JPH0269972A - Semiconductor integrated device - Google Patents

Semiconductor integrated device

Info

Publication number
JPH0269972A
JPH0269972A JP63221925A JP22192588A JPH0269972A JP H0269972 A JPH0269972 A JP H0269972A JP 63221925 A JP63221925 A JP 63221925A JP 22192588 A JP22192588 A JP 22192588A JP H0269972 A JPH0269972 A JP H0269972A
Authority
JP
Japan
Prior art keywords
elements
same
dummy
circuit
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63221925A
Other languages
Japanese (ja)
Other versions
JP3028420B2 (en
Inventor
Yasushige Furuya
安成 降矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63221925A priority Critical patent/JP3028420B2/en
Publication of JPH0269972A publication Critical patent/JPH0269972A/en
Application granted granted Critical
Publication of JP3028420B2 publication Critical patent/JP3028420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make the electric characteristic of elements uniform and improve the performance of a circuit by installing dummy resister elements of the same structure as a resistor element group installed on a semiconductor substrate. CONSTITUTION:Resistor elements 21-26 of a resistance value R are arranged in the same direction and at the same intervals. The elements 21-23 are connected with each other in parallel and the element 24 is used independently. The elements 25 and 26 connected to no other element act as dummy resistors. A stopper 29 is arranged around all the elements 21-26 to stable the position of a substrate. Thereby the electric characteristic of the elements is made uniform to improve the accuracy of a circuit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高精度のアナログ回路を有する半導体集積装置
上の素子の配置方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of arranging elements on a semiconductor integrated device having a highly accurate analog circuit.

[従来の技術] D/A変換回路、A/D変換回路等アナログ回路の中で
オペアンプと抵抗素子・容量素子等のイこの時入力イン
ピーダンス43 (Z、)や帰還インピーダンス44 
(Z2)は抵抗素子・容量素子などが用いられるが例え
ば抵抗素子を用いて3倍の増幅回路を構成する場合、 Z2=R Z、=R/3  (3本並列に接続する)として全く同
一構造の抵抗素子4本を用意する。
[Prior art] In analog circuits such as D/A conversion circuits and A/D conversion circuits, input impedance 43 (Z, ) and feedback impedance 44 of operational amplifiers, resistive elements, capacitive elements, etc.
For (Z2), a resistive element, a capacitive element, etc. are used, but for example, when constructing a triple amplifier circuit using a resistive element, Z2 = R Z, = R / 3 (3 connected in parallel), which is exactly the same. Prepare four resistive elements of the structure.

半導体集積回路上に実現する場合、ある基本長の抵抗素
子に対し%の長さの抵抗素子を用いて、抵抗値を%にそ
ろえることは難しい。そこで第2図の様に同一構造で同
一間隔で同一方向に配置された素子を並列接続すること
によって正確な抵抗比を実現しようとしていた。
When implemented on a semiconductor integrated circuit, it is difficult to make the resistance values equal to % by using a resistor element whose length is % of a resistor element having a certain basic length. Therefore, as shown in FIG. 2, an attempt was made to realize an accurate resistance ratio by connecting in parallel elements having the same structure and arranged at the same spacing and in the same direction.

[発明が解決しようとする課題] しかし第2図の様な配置方法をしても素子31.34の
様に別の端に配置された素子は、隣接しているトランジ
スタ37や、別電源系のウェル38等周辺回路の影響に
より素子31.34と素子32.33の電気的特性に差
が生じ正確な抵抗比を得にくいという問題点を有してい
た。
[Problems to be Solved by the Invention] However, even if the arrangement method shown in FIG. Due to the influence of peripheral circuits such as the well 38, there is a difference in the electrical characteristics of the elements 31, 34 and 32, 33, resulting in a problem that it is difficult to obtain an accurate resistance ratio.

そこで本発明は上記問題点を簡単な付加操作で素子の電
気的特性を同じくして、より精度の高いアナログ回路を
実現することを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems by making the electrical characteristics of elements the same through simple additional operations and realizing a more accurate analog circuit.

