JPH11263667A - Silicon carbce sintered compact and its production - Google Patents

Silicon carbce sintered compact and its production

Info

Publication number
JPH11263667A
JPH11263667A JP10068008A JP6800898A JPH11263667A JP H11263667 A JPH11263667 A JP H11263667A JP 10068008 A JP10068008 A JP 10068008A JP 6800898 A JP6800898 A JP 6800898A JP H11263667 A JPH11263667 A JP H11263667A
Authority
JP
Japan
Prior art keywords
silicon carbide
aluminum
sintering
sintered compact
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10068008A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Shigeki Niwa
茂樹 丹羽
Yutaka Okada
裕 岡田
Tamotsu Wakita
保 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10068008A priority Critical patent/JPH11263667A/en
Publication of JPH11263667A publication Critical patent/JPH11263667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide sintered compact having a high density, excellent various properties of the silicon carbide sintered compact of its own, a low electric resistivity and higher versatile applicability and the producing method. SOLUTION: The silicon carbide sintered compact is a sintered compact composed of an α-silicon carbide containing 0.07-0.15 wt.% boron, 1.0-4.0 wt.% free carbon and 0.1-1.2 wt.% aluminum and has >=3.1 g/cm<3> bulk density and <=1×10<2> Ω.cm electric resistivity. And the producing method has a process for forming a composition prepared by adding and blending at least an organic compound capable of carbiding with boron carbide in a heat treating process as a sintering assistant and 0.1-1.2 wt.% high purity alumina having >=80 m<2> /g specific surface area as aluminum to α-silicon carbide powder and a sintering process for sintering the formed body at a temp. of 2000-2,200 deg.C under the atmospheric pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化ケイ素焼結体
およびその製造方法に係り、さらに詳しくは高密度で、
かつ電気抵抗率の低い炭化ケイ素焼結体およびその製造
方法に関する。
The present invention relates to a silicon carbide sintered body and a method for producing the same, and more particularly, to a high-density silicon carbide
The present invention also relates to a silicon carbide sintered body having a low electric resistivity and a method for producing the same.

【0002】[0002]

【従来の技術】炭化ケイ素焼結体は、耐熱性、耐酸化
性、耐食性、耐摩耗性および耐熱衝撃性などがすぐれて
いるため、たとえばガスタービン用部材、ボールミルの
内張、高温炉用の熱交換器や耐火材、ダイカスト機用ポ
ンプや燃焼管など高温用構造材料として注目されてい
る。また、高温用構造材料としの用途においては、炭化
ケイ素焼結体が緻密ないし高密度で、その製造も容易な
常圧焼結が望まれる。
2. Description of the Related Art Sintered silicon carbide has excellent heat resistance, oxidation resistance, corrosion resistance, abrasion resistance, thermal shock resistance, etc., and is used, for example, for gas turbine members, ball mill lining, and high temperature furnaces. Attention has been paid to high-temperature structural materials such as heat exchangers and refractory materials, pumps for die-casting machines and combustion tubes. In addition, for use as a high-temperature structural material, normal pressure sintering in which the silicon carbide sintered body is dense or dense and whose production is easy is desired.

【0003】ところで、炭化ケイ素の常圧焼結では、焼
結体の高密度化を図るため、主原料成分(炭化ケイ素粉
末)に、 (a)ホウ素ないしホウ素化合物および炭素ない
し炭素化合物、 (b)アルミニウム、アルミナ、窒化アル
ミニウムなどのアルミニウム系、 (c)ベリウム、酸化ベ
リウムなどのベリウム系、 (d)前記 (a), (b)あるいは
(c)に酸化イットリウム、酸化セシウム、酸化ユーロピ
ュームなどの希土類元素化合物を併用したものを、焼結
助剤として添加配合することが知られている(たとえば
特開昭 52-6716号公報、特開昭 55-116664号公報、特開
昭 57-156377号公報、特開昭60-33262号公報、特開昭61
-26566号公報など)。
[0003] In the normal pressure sintering of silicon carbide, in order to increase the density of the sintered body, (a) a boron or boron compound and a carbon or carbon compound; ) Aluminum, such as aluminum, alumina, aluminum nitride; (c) beryllium, such as beryllium and beryllium oxide; (d) the above (a), (b) or
It is known that a rare earth element compound such as yttrium oxide, cesium oxide, europium oxide or the like is used in combination with (c) as a sintering aid (see, for example, JP-A-52-6716, JP-A-55-116664, JP-A-57-156377, JP-A-60-33262, JP-A-61
-26566).

【0004】より具体的に挙げると、 (a)ホウ素ないし
ホウ素化合物および炭素ないし炭素化合物を焼結助剤と
した場合、軽量、高硬度で、室温〜1400℃の温度領域に
おいて曲げ強さがほぼ一定の炭化ケイ素の常圧焼結体が
得られるため、幅広い温度範囲内での使用が可能であ
る。また、 (b)アルミニウム、アルミナ、窒化アルミニ
ウムなどのアルミニウム系を焼結助剤とした場合は、前
記 (a)の場合に比べて、室温での曲げ強さが高く、かつ
低温での焼結も可能になる。
More specifically, (a) when boron or a boron compound and carbon or a carbon compound are used as sintering aids, they are lightweight, have high hardness, and have a bending strength of approximately from room temperature to 1400 ° C. Since a constant pressure sintered body of silicon carbide is obtained, it can be used in a wide temperature range. (B) When aluminum is used as a sintering aid, such as aluminum, alumina, and aluminum nitride, the bending strength at room temperature is higher and the sintering at lower temperature is higher than in the case of (a). Also becomes possible.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記焼結助剤
を使用する炭化ケイ素焼結体の場合は、なお、特性的に
十分満足し得るものといえない。すなわち、炭化ケイ素
焼結体は、その用途の拡大に伴って、常圧焼結が容易
で、すぐれた耐熱性や機械的特性などを有するだけでな
く、高純度で、摺動などによる静電対策(低電気抵抗率
化)なども要望されているが、前記焼結助剤を使用する
常圧焼結には、次のような不都合が認められる。
However, in the case of a silicon carbide sintered body using the above sintering aid, it cannot be said that the characteristics can be sufficiently satisfied. In other words, the silicon carbide sintered body is not only easily sinterable at normal pressure and has excellent heat resistance and mechanical properties, etc., but also has a high purity and an electrostatic property by sliding etc. Countermeasures (low electrical resistivity) are also demanded, but the following disadvantages are recognized in normal pressure sintering using the sintering aid.

【0006】(a)の場合は、他の焼結助剤を使用した場
合に比べて容易に、高密度の炭化ケイ素焼結体が得られ
る。しかしながら、その炭化ケイ素焼結体は、一般に、
靭性が低下するため、衝撃が加わる用途に適さないし、
また、電気抵抗率が105 〜107 Ω・cmと高いため、摺動
部材としての利用などにおいて、静電気を帯び易いなど
の不都合がある。
In the case of (a), a high-density silicon carbide sintered body can be easily obtained as compared with the case where another sintering aid is used. However, the silicon carbide sintered body is generally
Because toughness decreases, it is not suitable for applications where impact is applied,
In addition, since the electric resistivity is as high as 10 5 to 10 7 Ω · cm, there is a disadvantage that the sheet is easily charged with static electricity when used as a sliding member.

【0007】(b)の場合は、各種のアルミニウム化合物
および有機炭素化合物を、アルミニウム換算、炭素換算
で、それぞれ多い場合 8〜15重量%添加配合するため、
一般的に、コストアップとなる。しかも、前記 (a)の場
合に比べて、炭化ケイ素焼結体の機械的特性も大幅に低
下するので、構造材料としての用途が制約される。
In the case of (b), various aluminum compounds and organic carbon compounds are added and blended in an amount of 8 to 15% by weight in terms of aluminum and carbon, respectively.
Generally, the cost increases. In addition, the mechanical properties of the silicon carbide sintered body are significantly reduced as compared with the case (a), so that the use as a structural material is restricted.

【0008】(c)の場合は、焼結助剤としてのベリウム
の使用が公害上問題になるだけでなく、前記 (a)の場合
に比べて炭化ケイ素焼結体の高密度化が困難であり、機
械的特性が劣るので、構造材料としての用途が制約され
る。また、電気抵抗率が109〜1013Ω・cmと大きいた
め、摺動部材としての利用などにおいて、静電気を帯び
易いなどの不都合がある。
In the case of (c), the use of beryllium as a sintering aid not only poses a problem in terms of pollution, but also makes it difficult to increase the density of the silicon carbide sintered body as compared with the case of (a). In addition, the mechanical properties are inferior, so that the use as a structural material is restricted. In addition, since the electrical resistivity is as large as 10 9 to 10 13 Ω · cm, there is a disadvantage that it is easily charged with static electricity when used as a sliding member.

【0009】ここで、高純度、電気的な低抵抗性などを
備えていると、一般的な摺動用部材の他に、たとえば半
導体露光装置用ステージなどの精密機械部品、液体輸送
用ピストンシリンダー、シリコンウエーハ移載用フォー
ク(静電気によるダストの付着防止)、 EBM用セラミッ
クス部材、 CVD装置用ササプターなどに利用できる。本
発明は、上記事情に対処してなされたもので、高密度
で、かつ炭化ケイ素焼結体本来のすぐれた各種特性を有
するとともに、電気抵抗率も低く、より汎用性の高い炭
化ケイ素焼結体、およびその製造方法の提供を目的とす
る。
Here, if high purity and low electric resistance are provided, precision mechanical parts such as a stage for a semiconductor exposure apparatus, a piston cylinder for liquid transport, It can be used for silicon wafer transfer forks (prevention of dust adhesion due to static electricity), ceramic materials for EBM, susceptors for CVD equipment, etc. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a high density, and has various excellent characteristics inherent to a silicon carbide sintered body, a low electric resistivity, and a more versatile silicon carbide sintered body. It is intended to provide a body and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、0.07
〜0.15重量%のホウ素、 1.0〜 4.0重量%の遊離炭素、
0.1〜 1.2重量%のアルミニウムを含むα−炭化ケイ素
より成る焼結体で、かつ嵩密度 3.1g/cm3 以上、電気抵
抗率 1×102 Ω・cm以下であることを特徴とする炭化ケ
イ素焼結体である。
Means for Solving the Problems The invention of claim 1 is 0.07
~ 0.15 wt% boron, 1.0-4.0 wt% free carbon,
A sintered body made of α-silicon carbide containing 0.1 to 1.2% by weight of aluminum and having a bulk density of 3.1 g / cm 3 or more and an electric resistivity of 1 × 10 2 Ω · cm or less It is a sintered body.

【0011】請求項2の発明は、α−炭化ケイ素質粉末
に、焼結補助剤として炭化ホウ素、熱処理過程で炭素化
が可能な有機物、およびアルミニウムとして 0.1〜 1.2
重量%相当量の比表面積が 80m2 /g以上の高純度酸化ア
ルミニウムを少なくとも添加配合して成る組成物を成形
する工程と、前記成形体を2000〜2200℃の温度で常圧焼
結する工程と、を有することを特徴とする炭化ケイ素焼
結体の製造方法である。
[0011] The invention of claim 2 is that the α-silicon carbide powder contains boron carbide as a sintering aid, an organic substance which can be carbonized in a heat treatment process, and 0.1 to 1.2 as aluminum.
A step of forming a wt% a specific surface area of substantial amounts formed by at least added to and blended with high purity aluminum oxide or 80 m 2 / g composition, the step of pressureless sintering the green body at a temperature of 2,000 to 2,200 ° C. And a method for producing a silicon carbide sintered body.

【0012】上記請求項1の発明において、焼結助剤成
分であるホウ素の組成比が0.07〜0.15重量%、炭素の組
成比が 1.0〜 4.0重量%、アルミニウムの組成比が 0.1
〜 1.2重量%と、それぞれ選択されるのは、次のような
理由による。
In the above invention, the composition ratio of boron, which is a sintering aid component, is 0.07 to 0.15% by weight, the composition ratio of carbon is 1.0 to 4.0% by weight, and the composition ratio of aluminum is 0.1 to 0.1%.
The choice of ~ 1.2% by weight is based on the following reasons.

【0013】すなわち、ホウ素の組成比が0.07〜0.15重
量%の範囲外では、焼結助剤として添加配合効果が少な
く、結果的に、強度や硬度など機械的特性のすぐれた焼
結体として機能しないからである。また、炭素の組成比
が 1.0〜 4.0重量%の範囲外でも、ホウ素の場合と同様
に、焼結助剤として添加配合効果が少なく、結果的に、
強度や硬度など機械的特性のすぐれた焼結体として機能
しない。
That is, when the composition ratio of boron is out of the range of 0.07 to 0.15% by weight, the effect of addition and blending as a sintering aid is small, and as a result, it functions as a sintered body having excellent mechanical properties such as strength and hardness. Because it does not. Further, even when the composition ratio of carbon is out of the range of 1.0 to 4.0% by weight, as in the case of boron, the effect of addition and blending as a sintering aid is small, and as a result,
Does not function as a sintered body with excellent mechanical properties such as strength and hardness.

【0014】さらに、アルミニウムの場合、その組成比
が 0.1重量%未満では、電気抵抗率が103 Ω・cm以上に
なるだけでなく、抵抗値のバラツキが生じたりし、結果
的に、低抵抗化が図れない。また、 1.2重量%を超える
と、焼結体内に多くの気孔が生成し易い傾向が認められ
るためである。つまり、摺動などに伴う静電気の発生に
よる摩耗粉やダストの吸着などを防止できる機能が得ら
れなかったり、あるいは強度や硬度など機械的特性が損
なわれるため、前記範囲内で選択される。
Further, in the case of aluminum, if its composition ratio is less than 0.1% by weight, not only does the electrical resistivity become 10 3 Ω · cm or more, but also the resistance value varies, and as a result, low resistance is obtained. Can not be achieved. On the other hand, when the content exceeds 1.2% by weight, a tendency that many pores are easily generated in the sintered body is recognized. That is, a function of preventing adsorption of abrasion powder or dust due to generation of static electricity due to sliding or the like cannot be obtained, or mechanical properties such as strength and hardness are impaired.

【0015】本発明において、上記ホウ素、アルミニウ
ムは、一般的に、α−炭化ケイ素に固溶している。すな
わち、ホウ素はα−炭化ケイ素の Cサイトに、また、ア
ルミニウムはα−炭化ケイ素のSiサイトに、それぞれ置
換固溶している。
In the present invention, the above-mentioned boron and aluminum are generally dissolved in α-silicon carbide. That is, boron is dissolved in the C site of α-silicon carbide, and aluminum is dissolved in the Si site of α-silicon carbide.

【0016】請求項2の発明において、炭化ケイ素質粉
末に添加配合する焼結助剤のうち、ホウ素成分や炭素成
分は、ホウ素粉末、炭素粉末などでもよいが、たとえば
炭化ホウ素などの化合物粉末、あるいは熱分解する有機
化合物であってもよい。一方、酸化アルミニウム成分
は、99%程度以上の純度であり、かつ比表面積が 80m2/
g以上の微粒子からなるものが選ばれる。その理由は、
高純度で、かつ微粉末でないと、所要の低抵抗化が図ら
れないからである。
In the second aspect of the present invention, the boron component and the carbon component of the sintering aid to be added to and mixed with the silicon carbide powder may be a boron powder or a carbon powder. Alternatively, it may be an organic compound that decomposes thermally. On the other hand, the aluminum oxide component has a purity of about 99% or more and a specific surface area of 80 m 2 /
Those composed of fine particles of g or more are selected. The reason is,
This is because the required low resistance cannot be achieved unless the powder has high purity and fine powder.

【0017】すなわち、炭化ケイ素焼結体の低抵抗化
は、炭化ケイ素の結晶格子中に、添加した酸化アルミニ
ウム中のアルミニウムがほぼ均一に置換固溶することに
よるが、比表面積が 80m2 /g未満の場合は、炭化ケイ素
の結晶粒界に偏析し易くなるためである。ここで、酸化
アルミニウムは、気相合成法で作られた高純度酸化アル
ミニウム微粒子が好ましい。さらに、前記高純度酸化ア
ルミニウム微粒子の代りに、比表面積のより大きいアル
ミナゾル(たとえばアルミナゾル 100、アルミナゾル 2
00など:日産化学社製)を使用することもできる。な
お、これら焼結助剤の添加配合に当たっては、ホウ素粉
末、炭素粉末などが焼結工程において揮散され、その成
分比が変化する恐れがあるので、この点を踏まえて対応
することが望ましい。
That is, the lowering of the resistance of the silicon carbide sintered body is due to the fact that the aluminum in the added aluminum oxide substantially uniformly displaces and forms a solid solution in the crystal lattice of silicon carbide, but the specific surface area is 80 m 2 / g. If it is less than 1, it is easy to segregate at the crystal grain boundaries of silicon carbide. Here, the aluminum oxide is preferably high-purity aluminum oxide fine particles produced by a gas phase synthesis method. Further, instead of the high-purity aluminum oxide fine particles, an alumina sol having a larger specific surface area (for example, alumina sol 100, alumina sol 2
00 etc .: manufactured by Nissan Chemical Industries, Ltd.). In addition, when adding and mixing these sintering aids, boron powder, carbon powder, and the like are volatilized in the sintering step, and there is a possibility that the component ratio may change.

【0018】請求項2の発明において、嵩密度 3.1g/cm
3 以上、電気抵抗率 1×102 Ω・cm以下のα−炭化ケイ
素を製造するに当たって、常圧焼結は、一般的に、非酸
化雰囲気中もしくは不活性雰囲気中で行われるが、2000
〜2200℃の温度範囲が選ばれる。その理由は、焼結温度
が2000℃未満では、緻密な焼結体を得ることが困難でで
あり、また、2200℃を超えると、酸化アルミニウム成分
の急激な揮散を招き易いので、結果的に、焼結体中に多
くの気孔が生成し、硬度や強度などの機械的特性が損な
われるからである。
According to the second aspect of the present invention, the bulk density is 3.1 g / cm.
In producing α-silicon carbide having a resistivity of 3 or more and an electrical resistivity of 1 × 10 2 Ωcm or less, normal pressure sintering is generally performed in a non-oxidizing atmosphere or an inert atmosphere.
A temperature range of ~ 2200 ° C is chosen. The reason is that if the sintering temperature is less than 2000 ° C., it is difficult to obtain a dense sintered body, and if it exceeds 2200 ° C., rapid volatilization of the aluminum oxide component is likely to occur, and as a result, This is because many pores are generated in the sintered body, and mechanical properties such as hardness and strength are impaired.

【0019】[0019]

【発明の実施の形態】実施例1〜6,比較例1〜6 市販の純度99%、比表面積 15m2 /gの炭化ケイ素粉末
に、焼結助剤として平均粒径約 2.5μm の炭化ホウ素
( B4 C )0.20重量%、熱分解後の炭素残量が約50重量
%のレゾール型フェノール樹脂 7.0重量%、さらに、表
1に示すように、比表面積の異なる高純度(99.5%)酸
化アルミニウム微粉末を所定量添加した。その後、それ
ぞれエチルアルコールを加え、24時間、湿式粉砕混合し
てスラリーを調製し、これらのスラリーをスプレードラ
イヤーによって造粒した。
BEST MODE FOR CARRYING OUT THE INVENTION Examples 1 to 6 and Comparative Examples 1 to 6 A commercially available silicon carbide powder having a purity of 99% and a specific surface area of 15 m 2 / g was added as a sintering aid to boron carbide having an average particle diameter of about 2.5 μm. (B 4 C) 0.20 wt%, the carbon remaining after pyrolysis about 50 weight percent of the resole phenolic resin 7.0 wt%, further, as shown in Table 1, high purity (99.5%) with different specific surface area oxide A predetermined amount of aluminum fine powder was added. Thereafter, ethyl alcohol was added thereto, and wet-pulverized and mixed for 24 hours to prepare slurries, and these slurries were granulated by a spray drier.

【0020】[0020]

【表1】 次に、これらの造粒粉をそれぞれ金型に充填して、30 M
Paの成型圧で一次成形した後、さらに、 196 MPaで CIP
成形を行って、約50×50×15mmの成形体を得た。これら
の成形体を、それぞれのカーボンケースに充填し、室温
から1200℃までは真空中で(フェノール樹脂の熱分解を
考慮)、その後は、アルゴン雰囲気に切り替え、1900〜
2250℃まで昇温させ、それぞれ 1時間保持して焼結を行
い、実施例1〜6の試料および比較例1〜6の試料とし
て全数12種の炭化ケイ素焼結体を得た。
[Table 1] Next, each of these granulated powders was filled in a mold, and 30 M
After primary molding with Pa molding pressure, CIP at 196 MPa
The molding was performed to obtain a molded body of about 50 × 50 × 15 mm. Each of these compacts is filled in a carbon case, and the temperature is changed from room temperature to 1200 ° C. in a vacuum (considering the thermal decomposition of phenol resin).
The temperature was raised to 2250 ° C., and each was held for 1 hour to perform sintering. As a result, a total of 12 types of silicon carbide sintered bodies were obtained as the samples of Examples 1 to 6 and Comparative Examples 1 to 6.

【0021】上記で得た各炭化ケイ素焼結体について、
嵩密度(アルキメデス法,試料2個の平均値)、室温曲
げ強度( JIS R1601に準拠,試料10個の平均値)、ビッ
カース硬さ( JIS R1610に準拠,試料10個の平均値)、
電気抵抗率( 4端子法, 2端子法,試料2個の平均
値)、焼結体中のアルミニウム量( ICP法)をそれぞれ
測定・評価した結果を表1に併せて示す。なお、比較例
1の試料において検出されたアルミニウム量は、炭化ケ
イ素粉末に不純物として含有されていたものである。
また、上記炭化ケイ素焼結体中、実施例1,2の試料お
よび比較例1,2の試料について、温度25℃,相対湿度
40%のクリーンボックス中、各試料ごとに、焼結体同士
を2 時間往復摺動(ストローク40mm)させ、発生する静
電気が逃げないように工夫し、その摺動直後における摩
擦帯電位をそれぞれ測定したところ、実施例1および2
の各試料は±10 Vであったが、比較例1の試料は+220
V,比較例2の試料は+85V であった。なお、他の実施
例に係る炭化ケイ素焼結体の場合も、同様に、いずれも
帯電電位が低かった。
For each of the silicon carbide sintered bodies obtained above,
Bulk density (Archimedes method, average value of two samples), room temperature flexural strength (conforms to JIS R1601, average value of 10 samples), Vickers hardness (conforms to JIS R1610, average value of 10 samples),
Table 1 also shows the results of measuring and evaluating the electrical resistivity (the four-terminal method, the two-terminal method, the average value of two samples) and the amount of aluminum in the sintered body (ICP method). In addition, the amount of aluminum detected in the sample of Comparative Example 1 was included in the silicon carbide powder as an impurity.
In the silicon carbide sintered body, the temperature of 25 ° C. and the relative humidity of the samples of Examples 1 and 2 and the samples of Comparative Examples 1 and 2 were measured.
In a 40% clean box, for each sample, the sintered bodies are slid back and forth (stroke 40 mm) for 2 hours to avoid the static electricity generated and measure the triboelectric potential immediately after the sliding. As a result, Examples 1 and 2
Each sample of ± 1 V was ± 10 V, while the sample of Comparative Example 1 was +220 V.
V, the sample of Comparative Example 2 was + 85V. In addition, similarly, in the case of the silicon carbide sintered bodies according to the other examples, similarly, the charging potential was low.

【0022】実施例7〜11,比較例7〜11 市販の純度99%、比表面積 15m2 /gの炭化ケイ素粉末
に、焼結助剤として平均粒径約 5μm の炭化ホウ素( B
4 C ) 0.1〜 1.5重量%、熱分解後の炭素残量が約50重
量%のレゾール型フェノール樹脂 6〜10重量%、さら
に、比表面積 100 m2 /gの高純度(99.5%)酸化アルミ
ニウム微粉末 0〜 3.0重量%を所定量添加した。その
後、それぞれエチルアルコールを加え、24時間、湿式粉
砕混合してスラリーを調製し、これらのスラリーをスプ
レードライヤーによって造粒した。
Examples 7 to 11, Comparative Examples 7 to 11 A commercially available silicon carbide powder having a purity of 99% and a specific surface area of 15 m 2 / g was mixed with boron carbide (B) having an average particle size of about 5 μm as a sintering aid.
4 C) 0.1 to 1.5 wt%, the carbon remaining after pyrolysis about 50 weight percent of the resole phenolic resin 6-10 wt%, further, high purity (99.5% of the specific surface area of 100 m 2 / g) alumina A predetermined amount of 0 to 3.0% by weight of fine powder was added. Thereafter, ethyl alcohol was added thereto, and wet-pulverized and mixed for 24 hours to prepare slurries, and these slurries were granulated by a spray drier.

【0023】次に、これらの造粒をそれぞれ金型に充填
して、30 MPaの成型圧で一次成形した後、さらに、 147
MPaで CIP成形を行って、約70×45×15mmの成形体を得
た。これらの成形体を、それぞれのカーボンケースに充
填し、室温から1200℃までは真空中で(フェノール樹脂
の熱分解を考慮)、その後は、アルゴン雰囲気に切り替
え、2000〜2200℃まで昇温させ、それぞれ 1時間保持し
て焼結を行い、実施例7〜11の試料および比較例7〜11
の試料として全数10種の炭化ケイ素焼結体を得た。
Next, each of these granules was filled in a mold and subjected to primary molding at a molding pressure of 30 MPa.
CIP molding was performed at MPa to obtain a molded body of about 70 × 45 × 15 mm. Each of these molded bodies is filled in a carbon case, and vacuum is applied from room temperature to 1200 ° C. (considering the thermal decomposition of phenol resin), and thereafter, the atmosphere is switched to an argon atmosphere, and the temperature is raised to 2000 to 2200 ° C. Sintering was carried out by holding each for 1 hour, and the samples of Examples 7 to 11 and Comparative Examples 7 to 11
A total of ten types of silicon carbide sintered bodies were obtained as the samples of.

【0024】上記で得た炭化ケイ素焼結体について、嵩
密度(アルキメデス法,試料2個の平均値)、室温曲げ
強度( JIS R1601に準拠,試料10個の平均値)、ビッカ
ース硬さ( JIS R1610に準拠,試料10個の平均値)、電
気抵抗率( 4端子法, 2端子法,試料2個の平均値)、
焼結体中のホウ素、炭素、アルミニウム量( ICP法)を
それぞれ測定・評価した結果を表2に示す。なお、比較
例7,8の試料において検出されたアルミニウム量は、
炭化ケイ素粉末に不純物として含有されていたものであ
る。
For the silicon carbide sintered body obtained above, the bulk density (Archimedes method, average value of two samples), room temperature bending strength (according to JIS R1601, average value of 10 samples), Vickers hardness (JIS) Based on R1610, average value of 10 samples), electrical resistivity (4 terminal method, 2 terminal method, average value of 2 samples),
Table 2 shows the results of measuring and evaluating the amounts of boron, carbon, and aluminum (ICP method) in the sintered body. The amount of aluminum detected in the samples of Comparative Examples 7 and 8 was
It was contained in silicon carbide powder as an impurity.

【0025】[0025]

【表2】 また、上記炭化ケイ素焼結体中、実施例7,8の試料お
よび比較例7,8の試料について、温度25℃,相対湿度
40%のクリーンボックス中、各試料ごとに、焼結体同士
を10,000回往復摺動(ストローク40mm)させ、発生する
静電気が逃げないように工夫し、その摺動直後における
摩擦帯電位をそれぞれ測定したところ、実施例7の試料
は±11 V、実施例8の試料は± 8 Vであったが、比較例
7の試料は+265V,比較例8の試料は+245Vであった。
なお、他の実施例に係る炭化ケイ素焼結体の場合も、同
様に、いずれも帯電電位が低かった。
[Table 2] In the silicon carbide sintered body, the samples of Examples 7 and 8 and the samples of Comparative Examples 7 and 8 were subjected to a temperature of 25 ° C. and a relative humidity of 25%.
In a 40% clean box, the sintered compacts are reciprocated 10,000 times (stroke 40mm) between each sintered body for each sample, devising so that static electricity generated does not escape, and measuring the triboelectric potential immediately after the sliding. As a result, the sample of Example 7 was ± 11 V and the sample of Example 8 was ± 8 V, but the sample of Comparative Example 7 was +265 V and the sample of Comparative Example 8 was +245 V.
In addition, similarly, in the case of the silicon carbide sintered bodies according to the other examples, similarly, the charging potential was low.

【0026】なお、本発明は上記例示に限定されるもの
でなく、発明の趣旨を逸脱しない範囲でいろいろの変形
を採ることができる。たとえば炭化ケイ素質粉末成分や
焼結助剤の組成、平均粒径、およびそれら主成分と焼結
助剤の組成比なども用途に応じて、適宜選択・調整する
ことができる。
The present invention is not limited to the above-described example, and various modifications can be made without departing from the spirit of the invention. For example, the composition and average particle size of the silicon carbide powder component and the sintering aid, and the composition ratio of the main component to the sintering aid can be appropriately selected and adjusted according to the application.

【0027】[0027]

【発明の効果】請求項1の発明によれば、従来の炭化ケ
イ素焼結体に匹敵する耐熱性、耐食性耐熱衝撃性、機械
的強度などを有するだけでなく、摩擦帯電などを容易に
回避できる電気的な低抵抗率を有する。したがって、良
好な耐摩耗性を摺動部材として利用する場合でも、静電
気による摩耗粉やダスト吸着なども容易に防止できるの
で、耐久性および安全性の高い摺動部材が提供されるこ
とになる。
According to the first aspect of the present invention, it is possible to not only have heat resistance, corrosion resistance, thermal shock resistance, mechanical strength, etc. comparable to the conventional silicon carbide sintered body, but also to easily avoid frictional charging and the like. It has an electrical low resistivity. Therefore, even when good wear resistance is used as the sliding member, abrasion powder and dust adsorption due to static electricity can be easily prevented, and a sliding member having high durability and safety can be provided.

【0028】請求項2の発明によれば、実用上望まれる
耐久性のすぐれた高温構造用材料としてだけでなく、電
気伝導性ないし摺動摩擦に伴って発生する静電気の除去
など容易に行えるので、実用性がさらに高められた炭化
ケイ素焼結体が提供される。
According to the second aspect of the present invention, not only a material for a high-temperature structure having excellent durability which is practically desired, but also it is possible to easily remove static electricity generated due to electric conductivity or sliding friction. Provided is a silicon carbide sintered body having further improved practicality.

【0029】[0029]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇田 保 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tamotsu Wakita 1 Minami Fuji, Ogakie-cho, Kariya-shi, Aichi Prefecture Toshiba Ceramics Co., Ltd. Kariya Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.07〜0.15重量%のホウ素、 1.0〜 4.0
重量%の遊離炭素、0.1〜 1.2重量%のアルミニウムを
含むα−炭化ケイ素より成る焼結体で、かつ嵩密度 3.1
g/cm3 以上、電気抵抗率 1×102 Ω・cm以下であること
を特徴とする炭化ケイ素焼結体。
1. A method according to claim 1, wherein 0.07 to 0.15% by weight of boron, 1.0 to 4.0%.
A sintered body composed of α-silicon carbide containing 0.1% by weight of free carbon and 0.1% to 1.2% by weight of aluminum, and having a bulk density of 3.1
g / cm 3 or more and an electrical resistivity of 1 × 10 2 Ω · cm or less.
【請求項2】 α−炭化ケイ素質粉末に、焼結助剤とし
て炭化ホウ素、熱処理過程で炭化が可能な有機物、およ
びアルミニウムとして 0.1〜 1.2重量%相当量の比表面
積が 80m2 /g以上の高純度酸化アルミニウムを少なくと
も添加配合して成る組成物を成形する工程と、 前記成形体を2000〜2200℃の温度で常圧焼結する工程
と、を有することを特徴とする炭化ケイ素焼結体の製造
方法。
2. An α-silicon carbide powder containing boron carbide as a sintering aid, an organic substance capable of being carbonized in a heat treatment process, and 0.1 to 1.2% by weight of aluminum having a specific surface area of 80 m 2 / g or more. A step of molding a composition comprising at least high-purity aluminum oxide, and a step of normal-pressure sintering the molded body at a temperature of 2000 to 2200 ° C. Manufacturing method.
JP10068008A 1998-03-18 1998-03-18 Silicon carbce sintered compact and its production Pending JPH11263667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10068008A JPH11263667A (en) 1998-03-18 1998-03-18 Silicon carbce sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10068008A JPH11263667A (en) 1998-03-18 1998-03-18 Silicon carbce sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH11263667A true JPH11263667A (en) 1999-09-28

Family

ID=13361409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10068008A Pending JPH11263667A (en) 1998-03-18 1998-03-18 Silicon carbce sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH11263667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089862A (en) * 2013-11-06 2015-05-11 東海高熱工業株式会社 NORMAL PRESSURE SINTERED SiC CERAMIC HAVING LOW ELECTRIC RESISTANCE
KR102234171B1 (en) * 2019-12-31 2021-03-31 (주)삼양컴텍 Manufacturing method of low-resistance silicon carbide composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089862A (en) * 2013-11-06 2015-05-11 東海高熱工業株式会社 NORMAL PRESSURE SINTERED SiC CERAMIC HAVING LOW ELECTRIC RESISTANCE
KR102234171B1 (en) * 2019-12-31 2021-03-31 (주)삼양컴텍 Manufacturing method of low-resistance silicon carbide composite

Similar Documents

Publication Publication Date Title
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
JPH02145484A (en) Sintered silicon nitride
JP2829229B2 (en) Silicon nitride ceramic sintered body
WO2019077318A1 (en) Refractory material
JP5430389B2 (en) Non-contact type seal ring and shaft seal device using the same
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP4845112B2 (en) AlN-SiC-TiB2 composite sintered body manufacturing method
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
JPH11263667A (en) Silicon carbce sintered compact and its production
JP5077937B2 (en) Method for producing sintered silicon carbide
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JPH059055A (en) Ceramics-carbon system composite material, its manufacture and sliding component
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JP3339644B2 (en) Method for producing silicon carbide-carbon composite material
JP3339645B2 (en) Method for producing silicon carbide-carbon composite material
JP2008273752A (en) Boron carbide-based sintered compact and protective member
JP3121996B2 (en) Alumina sintered body
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2003201178A (en) Method of producing carbide sintered compact and carbide sintered compact
JP2005335992A (en) Method of manufacturing aluminum nitride sintered compact
JP3048687B2 (en) Method for producing silicon carbide-carbon composite material and sliding component
JP2006347806A (en) High rigidity ceramic material, and method for producing the same
JP3944871B2 (en) Carbon-containing ceramic sintered body
JPH09165264A (en) Silicon nitride sintetred product and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227