphere of 1000 ° C. for a long time, and in which peeling of a coating layer does not occur and which has excellent corrosion resistance and heat resistance. is there.

【0009】[0009]

【問題点を解決するための手段】本発明者は、表面被覆
層の亀裂や剥離を押さえるためには、窒化珪素質焼結体
と表面被覆層との熱膨張率差を小さくすることが重要で
あるという見地に立ち検討を重ねた結果、表面被覆層に
ジルコン(ZrSiO4 )を用いることにより昇温、降
温の繰り返しによる剥離や亀裂の発生を大幅に抑制でき
ることを知見し、本発明に至った。
To suppress cracks and peeling of the surface coating layer, it is important for the present inventor to reduce the difference in coefficient of thermal expansion between the silicon nitride sintered body and the surface coating layer. As a result of repeated studies from the viewpoint that the above, it was found that the use of zircon (ZrSiO 4 ) in the surface coating layer can significantly suppress the occurrence of peeling and cracking due to repeated temperature rising and lowering, leading to the present invention. It was

【0010】即ち、本発明の表面被覆窒化珪素質耐熱部
材は、窒化珪素質焼結体からなる基体の表面にジルコン
(ZrSiO4 )被覆したことを特徴とするものであ
る。
That is, the surface-coated silicon nitride heat-resistant member of the present invention is characterized in that the surface of a substrate made of a silicon nitride sintered body is coated with zircon (ZrSiO 4 ).

【0011】以下、本発明を詳述する。本発明の窒化珪
素質耐熱部材は、窒化珪素質焼結体からなる基体と、そ
の基体表面に形成された被覆層により構成される。
The present invention will be described in detail below. The silicon nitride heat-resistant member of the present invention is composed of a base body made of a silicon nitride sintered body and a coating layer formed on the surface of the base body.

【0012】本発明における被覆層はジルコンからなる
ものである。ジルコンとは、ZrO2 とSiO2 との
1:1の化合物である。この被覆層は窒化珪素質焼結体
の基体表面に10〜1000μm、特に50〜500μ
mの厚みで形成されるものである。
The coating layer in the present invention is composed of zircon. Zircon is a 1: 1 compound of ZrO 2 and SiO 2 . This coating layer is formed on the surface of the substrate of the silicon nitride sintered material in an amount of 10 to 1000 μm, particularly 50 to 500 μm.
It is formed with a thickness of m.

【0013】一方、基体を構成する窒化珪素質焼結体
は、窒化珪素を主成分とするものであるが、本発明にお
ける窒化珪素質焼結体は、基体としての耐熱性、耐酸化
性との関連から、焼結体の組成はSi3 4 −SiO2
−RE2 3 (RE:周期律表第3a族元素)で表され
る3元系からなることが望ましい。その中でも耐酸化性
の点からは、窒化珪素結晶の粒界にRE2 Si2 7
晶相(RE:周期律表第3a族元素)が析出しているこ
とがよい。なお、組成中、SiO2 とは、いわゆる焼結
体中に存在する過剰酸素であり、具体的には、焼結体中
の全酸素量から焼結体中の周期律表第3a族酸化物が化
学量論的に酸化物を形成した場合に元素に結合している
酸素を除く残りの酸素量であり、そのほとんどは窒化珪
素原料に含まれる酸素、あるいはSiO2 等の添加とし
て混入する成分である。
On the other hand, the silicon nitride-based sintered body constituting the base body contains silicon nitride as a main component, but the silicon nitride-based sintered body according to the present invention has heat resistance and oxidation resistance as the base body. Therefore, the composition of the sintered body is Si 3 N 4 —SiO 2
It is desirable to be composed of a ternary system represented by —RE 2 O 3 (RE: Group 3a element of the periodic table). Among them, from the viewpoint of oxidation resistance, it is preferable that the RE 2 Si 2 O 7 crystal phase (RE: Group 3a element of the periodic table) be precipitated at the grain boundaries of the silicon nitride crystal. In the composition, SiO 2 is so-called excess oxygen existing in the sintered body, and specifically, from the total oxygen amount in the sintered body, an oxide of Group 3a of the periodic table in the sintered body is used. Is the amount of oxygen remaining excluding oxygen bound to the elements when forming an oxide stoichiometrically, most of which is oxygen contained in the silicon nitride raw material or a component mixed as addition of SiO 2 or the like. Is.

