JPH0264016A - Zirconia-based hollow microspherical particle and production thereof - Google Patents

Zirconia-based hollow microspherical particle and production thereof

Info

Publication number
JPH0264016A
JPH0264016A JP21358488A JP21358488A JPH0264016A JP H0264016 A JPH0264016 A JP H0264016A JP 21358488 A JP21358488 A JP 21358488A JP 21358488 A JP21358488 A JP 21358488A JP H0264016 A JPH0264016 A JP H0264016A
Authority
JP
Japan
Prior art keywords
zirconia
particles
aqueous sol
added
hollow spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21358488A
Other languages
Japanese (ja)
Other versions
JP2705133B2 (en
Inventor
Mitsuhisa Sakamoto
光久 坂本
Takamasa Takei
武居 孝政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21358488A priority Critical patent/JP2705133B2/en
Publication of JPH0264016A publication Critical patent/JPH0264016A/en
Application granted granted Critical
Publication of JP2705133B2 publication Critical patent/JP2705133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain hollow microspherical particles, having a prescribed film thickness and particle diameter and excellent in fire resistance and heat insulating properties by spray-drying an aqueous sol of crystalline zirconia and/or X-ray diffractometrically amorphous zirconia and/or hydrated zirconia containing a water-soluble high polymer added thereto and calcining the resultant blend. CONSTITUTION:An aqueous sol of fine particles of crystalline zirconia having <=50Angstrom crystal diameter and/or X-ray diffractometrically amorphous zirconia and/or hydrated zirconia is prepared. A water-soluble high polymer is added to the above-mentioned aqueous sol and the resultant blend is spray-dried and calcined at >=500 deg.C temperature. Thereby, zirconia-based hollow microspherical particles, having the shell consisting of zirconia-based microcrystalline particles and having <5mum and >=10mum particle diameter are obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ジルコニア質微小中空球状粒子及びその製造
方法に関するものである。 [従来の技術] 金属酸化物の微小中空球状粒子を製造する方法として、
核となる球状粒子の表面にバインダーを使用して金属酸
化物の微粒子をコーティングし、ついで核の部分を焼成
して除去する方法;高温で溶融し、空気中に噴霧する方
法等が知られている。 このほか、特公昭57−11004号公報には、焼結性
を有する無機材料粉末に界面活性剤を添加し、えられる
含泡スラリーを熱風中に噴霧して乾燥する方法が示され
ている。また、特開昭62−191426号公報には、
ジルコニウム塩の水溶液を200℃付近の温度で長時間
水熱処理して得られる単斜晶ジルコニア微結晶の半透明
の水性ゾルを、噴霧乾燥して、膜厚約10μm2粒径約
50〜100μmのジルコニア多結晶からなる微小中空
球状粒子を製造する方法が示されている。
[Industrial Field of Application] The present invention relates to zirconia fine hollow spherical particles and a method for producing the same. [Prior art] As a method for producing micro hollow spherical particles of metal oxide,
A method is known in which the surface of a spherical particle serving as a core is coated with fine metal oxide particles using a binder, and then the core portion is removed by firing; a method in which the core is melted at high temperature and sprayed into the air is known. There is. In addition, Japanese Patent Publication No. 57-11004 discloses a method in which a surfactant is added to an inorganic material powder having sinterability, and the resultant foam-containing slurry is sprayed into hot air and dried. Also, in Japanese Patent Application Laid-Open No. 62-191426,
A translucent aqueous sol of monoclinic zirconia microcrystals obtained by hydrothermally treating an aqueous solution of zirconium salt at a temperature around 200°C for a long time is spray-dried to form a zirconia film with a film thickness of approximately 10 μm and a particle size of approximately 50 to 100 μm. A method for producing polycrystalline microhollow spherical particles is presented.

【発明が解決しようとする課題] しかし、これらの方法では、多孔質の中実球。 球状でない陥没球、破砕粒子などが生じやすく、均一な
形状の中空球状粒子が得られにくい。また、得られたも
のが中空球状であっても、殻の膜厚が厚く、カサ比重が
大きい。 本発明の目的は、従来技術では製造することのできなか
った、球状であって、かつ殻の膜厚が均一で薄く、従っ
てカサ比重の小さいジルコニア質微小中空球状粒子及び
その製造方法を提供することにある。 [課題を解決するための手段] すなわち、本発明のジルコニア質微小中空球状粒子は、 殻がジルコニア質微結晶粒子からなり、その膜厚が5μ
m未満であり、かつ粒径が10μn1以上である ものからなるものであることを要旨とする。 上記の殻の構成材料のジルコニア質は、カルシア、マグ
ネシア、イツトリア、セリアなどの安定化剤が固溶した
、高強度の立方晶又は正方品からなるものが望ましい。 しかし、安定化剤の含有量の小さい、あるいはそれをま
ったく含まない単斜晶からなるものであっても、上記の
ような微小球は、十分実用に耐える。 上記本発明のジルコニア質微小中空球状粒子は、 Xt!iI結晶子径50Å以下の結晶質ジルコニアなら
びに/又はX線的に非晶質であるジルコニア及び/もし
くは水和ジルコニアの微粒子の水性ゾルに、水溶性高分
子を添加し、噴霧乾燥し、500℃以上の温度で焼成す
ることによって製造することができる。 前記の、殻が安定化剤を固溶したジルコニアからなる製
品を得るには、上記水性ゾルとして安定化剤源が含有さ
れているものを使用すればよい。たとえば、カルシウム
、・マグネシウム。 イツトリウム、セリウムなどの塩の水溶液;これら元素
の水酸化物あるいは酸化物微粒子などを水性ゾルに含ま
せればよい。 水性ゾル中のジルコニアとしてX線結晶子径が50人を
越えるものを用いると、多孔質の中実球あるいは膜厚の
厚い中空球しか得られない。 本発明における上記ジルコニアの微粒子の水性ゾルは、
たとえば、水溶性ジルコニウム塩の水溶液を約120℃
以下の温度で加熱して加水分解するか(この加熱温度を
上記の範囲よりも高くすると、得られる水性ゾル中のジ
ルコニアは50人よりも大きいものとなる)、又はアン
モニア等によって中和することにより得ることができる
。また、水溶性ジルコニウム塩の水溶液に、−分子中に
2〜4個のカルボン酸基を有する多価カルボン酸又はそ
の塩を、ジルコニウム1グラム原子あたり0.5モル以
下添加して加水分解することにより(特開昭00−25
5622 )、焼結性のiΩiい、すなわち破砕されに
くい中空粒子を製造することができる水性ゾルを得るこ
とができる。上記水溶性ジルコニウム塩の水溶液に安定
化剤源の塩の水溶液を共存させて加水分解し又は中和す
れば、安定化剤源の塩の水溶液を含んだ水性ゾルが得ら
れる。もちろん、水性ゾルを生成させてから、安定化剤
源である塩の水溶液、その酸化物などを添加してもよい
。 以上のようにして得られた水性ゾルは、通常ゾル濃度が
低いが、そのまままたは4縮してから、以下の処理に供
する。また、通常、次の水溶性高分子添加の処理の際に
ゲル化をおこすのを避けるために、該処理の前にアンモ
ニアを添加してpHを7又はそれよりやや高くする。 このようにして得られた水性ゾルに水溶性高分子を添加
し、噴霧乾燥する。水溶性高分子を添加しない場合には
陥没法や中実球が生成し、球状の均一な薄膜球状粒子が
得られない。使用する水溶性高分子は、水に均一に溶解
するものでなければならず、また泡を生じるものであっ
てはならない。このような条件を備えた水溶性高分子は
、噴霧乾燥によって生成するゲルを真球状に保持し、十
分なバインダー効果を発揮する。該水溶性高分子の代表
的なものとしては、ポリエチレングリコール、ポリエチ
レンオキサイド、ポリビニールアルコール、ポリアクリ
ル酸エステル、ポリメタクリル酸エステル等を挙げるこ
とができる。 殻の膜厚が薄く、カサ比重の小さい中空球状粒子を製造
するには、上記のとおり、出発原料である水性ゾル中の
ジルコニア質の粒子の結晶子径が微細であることが望ま
しいが、その池水性ゾル中のジルコニアの濃度や水性ゾ
ルに添、加する水溶性高分子の添加量等も重要である。 水性ゾル中のジルコニア(ZrO,)の濃度は、高すぎ
ると、球状の粒子が得られず、また粒子の形状のバラツ
キの大きいものとなる。いっぽう、低すぎると、ごく微
小な球状粒子、粉末状の粒子、中空でないものなどが得
られやすい。その濃度は、35重量%以下、とくに5〜
30重量%の範囲が好適である。また、水性ゾルに対し
て添加する水溶性高分子の添加量は、多すぎると、粒子
が互いにくっついてかたまりを生じやすく、いっぽう少
なすぎると、粒子が球状となりに<<、粉末状になりが
ちである。その添加量は、水溶性高分子の種類によって
も異なるが、通常水性ゾル中のジルコニアに対して5重
量%以上、とくに10〜50重量%の範囲が好適である
。 噴霧乾燥は、100〜200℃の熱風によって行なえば
よい。方式はノズル方式やディスク方式などいずれの方
式でも可能である。得られる中空球状粒子の粒径は、水
性ゾル中のジルコニア濃度など、さらにノズル方式の場
合は噴霧乾燥時のノズル圧、ディスク方式の場合はアト
マイザ−の回転数等の条件により変化するが、通常30
〜150μmの範囲の粒径のものが得られる。 このようにして得られる中空球状粒子のゲルは、カサ比
重が約0.2〜約0.8の範囲であり、500℃以上の
温度で焼成することによりジルコニア微結晶粒子からな
る粒径10μm以上の微小中空球状粒子が得られる。安
定化剤を、たとえばMgOやCaOならば7モル%以上
、Y、Q。 ならば2モル%以上、 CeO2ならば8モル%以上含
有した正方晶あるいは立方晶のジルコニア微結晶粒子か
らなる中空球状粒子を得る場合は、噴霧乾燥により得ら
れた中空球状粒子ゲルを約り000℃〜約1500℃の
範囲で焼成するのがよい。そのようにして、結晶粒径約
0.5μm以下のジルコニア微結晶粒子からなる中空球
状粒子が得られる。また、この範囲で焼成することによ
り粒子間の焼結が進み、ある程度の強度ををする中空球
状粒子が得られる。安定化剤の含有量が上記の値にみた
ない、あるいは安定化剤を含まない単斜晶のジルコニア
微結晶粒子からなる中空球状粒子を得る場合は、約り0
0℃〜約1200℃の範囲で焼成するのがよい。 焼成温度が1200℃越えると、焼成終了後の冷却の条
件によっては、破砕する可能性があるからである。 以上のようにして得られる微小中空球状粒子は、殻が膜
厚5μm未満、通常約2μm〜約4μmの均一な薄膜か
らなり、カサ比重的0.3〜約1.5の範囲、粒径10
μm以上150μmの範囲のものである。 以下、本発明について具体例を示して説明するが、本発
明はこれらに限定されるものではない。 【発明の効果】 本発明のジルコニア質微小中空球状粒子は、膜厚が均一
でかつ薄い。しかも融点の高いかつ熱伝導率の低いジル
コニアを材料とするので、耐火性や断熱性に優れており
、したがって、そのうち正方晶又は立方晶のものは、耐
火材や断熱材料としての用途が期待される。また、単斜
晶のものは、化粧品など比較的低い温度で使用されるも
のの充填材として好適である。 本発明の方法によれば、上記のジルコニア質微小中空球
状粒子を容易に製造することができる。 [実施例] 実施例1 オキシ塩化ジルコニウム8水塩(試薬特級純度99.0
%以上)を水に溶解させて、ジルコニウムの濃度Z r
 02換算約300 g/Dの水溶液を調製した。この
水溶液に酸化イツトリウム(試薬特級 純度99.99
6以上)を塩酸で溶解した水溶液及び水を添加してイツ
トリウムをY2O,換算で3モル%含有しジルコニウム
の濃度がZ r 02換算約50g/Dである水溶液を
調製した。この水溶液を撹拌しながら100°Cで60
時間保持して加熱加水分解した。この時の加水分解率は
約95%であった。 得られた水性ゾルは乳白色の不透明ゾルであり、X線回
折から求めたジルコニア微粒子の結晶子径は約30人で
あった。この水性ゾルを減圧下に濃縮し、アンモニア水
を添加してpHを約7に調製した。ついで、ポリエチレ
ングリコールの水溶液を添加して、ジルコニアの濃度Z
 r 02換算約150g/N、 ジルコニアに対する
ポリエチレングリコールの固形物換算含有量的20重量
%の水性ゾルを調製した。この水性ゾルをディスク式の
スプレードライヤーに供給して、噴霧乾燥した。アトマ
イザ−の回転数は約10 、 000  rpm、熱風
温度は約150℃であった。その結果、カサ比市約0.
4、平均粒径約60μmの中空球状粒子のゲルが得られ
た。 このゲルを約500℃で脱脂したのち、1400℃で2
時間保Pi して焼成した。その結果、カサ比市約1.
0、殻の膜厚はぼ均一な約3μm1粒径50μmの、ジ
ルコニア質中空球状粒子が得られた。その外観および断
面の走査型電子顕微鏡による写真をそれぞれ第1図及び
第2図に示す。 実施例2 オキシ塩化ジルコニウムを水に溶解させて、ジルコニウ
ムの濃度Z r 02換算約300 g/りの水溶液を
調製した。この水溶液に酸化イツトリウムを塩酸で溶解
した水溶液、シュウ酸の水溶液及び水を添加して、イツ
トリウムをy、 o、換算3モル%含有し、シュウ酸を
ジルコニウム1グラム原子に対して0.05モル含有し
、ジルコニウムのa度がz「02換算約200 g/I
Iである水溶液を調装した。 この混合水溶液をガラス容器に入れ、撹拌しながら約1
00℃で20時間加熱した。その結果、白濁した不透明
の水性ゾルが得られた。加水分解率は約90%であった
。この水性ゾルにアンモニア水を添加してpHを約7と
した。生成した水和ジルコニア微粒子のx!!回折ピー
クは非常にブロードであり、実質的に非晶質であった。 このゾルにポリビニルアルコールの水溶液を添加し、ジ
ルコニアの濃度がZ r 02換算約150g/D、 
 ジルコニアに対するポリビニルアルコール固形物換算
約25重量%の水性ゾルを調製した。この水性ゾルを噴
霧乾燥して、カサ比重約0.4の中空球状粒子のゲルを
えた。このゲルを約500℃で加熱脱脂し、1300℃
で2時間保持して焼成した。その結果、カサ比市約0.
8、殻の膜厚約3μmの均一薄膜からなる平均粒径約7
0μmのジルコニア質微小中空球状粒子が得られた。 比較例1 実施例1と同様にして、イツトリウムをY2O。 換算で3モル%含有し、ジルコニウムの濃度がZ r 
02換算約50f/Nである水溶液を調製した。 この水溶液を撹拌しながら100℃で60時間保持して
加熱加水分解した。得られた水性ゾルにアンモニア水を
添加してpHを約7に調製した。ついで、減圧上濃縮乾
燥し、800℃で2時間焼成した。得られた粉末のX線
結晶子径は約200人であった。この粉末に水を加えて
ボールミルにより粉砕し、粒径的0.5μn1のジルコ
ニア微粒子からなるスラリーを調製した。 このスラリーにポリエチレングリコールをジルコニアに
対して固形分換算で約20L[fW96添加し、熱風中
で噴霧乾燥した。 得られたゲルはカサ比重が約0,9であり、500℃付
近で加熱脱脂後1400℃で2時間保持して焼成した。 その結果、粒径的60μm。 カサ比重的2.3の多孔質の中実球が得られ、中空の球
状粒子は得られなかった。 第1図及び第2図は、それぞれ実施例1でえたジルコニ
ア質中空球状粒子及びその断面の粒子構造を示す走査型
電子顕微鏡写真である。 特γ1出願人 東ソー株式会社 比較例2 ポリエチレングリコールを添加しない外は実施例1と同
様にしてジルコニアの濃度がZrO2換算で約150 
g/Rの水性ゾルを調製した。この水性ゾルを実施例1
と同様にして熱風中で噴霧乾燥した。その結果、カサ比
重が約1.0のゲルが得られ、1400℃で2時間保持
して焼成したところ、粒径的60μm、カサ比重的1.
9の多孔質の中実球が得られた。
[Problems to be Solved by the Invention] However, in these methods, porous solid spheres are used. It is easy to produce depressed spheres, crushed particles, etc. that are not spherical, and it is difficult to obtain uniformly shaped hollow spherical particles. Furthermore, even if the obtained product has a hollow spherical shape, the shell is thick and the bulk specific gravity is large. An object of the present invention is to provide zirconia micro hollow spherical particles that have a spherical shape and have a thin and uniform shell thickness, and therefore have a small bulk specific gravity, which could not be produced using conventional techniques, and a method for producing the same. There is a particular thing. [Means for Solving the Problems] That is, the zirconia micro hollow spherical particles of the present invention have shells made of zirconia microcrystal particles and a film thickness of 5 μm.
The gist is that the particle size is less than m and the particle size is 10 μn1 or more. The zirconia material of the shell is preferably made of a high-strength cubic or tetragonal crystal in which a stabilizer such as calcia, magnesia, ittria, or ceria is dissolved. However, even if the microspheres are composed of monoclinic crystals containing a small amount of stabilizer or no stabilizer at all, the microspheres described above can be put to practical use. The above-mentioned zirconia fine hollow spherical particles of the present invention have Xt! iI A water-soluble polymer is added to an aqueous sol of fine particles of crystalline zirconia with a crystallite diameter of 50 Å or less and/or X-ray amorphous zirconia and/or hydrated zirconia, and spray-dried at 500°C. It can be manufactured by firing at a temperature above. In order to obtain the above-mentioned product whose shell is made of zirconia in which a stabilizer is dissolved, an aqueous sol containing a stabilizer source may be used as the above-mentioned aqueous sol. For example, calcium and magnesium. Aqueous solutions of salts such as yttrium and cerium; hydroxides or oxide fine particles of these elements may be included in the aqueous sol. If zirconia in an aqueous sol is used with an X-ray crystallite diameter of more than 50, only porous solid spheres or hollow spheres with a thick film can be obtained. The aqueous sol of the zirconia fine particles in the present invention is
For example, an aqueous solution of a water-soluble zirconium salt is heated to about 120°C.
Hydrolyze by heating at a temperature below (if the heating temperature is higher than the above range, the zirconia in the resulting aqueous sol will be larger than 50), or neutralize with ammonia etc. It can be obtained by Alternatively, a polyhydric carboxylic acid having 2 to 4 carboxylic acid groups in the molecule or a salt thereof is added to an aqueous solution of a water-soluble zirconium salt to perform hydrolysis by adding 0.5 mol or less per 1 gram atom of zirconium. (Unexamined Japanese Patent Publication No. 00-25
5622), it is possible to obtain an aqueous sol capable of producing sinterable iΩi, that is, hollow particles that are difficult to crush. When an aqueous solution of a stabilizer source salt is coexisted with an aqueous solution of the water-soluble zirconium salt and hydrolyzed or neutralized, an aqueous sol containing an aqueous solution of a stabilizer source salt can be obtained. Of course, after generating an aqueous sol, an aqueous solution of a salt as a stabilizer source, its oxide, etc. may be added. The aqueous sol obtained as described above usually has a low sol concentration, but is subjected to the following treatment either as it is or after 4-condensation. In addition, in order to avoid gelation during the next process of adding a water-soluble polymer, ammonia is usually added before the process to raise the pH to 7 or slightly higher. A water-soluble polymer is added to the aqueous sol thus obtained and spray-dried. If a water-soluble polymer is not added, depressions or solid spheres will occur, making it impossible to obtain uniformly spherical thin-film spherical particles. The water-soluble polymer used must be uniformly soluble in water and must not generate bubbles. A water-soluble polymer that meets these conditions maintains the gel produced by spray drying in a true spherical shape and exhibits a sufficient binder effect. Typical water-soluble polymers include polyethylene glycol, polyethylene oxide, polyvinyl alcohol, polyacrylic ester, polymethacrylic ester, and the like. In order to produce hollow spherical particles with a thin shell and a small bulk specific gravity, as mentioned above, it is desirable that the crystallite size of the zirconia particles in the aqueous sol that is the starting material be fine. The concentration of zirconia in the pond aqueous sol and the amount of water-soluble polymer added to the aqueous sol are also important. If the concentration of zirconia (ZrO,) in the aqueous sol is too high, spherical particles will not be obtained and the shape of the particles will vary greatly. On the other hand, if it is too low, very small spherical particles, powdery particles, solid particles, etc. are likely to be obtained. Its concentration is 35% by weight or less, especially 5~
A range of 30% by weight is preferred. In addition, if the amount of water-soluble polymer added to the aqueous sol is too large, the particles tend to stick together and form clumps, while if it is too small, the particles tend to become spherical and powdery. It is. Although the amount added varies depending on the type of water-soluble polymer, it is usually 5% by weight or more, particularly preferably in the range of 10 to 50% by weight, based on the zirconia in the aqueous sol. Spray drying may be performed using hot air at 100 to 200°C. Any method such as a nozzle method or a disk method can be used. The particle size of the hollow spherical particles obtained varies depending on conditions such as the zirconia concentration in the aqueous sol, the nozzle pressure during spray drying in the case of a nozzle method, and the rotation speed of the atomizer in the case of a disk method. 30
Particle sizes in the range ˜150 μm are obtained. The gel of hollow spherical particles obtained in this way has a bulk specific gravity in the range of about 0.2 to about 0.8, and is made of zirconia microcrystal particles with a particle size of 10 μm or more by firing at a temperature of 500°C or higher. Microscopic hollow spherical particles are obtained. If the stabilizer is MgO or CaO, for example, 7 mol% or more, Y, Q. In order to obtain hollow spherical particles consisting of tetragonal or cubic zirconia microcrystal particles containing 2 mol% or more of CeO2, or 8 mol% or more of CeO2, the hollow spherical particle gel obtained by spray drying is It is preferable to perform the firing in the range of 1500°C to about 1500°C. In this way, hollow spherical particles consisting of zirconia microcrystal particles having a crystal grain size of about 0.5 μm or less are obtained. Further, by firing within this range, sintering between particles progresses, and hollow spherical particles having a certain degree of strength can be obtained. When obtaining hollow spherical particles consisting of monoclinic zirconia microcrystal particles in which the content of the stabilizer does not meet the above value or does not contain the stabilizer, approximately 0.
It is preferable to perform the firing at a temperature in the range of 0°C to about 1200°C. This is because if the firing temperature exceeds 1200° C., there is a possibility of crushing depending on the cooling conditions after firing. The micro hollow spherical particles obtained as described above consist of a uniform thin shell with a thickness of less than 5 μm, usually about 2 μm to about 4 μm, a bulk specific gravity in the range of 0.3 to about 1.5, and a particle size of 10 μm.
It is in the range of μm or more and 150 μm. Hereinafter, the present invention will be explained by showing specific examples, but the present invention is not limited thereto. [Effects of the Invention] The zirconia microscopic hollow spherical particles of the present invention have a uniform and thin film thickness. Moreover, since it is made from zirconia, which has a high melting point and low thermal conductivity, it has excellent fire resistance and heat insulation properties.Therefore, the tetragonal and cubic crystals are expected to be used as fireproof and heat insulating materials. Ru. Furthermore, monoclinic crystals are suitable as fillers for cosmetics and other products that are used at relatively low temperatures. According to the method of the present invention, the above-mentioned zirconia fine hollow spherical particles can be easily produced. [Example] Example 1 Zirconium oxychloride octahydrate (reagent special grade purity 99.0
% or more) in water, and the concentration of zirconium Z r
An aqueous solution of about 300 g/D in terms of 02 was prepared. Yttrium oxide (reagent special grade purity 99.99) is added to this aqueous solution.
6 or more) dissolved in hydrochloric acid and water were added to prepare an aqueous solution containing 3 mol % of yttrium (calculated as Y2O) and having a zirconium concentration of approximately 50 g/D in terms of Z r 02. This aqueous solution was heated to 100°C for 60°C while stirring.
The mixture was heated and hydrolyzed by holding for a certain period of time. The hydrolysis rate at this time was about 95%. The obtained aqueous sol was a milky white opaque sol, and the crystallite size of the zirconia fine particles determined by X-ray diffraction was about 30. The aqueous sol was concentrated under reduced pressure and the pH was adjusted to about 7 by adding aqueous ammonia. Next, an aqueous solution of polyethylene glycol is added to adjust the concentration of zirconia Z.
An aqueous sol was prepared in which the content of polyethylene glycol was approximately 150 g/N in terms of r 02 and the content of polyethylene glycol was 20% by weight in terms of solids based on zirconia. This aqueous sol was supplied to a disc-type spray dryer and spray-dried. The rotational speed of the atomizer was about 10,000 rpm, and the hot air temperature was about 150°C. As a result, Kasahi City is approximately 0.
4. A gel of hollow spherical particles with an average particle diameter of about 60 μm was obtained. After degreasing this gel at about 500℃, it was heated to 1400℃ for 2 hours.
It was baked for a certain period of time. As a result, Kasahi city approximately 1.
0. Zirconia hollow spherical particles with a shell thickness of approximately 3 μm and a particle size of 50 μm were obtained. Photographs of its appearance and cross section taken with a scanning electron microscope are shown in FIGS. 1 and 2, respectively. Example 2 Zirconium oxychloride was dissolved in water to prepare an aqueous solution having a zirconium concentration of about 300 g/liter in terms of Z r 02. To this aqueous solution, an aqueous solution of yttrium oxide dissolved in hydrochloric acid, an aqueous solution of oxalic acid, and water were added to contain 3 mol% of yttrium in terms of y, o, and 0.05 mol of oxalic acid per 1 gram atom of zirconium. Contains zirconium with a degree of Z "02 equivalent of approximately 200 g/I
An aqueous solution of I was prepared. Pour this mixed aqueous solution into a glass container, and while stirring,
The mixture was heated at 00°C for 20 hours. As a result, a cloudy, opaque aqueous sol was obtained. The hydrolysis rate was about 90%. Aqueous ammonia was added to this aqueous sol to adjust the pH to about 7. x of the generated hydrated zirconia fine particles! ! The diffraction peaks were very broad and substantially amorphous. An aqueous solution of polyvinyl alcohol was added to this sol, and the concentration of zirconia was approximately 150 g/D in terms of Z r 02,
An aqueous sol containing about 25% by weight of polyvinyl alcohol solids based on zirconia was prepared. This aqueous sol was spray-dried to obtain a gel with hollow spherical particles having a bulk specific gravity of approximately 0.4. This gel was heated and degreased at approximately 500°C, and then heated to 1300°C.
It was held for 2 hours and fired. As a result, Kasahi City is approximately 0.
8. Average grain size of approximately 7, consisting of a uniform thin film with a shell thickness of approximately 3 μm.
Zirconia fine hollow spherical particles of 0 μm were obtained. Comparative Example 1 In the same manner as in Example 1, yttrium was replaced with Y2O. It contains 3 mol% in terms of conversion, and the concentration of zirconium is Z r
An aqueous solution having a concentration of about 50 f/N in terms of 02 was prepared. This aqueous solution was heated and hydrolyzed by holding it at 100° C. for 60 hours while stirring. Aqueous ammonia was added to the resulting aqueous sol to adjust the pH to about 7. Then, it was concentrated to dryness under reduced pressure and calcined at 800°C for 2 hours. The X-ray crystallite diameter of the obtained powder was about 200. Water was added to this powder and pulverized in a ball mill to prepare a slurry consisting of zirconia fine particles with a particle size of 0.5 μn1. Approximately 20 L [fW96] of polyethylene glycol was added to this slurry in terms of solid content based on zirconia, and the slurry was spray-dried in hot air. The obtained gel had a bulk specific gravity of about 0.9, and was heated and degreased at around 500°C and then fired at 1400°C for 2 hours. As a result, the particle size was 60 μm. Porous solid spheres with a bulk specific gravity of 2.3 were obtained, and no hollow spherical particles were obtained. 1 and 2 are scanning electron micrographs showing the zirconia hollow spherical particles obtained in Example 1 and the particle structure of their cross section, respectively. Special γ1 Applicant: Tosoh Corporation Comparative Example 2 Same as Example 1 except that polyethylene glycol was not added, and the concentration of zirconia was about 150 in terms of ZrO2.
An aqueous sol of g/R was prepared. This aqueous sol was prepared in Example 1.
It was spray-dried in hot air in the same manner as above. As a result, a gel with a bulk specific gravity of about 1.0 was obtained, and when it was held and fired at 1400°C for 2 hours, the particle size was 60 μm and the bulk specific gravity was 1.0.
9 porous solid spheres were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (4)

【特許請求の範囲】[Claims] (1)殻がジルコニア質微結晶粒子からなり、その膜厚
が5μm未満であり、かつ粒径が10μm以上である、
ジルコニア質微小中空球状粒子。
(1) The shell is made of zirconia microcrystal particles, the film thickness is less than 5 μm, and the grain size is 10 μm or more,
Zirconia micro hollow spherical particles.
(2)殻のジルコニア質が安定化剤を含有するものであ
る、特許請求の範囲(1)項記載のジルコニア質微小中
空球状粒子。
(2) The zirconia micro hollow spherical particles according to claim (1), wherein the zirconia shell contains a stabilizer.
(3)X線結晶子径50Å以下の結晶質ジルコニアなら
びに/又はX線的に非晶質であるジルコニアおよび/も
しくは水和ジルコニアの微粒子の水性ゾルに、水溶性高
分子を添加し、噴霧乾燥し、500℃以上の温度で焼成
することを特徴とする、ジルコニア質微小中空球状粒子
の製造方法。
(3) A water-soluble polymer is added to an aqueous sol of fine particles of crystalline zirconia with an X-ray crystallite diameter of 50 Å or less and/or X-ray amorphous zirconia and/or hydrated zirconia, and spray-dried. and firing at a temperature of 500°C or higher.
(4)水性ゾルに安定化剤源が含有されている、特許請
求の範囲(3)項記載のジルコニア質微小中空球状粒子
の製造方法。
(4) The method for producing zirconia fine hollow spherical particles according to claim (3), wherein the aqueous sol contains a stabilizer source.
JP21358488A 1988-08-30 1988-08-30 Zirconia micro hollow spherical particles and method for producing the same Expired - Fee Related JP2705133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21358488A JP2705133B2 (en) 1988-08-30 1988-08-30 Zirconia micro hollow spherical particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21358488A JP2705133B2 (en) 1988-08-30 1988-08-30 Zirconia micro hollow spherical particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0264016A true JPH0264016A (en) 1990-03-05
JP2705133B2 JP2705133B2 (en) 1998-01-26

Family

ID=16641622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21358488A Expired - Fee Related JP2705133B2 (en) 1988-08-30 1988-08-30 Zirconia micro hollow spherical particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2705133B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601594A1 (en) * 1992-12-11 1994-06-15 Asahi Glass Company Ltd. Process for producing crystalline microballoons
WO2004015158A1 (en) * 2002-08-13 2004-02-19 Saint-Gobain Ceramics & Plastics, Inc. Plasma spheroidized ceramic powder
EP1580177A1 (en) * 2004-03-22 2005-09-28 Yazaki Corporation Producing method for zirconia hollow particles
AU2010239045B2 (en) * 2009-04-21 2013-10-03 Hebei Yl-Bangda New Materials Limited Company Method and device for producing hollow microspheres
WO2022183640A1 (en) * 2021-03-04 2022-09-09 中国科学院过程工程研究所 Preparation method and application of amorphous metal oxide hollow multi-shell material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601594A1 (en) * 1992-12-11 1994-06-15 Asahi Glass Company Ltd. Process for producing crystalline microballoons
KR100292362B1 (en) * 1992-12-11 2001-11-14 세야 히로미치 Method for manufacturing crystalline micro hollow tools
WO2004015158A1 (en) * 2002-08-13 2004-02-19 Saint-Gobain Ceramics & Plastics, Inc. Plasma spheroidized ceramic powder
EP1580177A1 (en) * 2004-03-22 2005-09-28 Yazaki Corporation Producing method for zirconia hollow particles
AU2010239045B2 (en) * 2009-04-21 2013-10-03 Hebei Yl-Bangda New Materials Limited Company Method and device for producing hollow microspheres
US8845936B2 (en) 2009-04-21 2014-09-30 Hebei Yl-Bangda New Materials Limited Company Process and device for the preparation of hollow microspheres comprising centrifugal atomization
WO2022183640A1 (en) * 2021-03-04 2022-09-09 中国科学院过程工程研究所 Preparation method and application of amorphous metal oxide hollow multi-shell material

Also Published As

Publication number Publication date
JP2705133B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
AU2002367590B2 (en) Process for making nano-sized stabilized zirconia
JP5356639B2 (en) Zirconia fine powder and method for producing the same
JP2010132527A (en) Method for producing aluminum titanate ceramic
JPS62230610A (en) Production of zirconium sol and gel and production of zirconia using said sol and gel
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JP5356665B2 (en) Zirconia sintered body
US5275759A (en) Zirconia sol, method for production thereof, porous ceramic-producing slurry, and porous ceramic product obtained by use thereof
JPH0264016A (en) Zirconia-based hollow microspherical particle and production thereof
JPH05193948A (en) Zirconia powder and production thereof
JPH0214823A (en) Production of submicron powder of zirconium oxide stabilized by yttrium oxide
JPH10139436A (en) Zirconia particle for solid electrolyte and its production
JP2532753B2 (en) Slurry for producing porous ceramics and porous ceramics obtained using this slurry
JPH0154300B2 (en)
JPH0230663A (en) Sintered material of zirconia and production thereof
JPH09188562A (en) Zirconia-based sintered compact, production of the same and material for crushing part
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP2007106635A (en) Method for manufacturing zirconia-based oxide powder
JPH04930B2 (en)
JP3257095B2 (en) Method for producing zirconia powder
JP2006143551A (en) Zirconia powder
JPH0292825A (en) Production of zirconium oxide fine powder
JPS62191426A (en) Zirconia polycrystalline microballon and its production
JPH01301520A (en) Production of alumina-zirconia multiple powder
KR100419060B1 (en) A method of preparing silica sleeve for hearth roll by sol-gel process
JPH0420851B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees