JPH0530072B2 - - Google Patents

Info

Publication number
JPH0530072B2
JPH0530072B2 JP10637084A JP10637084A JPH0530072B2 JP H0530072 B2 JPH0530072 B2 JP H0530072B2 JP 10637084 A JP10637084 A JP 10637084A JP 10637084 A JP10637084 A JP 10637084A JP H0530072 B2 JPH0530072 B2 JP H0530072B2
Authority
JP
Japan
Prior art keywords
resistor
pattern
voltage divider
circuit
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10637084A
Other languages
Japanese (ja)
Other versions
JPS60250662A (en
Inventor
Toshiro Tsukada
Tatsuji Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10637084A priority Critical patent/JPS60250662A/en
Publication of JPS60250662A publication Critical patent/JPS60250662A/en
Publication of JPH0530072B2 publication Critical patent/JPH0530072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は抵抗回路に係り、特に集積回路化に適
した抵抗分圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a resistor circuit, and more particularly to a resistor voltage divider circuit suitable for integration into an integrated circuit.

〔発明の背景〕[Background of the invention]

従来の半導体集積回路における抵抗素子として
は拡散層やポリシリコン,メタル配線層が用いら
れているが、第1図aに示す抵抗分圧回路をアル
ミニウムのような低抵抗メタル配線層で構成する
場合は、第1図bのようなストリツプライン10
から等間隔に分圧電圧端子11を取り出したり、
第1図cのような櫛形のパターン12を配置した
等間隔で分圧端子13を引き出していたが、抵抗
分圧回路のパターン10,12が同図のように大
きく折り返される場合は斜線部14,15のよう
な不整合部分が生じる。これによる抵抗の誤差分
を補償するために、従来破線で囲まれるようなパ
ターンを設け、端子間ABの抵抗を調整する手法
がとられてきた。しかしこの調整には実際にいく
つかの補償パターンを集積回路で作製して実験評
価し、最適なパターンを求めるのがふつうであ
り、このために多くの手間と時間を要していた。
またシミユレーシヨンによつて最適なパターンを
求めることも可能であるが、実際には精度的な問
題も多く、テスト用の集積回路を作製して予備実
験を試みなければならないのが実情である。この
ことは集積回路で抵抗回路を設計する場合の大き
な欠点であつた。
Diffusion layers, polysilicon, and metal wiring layers are used as resistance elements in conventional semiconductor integrated circuits, but when the resistance voltage divider circuit shown in Figure 1a is constructed from a low-resistance metal wiring layer such as aluminum, is a stripline 10 as shown in Fig. 1b.
Take out the divided voltage terminals 11 at equal intervals from
The voltage dividing terminals 13 are drawn out at equal intervals with comb-shaped patterns 12 arranged as shown in FIG. , 15 occur. In order to compensate for the resistance error caused by this, conventional methods have been used to provide a pattern surrounded by a broken line and adjust the resistance between the terminals AB. However, this adjustment usually involves actually fabricating several compensation patterns using integrated circuits and experimentally evaluating them to find the optimal pattern, which requires a lot of effort and time.
It is also possible to find the optimal pattern through simulation, but in practice there are many problems with accuracy, and the reality is that it is necessary to fabricate integrated circuits for testing and conduct preliminary experiments. This has been a major drawback when designing resistor circuits with integrated circuits.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の問題点を解決し、回路調
整することなく高精度が達成でき、集積回路化に
適した抵抗分圧回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a resistive voltage divider circuit that can achieve high accuracy without circuit adjustment and is suitable for integrated circuit implementation.