【0014】このRE2 3 およびSiO2 は焼結過程
では、窒化珪素粒子との反応により、液相として存在し
焼結性を高めるが、冷却後そのまま粒界相にガラス相と
して残存すると焼結体の高温強度を低下させてしまうと
同時に耐酸化特性を劣化させてしまうため、これらの成
分は所定の冷却過程あるいは熱処理により粒界にて高融
点で耐酸化性に優れたRE2 Si2 7 結晶相として析
出させることにより焼結体の高温特性を向上させること
ができる。
In the sintering process, these RE 2 O 3 and SiO 2 exist as a liquid phase to increase the sinterability by the reaction with the silicon nitride particles, but if they remain as a glass phase in the grain boundary phase after cooling, they are burned. since deteriorates the oxidation resistance and at the same time will reduce the high temperature strength of the sintered body, RE 2 Si 2 these components with excellent oxidation resistance at high melting point at the grain boundary by a predetermined cooling process or a heat treatment By precipitating as an O 7 crystal phase, the high temperature characteristics of the sintered body can be improved.

【0015】なお、窒化珪素質焼結体の組成は、特に周
期律表第3a族元素酸化物(RE2O3 )が0.1〜10
モル%、特に0.3〜5モル%、過剰酸素(SiO2
算)が0.2〜40モル%、特に0.6〜20モル%、
残部が窒化珪素からなることが望ましい。なお、本発明
に用いられる周期律表第3a族元素としては、Yやラン
タノイド元素が挙げられるが特にEr、YbおよびLu
が好ましい。
The composition of the silicon nitride-based sintered body is 0.1 to 10 when the oxide (RE 2 O 3 ) of Group 3a element of the periodic table is used.
Mol%, particularly 0.3 to 5 mol%, excess oxygen (converted to SiO 2 ) is 0.2 to 40 mol%, particularly 0.6 to 20 mol%,
The balance is preferably made of silicon nitride. Examples of the Group 3a element of the periodic table used in the present invention include Y and lanthanoid elements, but in particular Er, Yb and Lu.
Is preferred.

【0016】また、焼結体中には不可避的不純物として
Al、Ca、Mg、Fe等が含まれることがあるが、こ
れらの元素は酸化物として低融点物質を形成しやすく、
焼結体の高温特性を劣化させる傾向にあることからこれ
らの成分は酸化物換算で0.5重量%以下に制御するこ
とが望ましい。
In some cases, Al, Ca, Mg, Fe, etc. are contained as unavoidable impurities in the sintered body, but these elements easily form a low melting point substance as an oxide,
Since these components tend to deteriorate the high temperature characteristics of the sintered body, it is desirable to control these components to 0.5 wt% or less in terms of oxides.

【0017】その他、上記Si3 4 −RE2 3 −S
iO2 に加えて、焼結体の特性、特に上記粒界の結晶化
に悪影響を及ぼさない範囲でTiC、TiN、WC、W
3、Nb2 5 、Cr2 3 、Cr2 Cなどの周期律
表第4a,5a,6a族元素の炭化物、窒化物、酸化
物、炭窒化物などを添加することもできる。
In addition, the above Si 3 N 4 --RE 2 O 3 --S
In addition to iO 2 , TiC, TiN, WC, W within the range that does not adversely affect the characteristics of the sintered body, especially the crystallization of the grain boundaries.
It is also possible to add carbides, nitrides, oxides, carbonitrides and the like of elements of Groups 4a, 5a and 6a of the periodic table such as O 3 , Nb 2 O 5 , Cr 2 O 3 and Cr 2 C.