[課題を解決するための手段] 上記問題点を解決する為、本発明の半導体集積装置は、
半導体基板上に同一もしくは類似構造で同一サイズの複
数の抵抗素子を一定の規則で配置した抵抗素子群に対し
、配列の少なくとも片端に前記抵抗素子群の配列規則と
同一の規則で同一もしくは類似構造で同一サイズのダミ
ー抵抗素子を設けたことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the semiconductor integrated device of the present invention has the following features:
For a resistive element group in which a plurality of resistive elements having the same or similar structure and the same size are arranged in a certain order on a semiconductor substrate, at least one end of the array is provided with the same or similar structure with the same rule as the arrangement rule of the resistive element group. The feature is that dummy resistance elements of the same size are provided.

[作 用] 抵抗、容量素子等の受動素子の電気的特性を等しくする
目的で、同一規則の配列に配置しても、パターンが格子
状に並んでいるためウェハーを露光する時の光の回折現
象により配列の中と外側ではレジストの感光具合が異な
る、又製造工程中のエツチングの進み具合がやはり配列
の中と外側で異なるなどの原因により、配列の端に位置
する受動素子は電気的特性に異が生じる。そこで配列の
端に実際には回路上で使用しないダミー素子を設けてお
くことにより、上記問題点を回避できる。
[Function] In order to equalize the electrical characteristics of passive elements such as resistors and capacitors, even if they are arranged in the same regular arrangement, the patterns are arranged in a grid pattern, which causes diffraction of light when exposing the wafer. Due to phenomena such as the photosensitivity of the resist being different between the inside and outside of the array, and the progress of etching during the manufacturing process also being different between the inside and outside of the array, the electrical characteristics of passive elements located at the ends of the array may vary. There will be a difference. Therefore, the above problem can be avoided by providing dummy elements that are not actually used on the circuit at the ends of the array.

[実 施 例] 本発明の実施例を第1図をもとに説明する。[Example] An embodiment of the present invention will be explained based on FIG.

素子21〜26は同じ構造同じサイズを持った拡散抵抗
素子で、全て同じ方向、同じ間隔(距離L)で配置され
ており、抵抗値はRである。素子21.22.23は3
本並列接続され、Z、(=R/3)として動作する。素
子24は1本で使用されZ2  (=R)として動作す
る。素子25.26は抵抗値Rであるが、他の素子と接
続はされずダミー抵抗として動作する。ただし他の抵抗
素子と同じ位置にコンタクトは設けておく。さらに基板
電位を安定させる為、ストッパー29を全ての抵抗素子
の周辺へ全ての抵抗素子から同じ距離になる様に配置し
ておく。
The elements 21 to 26 are diffused resistance elements having the same structure and the same size, and are all arranged in the same direction and at the same interval (distance L), and have a resistance value R. Elements 21, 22, 23 are 3
This is connected in parallel and operates as Z, (=R/3). One element 24 is used and operates as Z2 (=R). Although the elements 25 and 26 have a resistance value R, they are not connected to other elements and operate as dummy resistors. However, the contacts are provided at the same position as other resistance elements. Furthermore, in order to stabilize the substrate potential, stoppers 29 are arranged around all the resistive elements so as to be at the same distance from all the resistive elements.

この様な配置方法により増幅回路を構成すると第3図に
おいて、入力電圧41 (V IN)と出力電圧42 
(Vout )の関係は、 となる。この時素子21.22.23.24はダミー抵
抗25.26がある為、製造工程中のエツチングの進み
方及び拡散の深さ・広がり方が等しくなり、従って電気
的特性が均一となる為、Z2  :Z+=3:1   
 −・・ (11)という抵抗比の精度が向上する。よ
って、VOUT =  3 * V IN     ・
・・ (12)となり増幅回路としての性能が向上する
When an amplifier circuit is constructed using this arrangement method, the input voltage 41 (V IN) and the output voltage 42 are
The relationship between (Vout) is as follows. At this time, since the elements 21, 22, 23, 24 have dummy resistors 25, 26, the progress of etching during the manufacturing process and the depth and spread of diffusion are the same, and therefore the electrical characteristics are uniform. Z2 :Z+=3:1
-... (11) The accuracy of the resistance ratio is improved. Therefore, VOUT = 3 * V IN ・
...(12) The performance as an amplifier circuit is improved.