〔発明の概要〕 上記の目的を達成するため本発明では、抵抗配
線層のパターンを45゜の傾きをもつ部分配線パタ
ーンを接続して鋸歯状とし、これにより抵抗分圧
回路の折り返し部の不整合が生じないようにし
た。この結果従来の折り返し部のパターン調整が
不要になり、設計に手間どらず高精度な抵抗分圧
回路を実現できることがあきらかになつた。
[Summary of the Invention] In order to achieve the above object, the present invention makes the pattern of the resistive wiring layer into a sawtooth shape by connecting partial wiring patterns having an inclination of 45°, thereby reducing the defects in the folded portion of the resistive voltage divider circuit. Prevented consistency from occurring. As a result, it has become clear that the conventional pattern adjustment of the folded portion is no longer necessary, and that a highly accurate resistor voltage divider circuit can be realized without any hassle in design.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図〜第4図により
詳細に説明する。第2図は本発明の抵抗分圧回路
の配置パターン例を示す図である。幅Wのメタル
配線が±45゜傾きで互いに接続された鋸歯状に配
置されている。分圧電圧端子11の隣合つた端子
間の平均的な長きは各端子の代表点Pの間の長さ
lで表わすことができる。各代表点間の長さlは
すべて等しく、折り返し部についても成立つてい
ることがわかる。第2図で代表点P2とP1の間の
長さをl(P1−P2)で表わし、P1とPAおよびPA
PBの間の長さをそれぞれl(PA−P1),l(PB
PA)とすると、 l(PB−PA)=l(PA−P1) =l(P1−P2) となつている。つぎにこの鋸歯状配線に電流を流
した場合、配線幅Wに対し長さlがある程度大き
くなると第2図に示す中間部分の断面Qの電流分
布は一様で互いに等しくなる。したがつて代表点
P2あるいはP1を含む配線のコーナ部の電流分布
とPAあるいはPBを含む配線のコーナ部の電流分
布は互いに等しいということができる。このこと
から分圧端子A2とA1,A1とA,AとBの電圧は
互いに等しくなり、直線性のすぐれた分圧電圧が
得られる。従来の欠点であつた折り返し部の不整
合は除去することができ、回路調整が不要で高精
度の抵抗分圧回路を容易に設計することができ
る。
Embodiments of the present invention will be described in detail below with reference to FIGS. 2 to 4. FIG. 2 is a diagram showing an example of the arrangement pattern of the resistive voltage divider circuit of the present invention. Metal wires having a width W are arranged in a sawtooth shape connected to each other at an angle of ±45°. The average length between adjacent terminals of the divided voltage terminals 11 can be expressed by the length l between the representative points P of each terminal. It can be seen that the length l between each representative point is all equal, and this also holds true for the folded portion. In Figure 2, the length between the representative points P 2 and P 1 is expressed as l (P 1 − P 2 ), and P 1 and P A and P A
The lengths between P B are l(P A − P 1 ) and l(P B
P A ), then l(P B −P A )=l(P A −P 1 )=l(P 1 −P 2 ). Next, when a current is passed through this sawtooth wiring, if the length l is increased to some extent with respect to the wiring width W, the current distribution in the cross section Q of the intermediate portion shown in FIG. 2 becomes uniform and equal to each other. Therefore, the representative point
It can be said that the current distribution in the corner portion of the wiring including P 2 or P 1 and the current distribution in the corner portion of the wiring including P A or P B are equal to each other. Therefore, the voltages at the voltage dividing terminals A 2 and A 1 , A 1 and A, and A and B are equal to each other, and a divided voltage with excellent linearity can be obtained. The mismatch in the folded portion, which was a conventional drawback, can be eliminated, and a highly accurate resistor voltage divider circuit can be easily designed without the need for circuit adjustment.

第3図は本発明の抵抗分圧回路の他の配置パタ
ーン例を示す図である。第2図と同様の鋸歯状配
線を用いているが、鋸歯状パターンのピツチを十
分小さくし、巨視的には第1図cに対応したパタ
ーンを構成している。折り返し部の端子A,B間
の鋸歯状パターンの繰り返し数と一般の分圧端子
間A1,A2間のそれとは同数であり、図示の例で
は11となつている。第2図で述べた電流分布の一
様性の理由から第3図の抵抗分圧回路は折り返し
部においても所定の分圧電圧が得られ、直線性精
度のよい抵抗分圧回路が実現できる。
FIG. 3 is a diagram showing another example of the arrangement pattern of the resistive voltage divider circuit of the present invention. Although the same sawtooth wiring as in FIG. 2 is used, the pitch of the sawtooth pattern is made sufficiently small to constitute a pattern macroscopically corresponding to FIG. 1c. The number of repetitions of the sawtooth pattern between the terminals A and B of the folded portion is the same as that between the general voltage dividing terminals A 1 and A 2 , and is 11 in the illustrated example. Because of the uniformity of the current distribution described in FIG. 2, the resistor voltage divider circuit of FIG. 3 can obtain a predetermined divided voltage even at the folded portion, and can realize a resistor voltage divider circuit with good linearity accuracy.

第4図は折り返し部の中点から分圧端子を引き
出した本発明の抵抗分圧回路の配置パターン例を
示す図である。各分圧端子A1A間,AC間,CB間
の鋸歯状パターンの繰り返し数は互いに等しく同
図の例では11となつている。第3図の場合と同じ
く直線性のよい分圧電圧が得られる。
FIG. 4 is a diagram showing an example of the layout pattern of the resistive voltage divider circuit of the present invention, in which the voltage divider terminals are drawn out from the midpoint of the folded portion. The number of repetitions of the sawtooth pattern between each voltage dividing terminal A1A , between AC, and between CB is equal to each other and is 11 in the example shown in the figure. As in the case of FIG. 3, a divided voltage with good linearity can be obtained.

第2図〜第4図に示した抵抗分圧回路において
は分圧端子をそれぞれに示す位置から引き出して
いるが、端子間の鋸歯状パターンの繰り返し数が
互いに等しく保たれてさえいれば、分圧端子の引
き出し部の位置はずらすことができる。図示した
引き出し線は簡単のため実線を用いてシンボル化
してある。実際にはメタル配線層等で配置される
が、その形状はMOS集積回路等では特性を左右
することは少ない。MOS集積回路は入力抵抗が
非常に高いため、分圧電圧端子から直流的な定常
電流が出入りする使い方をしなくてすむからであ
る。本発明の抵抗分圧回路は並列形A/D変換器
に必要となる2M(Mビツト)個の基準分圧電圧の
発生回路に適している。設計が容易で直線性にす
ぐれているため、高性能なA/D変換器を実現す
ることが可能となる。
In the resistor voltage divider circuits shown in Figures 2 to 4, the voltage divider terminals are drawn out from the positions shown respectively, but as long as the number of repetitions of the sawtooth pattern between the terminals is kept equal to each other, The position of the lead-out portion of the piezoelectric terminal can be shifted. The illustrated leader lines are symbolized using solid lines for simplicity. In reality, it is arranged in a metal wiring layer, etc., but its shape has little effect on the characteristics of MOS integrated circuits. This is because MOS integrated circuits have extremely high input resistance, so there is no need for them to be used with steady DC current flowing in and out from the divided voltage terminals. The resistive voltage divider circuit of the present invention is suitable for a circuit for generating 2M (M bits) reference divided voltages required for a parallel A/D converter. Since it is easy to design and has excellent linearity, it is possible to realize a high-performance A/D converter.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば高精度の抵抗
分圧回路を集積回路化することが容易であり、設
計の手数もかからず、回路調整も不要であるなど
性能の向上や生産における経済性において多大の
効果がある。
As described above, according to the present invention, it is easy to integrate a high-precision resistor voltage divider circuit into an integrated circuit, and there is no need for design work or circuit adjustment, resulting in improved performance and economical production. It has a great effect on sex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の抵抗分圧回路の構成とパターン
配置例を示す図、第2図〜第4図は本発明の抵抗
分圧回路のパターン配置例を示す図である。 10……抵抗配線層(ストリツプライン)、1
1……分圧電圧端子、12……抵抗配線層(櫛形
パターン)、13……分圧電圧端子、14……折
り返しパターンの不整合部、15……折り返しパ
ターンの不整合部、、16……回路調整パターン、
17……回路調整パターン。
FIG. 1 is a diagram showing the configuration and pattern arrangement example of a conventional resistive voltage divider circuit, and FIGS. 2 to 4 are diagrams showing pattern layout examples of the resistive voltage divider circuit of the present invention. 10...Resistance wiring layer (stripline), 1
DESCRIPTION OF SYMBOLS 1...Divided voltage terminal, 12...Resistance wiring layer (comb-shaped pattern), 13...Divided voltage terminal, 14...Mismatched portion of folded pattern, 15...Mismatched portion of folded pattern, 16... …Circuit adjustment pattern,
17...Circuit adjustment pattern.

Claims (1)

【特許請求の範囲】 1 所定幅をもつ導体層あるいは半導体層で形成
される抵抗回路であつて、矩形の導体層あるいは
半導体層を互いに直角に複数個、繰り返して配置
し、これらを直列接続することによつて形成した
抵抗回路において、複数個の上記矩形の導体層あ
るいは半導体層から構成される直角の形状の一単
位の抵抗の一辺が、繰り返し配置方向に対し、
45゜の角度で配置されることを特徴とする抵抗回
路。 2 前記所定幅をもつ導体層あるいは半導体層で
形成される抵抗回路から分圧電圧を取り出すため
の分圧電圧端子が、前記一単位の抵抗のコーナー
部に配置されたことを特徴とする特許請求の範囲
第1項記載の抵抗回路。
[Claims] 1. A resistance circuit formed of conductor layers or semiconductor layers having a predetermined width, in which a plurality of rectangular conductor layers or semiconductor layers are repeatedly arranged at right angles to each other and are connected in series. In the resistor circuit formed by the above method, one side of one unit of a right-angled resistor composed of the plurality of rectangular conductive layers or semiconductor layers is arranged such that one side of the resistor is
A resistor circuit characterized by being arranged at an angle of 45°. 2. A patent claim characterized in that a divided voltage terminal for extracting a divided voltage from a resistor circuit formed of a conductor layer or a semiconductor layer having a predetermined width is arranged at a corner of the one unit of resistor. Range 1. The resistance circuit according to item 1.
JP10637084A 1984-05-28 1984-05-28 Resistance circuit Granted JPS60250662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10637084A JPS60250662A (en) 1984-05-28 1984-05-28 Resistance circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10637084A JPS60250662A (en) 1984-05-28 1984-05-28 Resistance circuit

Publications (2)

Publication Number Publication Date
JPS60250662A JPS60250662A (en) 1985-12-11
JPH0530072B2 true JPH0530072B2 (en) 1993-05-07

Family

ID=14431833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10637084A Granted JPS60250662A (en) 1984-05-28 1984-05-28 Resistance circuit

Country Status (1)

Country Link
JP (1) JPS60250662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135376B2 (en) 2003-12-24 2006-11-14 Oki Electric Industry Co., Ltd. Resistance dividing circuit and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142667A (en) * 1986-12-04 1988-06-15 Nec Corp Gaas semiconductor integrated circuit
JPH0341761A (en) * 1989-07-10 1991-02-22 Nissan Motor Co Ltd Semiconductor integrated circuit
TW330334B (en) * 1997-08-23 1998-04-21 Winbond Electronics Corp Static random access memory polysilicon load structure and manufacturing method
CN103745974A (en) * 2014-01-29 2014-04-23 上海华力微电子有限公司 Ring resistor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135376B2 (en) 2003-12-24 2006-11-14 Oki Electric Industry Co., Ltd. Resistance dividing circuit and manufacturing method thereof
US7456075B2 (en) 2003-12-24 2008-11-25 Oki Electric Industry Co., Ltd. Resistance dividing circuit and manufacturing method thereof

Also Published As

Publication number Publication date
JPS60250662A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
US4703302A (en) Resistance ladder network
KR930001724B1 (en) Resistor and electronic device
US6725436B2 (en) Resistor circuit
JPH0530072B2 (en)
JPH08167847A (en) Digital/analog converter
KR0128502B1 (en) Linear integrated
JPS59227101A (en) Thick film resistor
KR20050067183A (en) Frequency-independent voltage divider
US4565000A (en) Matching of resistor sensitivities to process-induced variations in resistor widths
JP3028420B2 (en) Semiconductor integrated device
DE19581562B4 (en) Vierpolstandardwiderstand
JPH0795590B2 (en) Semi-custom semiconductor integrated circuit design method
US3353136A (en) Printed resistors
JPH07211860A (en) Formation of capacitance
JPS6068709A (en) Reference voltage generating circuit
JP2605874B2 (en) DA converter
JPH0448308A (en) Constant current source circuit
JP2796474B2 (en) Reference voltage generation circuit
US7737817B2 (en) Resistor network such as a resistor ladder network and a method for manufacturing such a resistor network
Thompson Self-checking resistive ratios
JPS6022675Y2 (en) AD converter
JPH09213883A (en) Resistor element for semiconductor integrated circuit
JPH0578214B2 (en)
JPS626703Y2 (en)
JPS6235661A (en) Trimming method