【0018】上記窒化珪素質焼結体を作製する方法とし
ては、原料粉末として窒化珪素粉末、周期律表第3a族
元素酸化物粉末、場合により酸化珪素粉末を用い、これ
らを前述したような組成範囲内に秤量混合する。この
時、他の形態として窒化珪素の代わりに金属珪素粉末を
用いることができる。なお周期律表第3a族元素酸化物
(RE2 3 )の添加形態としては、RE2 3 の一種
以上と酸化珪素からなる化合物粉末、または窒化珪素と
RE2 3 の一種以上と酸化珪素とからなる化合物粉末
を用いることもできる。
As a method for producing the above-mentioned silicon nitride sintered body, silicon nitride powder, Group 3a element oxide powder of the periodic table, and silicon oxide powder in some cases are used as raw material powder, and these are used in the above-mentioned composition. Weigh and mix to within range. At this time, as another form, metal silicon powder can be used instead of silicon nitride. The form of addition of the Group 3a element oxide (RE 2 O 3 ) of the Periodic Table is a compound powder consisting of one or more of RE 2 O 3 and silicon oxide, or an oxide of one or more of silicon nitride and RE 2 O 3 and oxidation. A compound powder composed of silicon can also be used.

【0019】このように得られた混合粉末を公知の成形
方法、例えば、プレス成形、鋳込み成形、押し出し成
形、射出成形、冷間静水圧成形等により所望の形状に成
形した後、公知の焼成方法、例えば、ホットプレス方
法、常圧焼成、窒素ガス圧焼成、さらには、これらの焼
成後のHIP処理、及び、ガラスシ−ルHIP焼成等で
焼成し、緻密な焼結体を得る。
The mixed powder thus obtained is molded into a desired shape by a known molding method, for example, press molding, cast molding, extrusion molding, injection molding, cold isostatic molding, etc., and then a known firing method. For example, a hot press method, normal pressure firing, nitrogen gas pressure firing, and further, HIP treatment after these firings, and glass seal HIP firing are performed to obtain a dense sintered body.

【0020】また、成形体中に珪素粉末を用いる場合に
は、成形体を窒素含有雰囲気中で800℃〜1500℃
の温度で熱処理をして、成形体中に含まれる珪素を窒化
して、窒化珪素を生成させた後に上記の焼成を行う。
When silicon powder is used in the molded body, the molded body is in the nitrogen-containing atmosphere at 800 ° C to 1500 ° C.
The heat treatment is performed at a temperature of 1 to nitrid the silicon contained in the molded body to generate silicon nitride, and then the firing is performed.

【0021】なお、焼結体の粒界に少なくともRE2
2 7 (REは周期律表第3a族元素)結晶を析出さ
せるためには、成形体中の組成においてSiO2 /RE
2 3 モル比を2以下に制御し、焼成後の冷却時、また
は冷却段階での一次保持、または焼成後の熱処理すれば
よい。
At least RE 2 S is contained in the grain boundaries of the sintered body.
In order to precipitate i 2 O 7 (RE is a Group 3a element of the periodic table) crystals, the composition in the compact should be SiO 2 / RE.
The 2 O 3 molar ratio may be controlled to be 2 or less, and may be maintained during cooling after firing, or by primary holding in the cooling stage, or by heat treatment after firing.