第4図はダミー素子群の別の配置例である。もしチップ
面積上杵されるならばダミー素子群48を使用する素子
群49の上下左右へ配置すればさらに抵抗比の精度は向
上する。
FIG. 4 shows another arrangement example of the dummy element group. If the chip area is to be increased, the accuracy of the resistance ratio can be further improved by arranging the dummy element groups 48 above, below, and to the left and right of the element group 49 to be used.

又本実施例では素子25.26をダミー素子としたが、
素子21〜24を使用する回路とは別の回路系で使用し
ても、素子21〜24の特性の均一性は失われない。こ
の様に素子21と25の特性を厳密に合わせなくても良
い場合、ダミー素子25.26の分だけチップ面積がむ
だにならずに済む。
Also, in this example, elements 25 and 26 were used as dummy elements, but
Even if the elements 21 to 24 are used in a circuit system different from the circuit in which they are used, the uniformity of the characteristics of the elements 21 to 24 is not lost. In this way, when the characteristics of the elements 21 and 25 do not have to be precisely matched, the chip area is not wasted by the dummy elements 25 and 26.

第5図は使用素子群とダミー素子群51の別の配置例で
ある。使用する素子52〜55と56〜59を二列に分
けて配置し、素子52.55.56.59の外側にダミ
ー素子60.61.62.63を配置する。
FIG. 5 shows another arrangement example of the used element group and the dummy element group 51. The elements 52 to 55 and 56 to 59 to be used are arranged in two rows, and dummy elements 60.61.62.63 are arranged outside of the elements 52.55.56.59.

上記実施例では抵抗素材として拡散抵抗を説明したが、
ポリシリコン抵抗でも同様の効果がある。
In the above embodiment, diffused resistance was explained as the resistance material.
A polysilicon resistor has a similar effect.

さらに本発明の構成方法は抵抗素子のみならず容量素子
、コイル、トランジスタ等へも適用可能である。
Furthermore, the configuration method of the present invention is applicable not only to resistive elements but also to capacitive elements, coils, transistors, and the like.

本発明の実施例をもう一つ述べておく。第6図はラダー
抵抗器D/A変換回路図である。3ビツトのデジタルデ
ータ信号73.74.75により基準電圧70 (V 
IN)を8段階に分は出力電圧71(VOIIT)とし
て取り出す。
Another embodiment of the present invention will be described. FIG. 6 is a diagram of a ladder resistor D/A conversion circuit. The reference voltage 70 (V
IN) is extracted in eight stages as an output voltage 71 (VOIIT).

さらに詳しく動作を説明する。素子80〜87は本発明
の構成法によって配置された抵抗素子で、(第1図の配
置を拡張し、13本の素子の内両端の2本をダミー素子
とする)、素子80〜83・87は抵抗値Rとし、素子
84〜86は2本を直列接続して抵抗値2Rとする。そ
してトランジスタスイッチ76〜78・88〜90のオ
ン抵抗に対してRの値を100倍以上太き(設定し、ト
ランジスタスイッチのオン抵抗を無視できる様に定数設
定をしておく。するとデジタル信号73〜75の°°H
°°、” L ”にかかわらず、I++=Io +I+
o=2 Io =11  ・・ (13)■、□=L 
+IIl:2I+ =I2・・(14)IIN=12+
I+□=2I2=IIN・・ (15)(但し素子81
〜86を流れる電流を各々Lo、III、III1、工
。、I−、I2.又信号70より流れ込む電流をIIN
とする) つまり工。=iとすると I +  = 21              ・ 
・ ・ (17)I2 =4i           
   ・ ・ ・ 〔18)となり信号70から信号7
2に流れる電流IsはI s=4 i *D7S+2 
i *D74+ i D7a・・ (19) となる。(例えば信号75が°°H°゛ならD75=1
、” L ”ならばD7.=φとする)よって出力電圧
はIsと抵抗素子80によって決まり、上式%式%) ここで例えば素子86の抵抗値が他の素子の抵抗値より
大きくなると、デジタルデータD72、D74、D t
5に対する出力電圧特性の直線性が劣る。そこで本発明
の配置方法を適用することにより、素子80〜86の抵
抗値が均一になり、D/A変換器としての性能が向上す
る。
The operation will be explained in more detail. Elements 80 to 87 are resistance elements arranged according to the construction method of the present invention (the arrangement shown in FIG. 1 is expanded, and two of the 13 elements at both ends are used as dummy elements). 87 has a resistance value R, and two elements 84 to 86 are connected in series to have a resistance value 2R. Then, set the value of R to be at least 100 times thicker than the on-resistance of the transistor switches 76 to 78 and 88 to 90, and set a constant so that the on-resistance of the transistor switch can be ignored.Then, the digital signal 73 ~75°°H
°°, regardless of “L”, I++=Io +I+
o=2 Io =11... (13) ■, □=L
+IIl:2I+ =I2...(14)IIN=12+
I+□=2I2=IIN... (15) (However, element 81
The currents flowing through ~86 are Lo, III, III1, and F, respectively. , I-, I2. Also, the current flowing from signal 70 is IIN
) In other words, engineering. = i then I + = 21 ・
・ ・ (17) I2 = 4i
・ ・ ・ [18] From signal 70 to signal 7
The current Is flowing through 2 is I s=4 i *D7S+2
i *D74+ i D7a... (19) (For example, if the signal 75 is °°H°゛, D75=1
, “L” then D7. = φ) Therefore, the output voltage is determined by Is and the resistance element 80, and the output voltage is determined by the above formula (% formula %) Here, for example, if the resistance value of the element 86 becomes larger than the resistance value of the other elements, the digital data D72, D74, D t
The linearity of the output voltage characteristics with respect to 5 is poor. Therefore, by applying the arrangement method of the present invention, the resistance values of the elements 80 to 86 become uniform, and the performance as a D/A converter is improved.

[発明の効果] 本発明は、複数の抵抗、容量、トランジスタ等の回路素
子を使う場合において、簡単なダミー素子を設けるとい
う簡単な追加操作により、ダミー素子にはさまれた全て
の素子の電気的特性を均一にし、回路の性能を向上する
ことができる。
[Effects of the Invention] When using a plurality of circuit elements such as resistors, capacitors, transistors, etc., the present invention can reduce the electricity of all the elements sandwiched between the dummy elements by a simple additional operation of providing a simple dummy element. It is possible to make the physical characteristics uniform and improve the performance of the circuit.

又本発明はプロセス技術が変わっても適用できるもので
高精度アナログ回路を実現する上で極めて応用範囲が広
い。
Furthermore, the present invention can be applied even if process technology changes, and has an extremely wide range of applications in realizing high-precision analog circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回路素子の配置図、第2図は従来
の回路素子配置図、第3図は増幅回路図、第4図は、本
発明によるダミー素子配置図、第5図は本発明による他
のダミー素子配置図、第6図はラダー抵抗型D/A変換
回路図である。 以上
FIG. 1 is a layout diagram of circuit elements according to the present invention, FIG. 2 is a conventional circuit element layout diagram, FIG. 3 is an amplifier circuit diagram, FIG. 4 is a dummy element layout diagram according to the present invention, and FIG. Another dummy element arrangement diagram according to the invention, FIG. 6, is a ladder resistance type D/A conversion circuit diagram. that's all

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、同一もしくは類似構造で同一サイズ
の複数の抵抗素子を一定の規則で配置した抵抗素子群に
対し、配列の少なくとも片端に前記抵抗素子群の配列規
則と同一の規則で、同一もしくは類似構造で同一サイズ
のダミー抵抗素子を設けたことを特徴とする半導体集積
装置。
For a resistive element group in which a plurality of resistive elements of the same or similar structure and the same size are arranged in a fixed order on a semiconductor substrate, at least one end of the array is arranged with the same or similar arrangement rule as the resistive element group. A semiconductor integrated device characterized in that a dummy resistance element having a similar structure and the same size is provided.
JP63221925A 1988-09-05 1988-09-05 Semiconductor integrated device Expired - Lifetime JP3028420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221925A JP3028420B2 (en) 1988-09-05 1988-09-05 Semiconductor integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221925A JP3028420B2 (en) 1988-09-05 1988-09-05 Semiconductor integrated device

Publications (2)

Publication Number Publication Date
JPH0269972A true JPH0269972A (en) 1990-03-08
JP3028420B2 JP3028420B2 (en) 2000-04-04

Family

ID=16774307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221925A Expired - Lifetime JP3028420B2 (en) 1988-09-05 1988-09-05 Semiconductor integrated device

Country Status (1)

Country Link
JP (1) JP3028420B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111208A1 (en) * 2007-03-15 2008-09-18 Fujitsu Microelectronics Limited Semiconductor integrated circuit
JP2009206122A (en) * 2008-02-26 2009-09-10 Ricoh Co Ltd Semiconductor device
US8044450B2 (en) * 2005-04-05 2011-10-25 Kabushiki Kaisha Toshiba Semiconductor device with a non-volatile memory and resistor
US8225240B2 (en) 2008-04-10 2012-07-17 Renesas Electronics Corporation Semiconductor device
US8604589B2 (en) * 2005-07-29 2013-12-10 Seiko Instruments Inc. Semiconductor device of polycrystalline silicon resistors
JP2014099639A (en) * 2014-01-15 2014-05-29 Renesas Electronics Corp Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128949A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Electric resistance device
JPS57202774A (en) * 1982-03-29 1982-12-11 Nec Corp Semiconductor device
JPS5821365A (en) * 1982-03-29 1983-02-08 Nec Corp Semiconductor integrated circuit device
JPS6221260A (en) * 1985-07-19 1987-01-29 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128949A (en) * 1981-02-04 1982-08-10 Hitachi Ltd Electric resistance device
JPS57202774A (en) * 1982-03-29 1982-12-11 Nec Corp Semiconductor device
JPS5821365A (en) * 1982-03-29 1983-02-08 Nec Corp Semiconductor integrated circuit device
JPS6221260A (en) * 1985-07-19 1987-01-29 Fujitsu Ltd Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044450B2 (en) * 2005-04-05 2011-10-25 Kabushiki Kaisha Toshiba Semiconductor device with a non-volatile memory and resistor
US8604589B2 (en) * 2005-07-29 2013-12-10 Seiko Instruments Inc. Semiconductor device of polycrystalline silicon resistors
WO2008111208A1 (en) * 2007-03-15 2008-09-18 Fujitsu Microelectronics Limited Semiconductor integrated circuit
JP5093224B2 (en) * 2007-03-15 2012-12-12 富士通セミコンダクター株式会社 Semiconductor integrated circuit
US8637906B2 (en) 2007-03-15 2014-01-28 Fujitsu Semiconductor Limited Semiconductor integrated circuit having polysilicon members
JP2009206122A (en) * 2008-02-26 2009-09-10 Ricoh Co Ltd Semiconductor device
US8225240B2 (en) 2008-04-10 2012-07-17 Renesas Electronics Corporation Semiconductor device
JP2014099639A (en) * 2014-01-15 2014-05-29 Renesas Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JP3028420B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JPS61210723A (en) Digital-analog converter
US4549131A (en) Semiconductor device and technique which employs normally unused interconnection elements as resistor circuit elements
US3567965A (en) Temperature compensated zener diode
US3890610A (en) High-precision digital-to-analog converters
JPH0269972A (en) Semiconductor integrated device
US4267550A (en) Digital to analog conversion circuit including compensation FET'S
KR0128502B1 (en) Linear integrated
US3943431A (en) Current-splitting network
JPH0530072B2 (en)
US5220305A (en) Semiconductor pressure sensor
JPH0269969A (en) Semiconductor integrated device
JPH02122545A (en) Method of designing semi-customized semiconductor integrated circuit
JP2003234405A (en) Layout pattern of high precision resistivity
US4442399A (en) Current source circuit
KR0172818B1 (en) Digital/analog converter
JPS6022675Y2 (en) AD converter
JP2653046B2 (en) Linear array
Guy et al. A sixteen-bit monolithic bipolar DAC
JPH065788A (en) Semiconductor device
JPH0578214B2 (en)
JP2605874B2 (en) DA converter
JP3106562B2 (en) Base fixed semi-custom LSI
JPS6059413A (en) Voltage stabilized integrated circuit device
JPS6235661A (en) Trimming method
JP2823743B2 (en) Semiconductor integrated device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9