【0022】一方、ジルコンからなる被覆層は、所定量
のZrO2 粉末とSiO2 粉末を混合し、バインダ−を
加えて窒化珪素質焼結体の表面にスラリ−を塗布あるい
はスプレ−等により吹き付けて高温で焼き付けるか、あ
るいは混合粉末を一度高温で処理し、ジルコンを合成し
た後、粉砕し同様の手法にて被覆層を形成させる。その
他、ジルコン粉末を周知のプラズマ溶射法により基体表
面に溶射して被覆層を形成する事もできる。
On the other hand, the coating layer made of zircon is prepared by mixing a predetermined amount of ZrO 2 powder and SiO 2 powder, adding a binder, and applying a slurry to the surface of the silicon nitride sintered body or spraying the slurry. Or bake at a high temperature once, or the mixed powder is once treated at a high temperature to synthesize zircon and then pulverized to form a coating layer by the same method. In addition, the coating layer can be formed by spraying zircon powder on the surface of the substrate by a well-known plasma spraying method.

【0023】ジルコンの被覆層は、窒化珪素質焼結体の
表面にジルコンスラリーを塗布あるいはスプレー等によ
り吹き付けて、高温で焼き付ける。または、ジルコン粉
末の代わりにジルコニア粉末とシリカ粉末の等モル%の
混合粉末を用いてよい。また、プラズマ溶射により被覆
層を形成してもよい。
The zircon coating layer is formed by coating or spraying zircon slurry on the surface of the silicon nitride sintered material and baking it at a high temperature. Alternatively, instead of zircon powder, a mixed powder of equimolar% of zirconia powder and silica powder may be used. Alternatively, the coating layer may be formed by plasma spraying.

【0024】[0024]

【作用】表面被覆耐熱部材の熱的安定性は、窒化珪素質
焼結体と表面被覆層との熱膨張差に依存する。熱膨張差
が大きいと昇温、降温時に大きな熱応力が発生し、表面
被覆層の剥離や亀裂が発生する。したがって、熱的安定
性を増加させるためには、熱膨張差を小さくすることが
重要である。本発明によれば、上記観点に基づき、表面
被覆層の材質を検討した結果、被覆層として、窒化珪素
焼結体と熱膨張差が少なく、耐熱性が高く、且つ、断熱
性にも優れるジルコンを用いる事で昇温、降温の繰り返
しでも被覆層に亀裂や剥離の生じないようにする事がで
きる。これにより、耐食性と耐熱性に優れる表面被覆層
を有する窒化珪素質耐熱部材を提供することができる。
The thermal stability of the surface-coated heat-resistant member depends on the difference in thermal expansion between the silicon nitride sintered body and the surface coating layer. When the difference in thermal expansion is large, a large thermal stress is generated when the temperature is raised or lowered, and the surface coating layer is peeled or cracked. Therefore, it is important to reduce the difference in thermal expansion in order to increase the thermal stability. According to the present invention, as a result of studying the material of the surface coating layer based on the above viewpoint, the coating layer has a small difference in thermal expansion from the silicon nitride sintered body, has high heat resistance, and is excellent in heat insulating property. By using, it is possible to prevent the coating layer from cracking or peeling even when the temperature is raised and lowered repeatedly. This makes it possible to provide a silicon nitride heat-resistant member having a surface coating layer having excellent corrosion resistance and heat resistance.

【0025】[0025]

【実施例】原料粉末として窒化珪素粉末(BET比表面
積8m2 /g、α率98%、酸素量1.2重量%、金属
不純物0.03重量%)と、Yb2 3 3モル%、Si
2 9モル%を秤量混合し、これをプレス成形した後に
窒素ガス圧力10気圧下で1850℃で4時間焼成し、
直径50mm、厚さ5mmの円板上焼結体を得た。
EXAMPLE Silicon nitride powder (BET specific surface area 8 m 2 / g, α ratio 98%, oxygen content 1.2% by weight, metallic impurities 0.03% by weight) as raw material powder, Yb 2 O 3 3 mol%, Si
9 mol% of O 2 was weighed and mixed, and this was press-molded and then fired at 1850 ° C. for 4 hours under a nitrogen gas pressure of 10 atm.
A disc-shaped sintered body having a diameter of 50 mm and a thickness of 5 mm was obtained.

【0026】得られた焼結体に対してX線回折測定を行
ったところ、Yb2 Si2 7 とSi2 2 Oが検出さ
れた。この焼結体の1400℃における抗折強度をJI
SR1601の4点曲げ試験で測定したところ、720
MPaであった。また大気中1400℃にて24時間保
持した後の酸化重量増加を測定したところ、0.1mg
/cm2 であった。
When X-ray diffraction measurement was performed on the obtained sintered body, Yb 2 Si 2 O 7 and Si 2 N 2 O were detected. The bending strength at 1400 ° C of this sintered body was measured by JI
When measured by the four-point bending test of SR1601, 720
It was MPa. In addition, when the increase in oxidized weight was measured after holding at 1400 ° C in the atmosphere for 24 hours, it was 0.1 mg.
Was / cm 2 .

【0027】次に、表1に示した組成の混合粉末を用い
て、スラリー塗布法およびプラズマ溶射法により被覆層
の形成を行った。スラリー塗布法による被覆層の形成
は、表1に示す粉末からなるスラリーを上記焼結体表面
に塗布し、乾燥、脱バインダ−後、1400℃にてアル
ゴン雰囲気中で1時間熱処理し、試料を作製した。ま
た、プラズマ溶射による被覆層の形成は、表1に示す粉
末を溶射剤として焼結体基体表面に溶射して試料を作製
した。
Next, the mixed powder having the composition shown in Table 1 was used to form a coating layer by a slurry coating method and a plasma spraying method. The coating layer was formed by the slurry coating method by coating the surface of the sintered body with the slurry made of the powders shown in Table 1, drying and binder removal, and then heat-treating at 1400 ° C. in an argon atmosphere for 1 hour to prepare a sample. It was made. The coating layer was formed by plasma spraying by spraying the powder shown in Table 1 on the surface of the sintered body as a spraying agent to prepare a sample.

【0028】得られた各試料に対して、繰返し熱疲労試
験を行った。試験は、1000℃に保持した電気炉に試
料を入れて15分間保持した後、炉外に出し、放冷後、
再度炉内に入れ、これを1サイクルとして最高30サイ
クル行い、被覆層に亀裂が発生するまでの回数を確認し
た。結果は表1に示す。
A repeated thermal fatigue test was conducted on each of the obtained samples. The test was carried out by placing the sample in an electric furnace maintained at 1000 ° C. and holding it for 15 minutes, then taking it out of the furnace and allowing it to cool.
It was put in the furnace again, and this was performed as one cycle for a maximum of 30 cycles, and the number of times until cracking occurred in the coating layer was confirmed. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】*印は本発明の範囲外の試料を示す。* Indicates a sample outside the scope of the present invention.

【0031】表1において、粉末組成物がZrO2 : S
iO2 が1:1の混合粉末を用いた試料No.2,5はZ
rSiO4 粉末を用いた試料No.1,4と同様にX線回
折測定の結果、ジルコン(ZrSiO4 )の結晶からな
ることを確認した。
In Table 1, the powder composition is ZrO 2 : S.
Samples No. 2 and 5 using the mixed powder of 1: 1 of io 2 are Z
As a result of the X-ray diffraction measurement as in the case of Sample Nos. 1 and 4 using the rSiO 4 powder, it was confirmed that the crystal was composed of zircon (ZrSiO 4 ) crystals.

【0032】表1の結果によれば、ジルコンを表面被覆
層とする試料No.1、2、4、5の試料はいずれも、室
温と1000℃の間の繰返し熱疲労試験において、50
回でも亀裂の発生は無かったが、これに対して、ジルコ
ニアを表面被覆層とする試料No.3、6は少ない回数で
剥離または亀裂が発生し、熱疲労特性が低いものであっ
た。
According to the results shown in Table 1, the samples Nos. 1, 2, 4, and 5 having zircon as the surface coating layer were 50 times in the repeated thermal fatigue test between room temperature and 1000 ° C.
Although cracks did not occur even after repeated use, samples No. 3 and 6 having zirconia as the surface coating layer, on the other hand, suffered peeling or cracking a small number of times and had low thermal fatigue properties.

【0033】[0033]

【発明の効果】以上詳述したように、本発明によれば、
高温強度および耐酸化性に優れるとともに、室温と高温
の間の繰り返し熱疲労特性に優れた表面被覆層を有する
耐熱部材を提供できる。これにより、ガスタ−ビンなど
の熱機関などをはじめ、ボイラー用の加熱部材などの各
種耐熱部材への応用を拡大できる。
As described in detail above, according to the present invention,
It is possible to provide a heat-resistant member having a surface coating layer that is excellent in high-temperature strength and oxidation resistance and is also excellent in repeated thermal fatigue properties between room temperature and high temperature. As a result, it is possible to expand the application to various heat resistant members such as heating members for boilers as well as heat engines such as gas turbines.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素焼結体の表面にジルコン(ZrS
iO4 )を被覆したことを特徴とする表面被覆窒化珪素
質耐熱部材。
1. Zircon (ZrS) is formed on the surface of a silicon nitride sintered body.
A surface-coated silicon nitride heat-resistant member characterized by being coated with iO 4 ).
JP5327523A 1993-12-24 1993-12-24 Surface-coated silicon nitride heat-resistant member Expired - Fee Related JP2828583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327523A JP2828583B2 (en) 1993-12-24 1993-12-24 Surface-coated silicon nitride heat-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327523A JP2828583B2 (en) 1993-12-24 1993-12-24 Surface-coated silicon nitride heat-resistant member

Publications (2)

Publication Number Publication Date
JPH07187865A true JPH07187865A (en) 1995-07-25
JP2828583B2 JP2828583B2 (en) 1998-11-25

Family

ID=18200062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327523A Expired - Fee Related JP2828583B2 (en) 1993-12-24 1993-12-24 Surface-coated silicon nitride heat-resistant member

Country Status (1)

Country Link
JP (1) JP2828583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064836A1 (en) * 1999-04-26 2000-11-02 General Electric Company Ceramic with zircon coating
EP1506145A1 (en) * 2002-05-23 2005-02-16 Saint-Gobain Ceramics and Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064836A1 (en) * 1999-04-26 2000-11-02 General Electric Company Ceramic with zircon coating
JP2002543030A (en) * 1999-04-26 2002-12-17 ゼネラル・エレクトリック・カンパニイ Ceramic with zircon coating
KR100775819B1 (en) * 1999-04-26 2007-11-13 제너럴 일렉트릭 캄파니 Ceramic with zircon coating
EP1506145A1 (en) * 2002-05-23 2005-02-16 Saint-Gobain Ceramics and Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
EP1506145A4 (en) * 2002-05-23 2007-11-28 Saint Gobain Ceramics Zircon/zirconia mix for refractory coatings and inks
USRE40301E1 (en) 2002-05-23 2008-05-06 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks

Also Published As

Publication number Publication date
JP2828583B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3231950B2 (en) Surface coated silicon nitride material
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JPH07172958A (en) Surface-coated heat-resistant silicon nitride member
JP4069610B2 (en) Surface-coated silicon nitride sintered body
JP2004010381A (en) Surface-coated silicon nitride sintered compact
JP2691295B2 (en) Silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2001130983A (en) Silicon nitride sintered compact
JP2724768B2 (en) Silicon nitride sintered body and method for producing the same
JP2789133B2 (en) Silicon nitride sintered body and method for producing the same
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH11139877A (en) Heat insulating silicon nitride-base sintered compact and its production
JPH0840774A (en) Silicon nitride sintered product
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP3236733B2 (en) Silicon nitride sintered body
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JPH04243972A (en) Sintered substance of silicon nitride
JPH08259332A (en) Ceramic fiber-reinforced turbine blade and its production
JPH09183664A (en) Silicon nitride sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees