JPH09188562A - Zirconia-based sintered compact, production of the same and material for crushing part - Google Patents

Zirconia-based sintered compact, production of the same and material for crushing part

Info

Publication number
JPH09188562A
JPH09188562A JP8003499A JP349996A JPH09188562A JP H09188562 A JPH09188562 A JP H09188562A JP 8003499 A JP8003499 A JP 8003499A JP 349996 A JP349996 A JP 349996A JP H09188562 A JPH09188562 A JP H09188562A
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
based sintered
stabilizer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8003499A
Other languages
Japanese (ja)
Other versions
JP3736649B2 (en
Inventor
Toru Nakayama
亨 中山
Teruhiko Takeda
輝彦 武田
Noriaki Okamoto
憲明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP00349996A priority Critical patent/JP3736649B2/en
Publication of JPH09188562A publication Critical patent/JPH09188562A/en
Application granted granted Critical
Publication of JP3736649B2 publication Critical patent/JP3736649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain zirconia-based sintered compact excellent in mechanical characteristics and low temperature deterioration resistance and capable of sintering at a relatively low temperature, and a material for a crushing part using the sintered material. SOLUTION: This zirconia-based sintered compact contains ZrO2 as a major component, and simultaneously uses 'Y2 O3 ' and 'Yb2 O3 , Er2 O3 , and/or Ho2 O3 ' as a stabilizer with 30-40mol% Y2 O3 content in R2 O3 , 2.0-3.0mol% R2 O3 content and <=1.0mol% Y2 O3 in the sintered compact, and its crystal particles mainly consists of a tetragonal phase or a mixed phase of the tetragonal and a cubic phases. The raw material mixture is prepared by a chemical synthetic or a oxide mixing method so as to make the prescribed raw material composition, the mixture is calcined at a prescribed temperature (500-1200 deg.C) and then the raw material powder obtained through a crushing process is formed and sintered at a prescribed temperature (1300-1650 deg.C). A material for a crushing part is constituted by the zirconia sintered compact and has <=2μm mean particle diameter of the sintered compact and >=6.0g/cm<2> bulk density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い機械的特性を
有する希土類金属酸化物安定化ジルコニア質焼結体及び
その製造方法並びに粉砕用部品材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal oxide-stabilized zirconia-based sintered body having high mechanical properties, a method for producing the same, and a crushing component material.

【0002】[0002]

【従来の技術】近年、ジルコニア(ZrO2)質焼結体は、そ
の強靱性を応用したセラミックスハサミや医療用材料、
潤滑性を利用した金型押出し用ダイス、断熱性及び熱膨
張性の特性を利用した断熱型エンジン用部品、或いは、
酸素イオン導電性を応用した酸素センサや燃料電池等の
構成材料として幅広く使用されている。
2. Description of the Related Art In recent years, zirconia (ZrO 2 ) based sintered materials have been used for ceramic scissors, medical materials, and the like, to which the toughness is applied.
Die for die extrusion that utilizes lubricity, adiabatic engine parts that utilize thermal insulation and thermal expansion properties, or
It is widely used as a constituent material for oxygen sensors and fuel cells that apply oxygen ion conductivity.

【0003】なかでも、希土類金属酸化物(R2O3)を安定
化剤としたジルコニア質焼結体の機械的特性は、他のセ
ラミックスに比べて特に優れたものであることが知られ
ており、この特性を利用した製品の開発も盛んに行われ
ている。近年では、セラミックス材料や金属粉或いは食
品関連などの混合や粉砕に利用される粉砕媒体(メデイ
ア)等の粉砕用部品材料としても注目を集めている。
Among them, it is known that the zirconia-based sintered body using a rare earth metal oxide (R 2 O 3 ) as a stabilizer has particularly excellent mechanical properties as compared with other ceramics. However, products utilizing this characteristic are being actively developed. In recent years, attention has been focused on as a material for crushing such as a crushing medium (media) used for mixing and crushing ceramic materials, metal powders, food-related products, and the like.

【0004】希土類金属酸化物を安定化剤としたジルコ
ニア質焼結体としては、安定化剤としてY2O3を用いたも
の(特公昭61−21184号公報)、安定化剤としてSc2O3,Sm
2O3,Eu2O3,Gd2O3,Tb2O3,Dy2O3,Ho2O3,Er2O3,Tm2
O3,Yb2O3及びLu2O3よりなる群から選ばれる1種又は2
種以上の希土類金属酸化物を用いたもの(特公平2−2962
5号公報)などが提案されている。
The zirconia-based sintered body using a rare earth metal oxide as a stabilizer uses Y 2 O 3 as a stabilizer (Japanese Patent Publication No. 61-21184) and Sc 2 O as a stabilizer. 3 , Sm
2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2
One or two selected from the group consisting of O 3 , Yb 2 O 3 and Lu 2 O 3
Using at least one rare earth metal oxide (Japanese Patent Publication No.
No. 5) is proposed.

【0005】一方、希土類金属酸化物安定化ジルコニア
質焼結体を用いた粉砕用部品材料としては、安定化剤が
Yb2O3であるジルコニア質焼結体を用いた粉砕用部品材
料(特公平2−20587号公報)、安定化剤がYb2O3,Er2O3
びHo2O3よりなる群から選ばれる1種又は2種以上の希
土類金属酸化物であるジルコニア質焼結体を用いた粉砕
用部品材料(特開平6−39303号公報)などが提案されてい
る。
On the other hand, as a material for pulverizing parts using a rare earth metal oxide-stabilized zirconia-based sintered body, a stabilizer is used.
A material for pulverizing parts using a zirconia-based sintered body which is Yb 2 O 3 (Japanese Patent Publication No. 2-20587), and a stabilizer from the group consisting of Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3. A crushing component material (Japanese Patent Laid-Open No. 6-39303) using a zirconia-based sintered body that is one or more selected rare earth metal oxides has been proposed.

【0006】機械的強度面からみると、一般に、Y2O3
安定化剤に用いたジルコニア質焼結体よりも、Yb2O3,E
r2O3及びHo2O3よりなる群から選ばれる1種又は2種以
上の希土類金属酸化物を安定化剤に用いたジルコニア質
焼結体の方が優れている。また、Y2O3を安定化剤に用い
たジルコニア質焼結体よりも、Yb2O3,Er2O3及びHo2O3
よりなる群から選ばれる1種又は2種以上の希土類金属
酸化物を安定化剤に用いたジルコニア質焼結体の方が高
い密度を有するために、粉砕用部品材料として粉砕媒体
(メディア)に用いた場合にも優れた粉砕能力が得られ
る。
From the viewpoint of mechanical strength, in general, Yb 2 O 3 , E is more preferable than a zirconia-based sintered body using Y 2 O 3 as a stabilizer.
A zirconia-based sintered body using one or more rare earth metal oxides selected from the group consisting of r 2 O 3 and Ho 2 O 3 as a stabilizer is superior. In addition, Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3 are better than zirconia-based sintered bodies using Y 2 O 3 as a stabilizer.
Since a zirconia-based sintered body using one or more rare earth metal oxides selected from the group consisting of as a stabilizer has a higher density, it is used as a grinding component material for a grinding medium.
Excellent crushing ability can be obtained even when used for (media).

【0007】[0007]

【発明が解決しようとする課題】ところで、希土類金属
酸化物を安定化剤としたジルコニア質焼結体は、このジ
ルコニア質焼結体の結晶相のうち、常温では準安定相で
ある正方晶が安定相の単斜晶に転移し、この相転移に伴
う体積膨張により焼成体内に微小亀裂が発生し、低温度
域での長期エ−ジングに伴う劣化が生じる。特に、100
〜300℃の水中もしくは水蒸気中でのエ−ジングは著し
い劣化を生じる、いわゆる“低温劣化”と呼ばれる現象
が認められる。
By the way, the zirconia-based sintered body using a rare earth metal oxide as a stabilizer has a tetragonal crystal which is a metastable phase at room temperature among the crystal phases of the zirconia-based sintered body. It transforms into a stable phase of monoclinic crystal, and the volume expansion accompanying this phase transformation causes microcracks in the fired body, causing deterioration due to long-term aging in a low temperature range. Especially 100
Aging in water or steam at up to 300 ° C causes a remarkable deterioration, which is a phenomenon called "low temperature deterioration".

【0008】従来の前記した“Yb2O3,Er2O3及びHo2O3
よりなる群から選ばれる1種又は2種以上の希土類金属
酸化物を安定化剤に用いたジルコニア質焼結体”は、前
記したとおり、Y2O3を安定化剤に用いたジルコニア質焼
結体に比し機械的強度面で優れており、また、高密度を
有するものである。しかしながら、前者の“Yb2O3,Er2
O3及びHo2O3よりなる群から選ばれる1種又は2種以上
の希土類金属酸化物を安定化剤に用いたジルコニア質焼
結体”は、後者のY2O3を安定化剤に用いたジルコニア質
焼結体よりも、前記した「低温度域での長期エ−ジング
に伴う劣化」が生じやすく、特に前記した「低温劣化」
と呼ばれる現象が起こりやすいという欠点を有してい
る。
The above-mentioned conventional "Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3"
As described above, the "zirconia-based sintered body using one or two or more kinds of rare earth metal oxides selected from the group consisting of a zirconia-based sintered body as a stabilizer" is a zirconia-based sintered body using Y 2 O 3 as a stabilizer. It is superior in mechanical strength and has a high density compared to the aggregate, but the former “Yb 2 O 3 , Er 2
The zirconia-based sintered body using one or more rare earth metal oxides selected from the group consisting of O 3 and Ho 2 O 3 as a stabilizer is the latter Y 2 O 3 as a stabilizer. Compared with the zirconia-based sintered body used, the above-mentioned "deterioration due to long-term aging in a low temperature range" is more likely to occur, and especially the above-mentioned "low temperature deterioration".
It has a drawback that a phenomenon called "is likely to occur".

【0009】上記“低温劣化”の防止対策としては、ホ
ウ素化合物(例えばB2O3)とAl2O3及び/又はSiO2を含む
ジルコニア質焼結体が提案されている(特開平6−239662
号公報)。しかし、このジルコニア質焼結体を用いた粉
砕用部品材料では、B2O3などを添加剤として用いる電子
部品材料などの粉砕混練には問題を残す。
As a measure for preventing the above "low temperature deterioration", a zirconia-based sintered body containing a boron compound (for example, B 2 O 3 ) and Al 2 O 3 and / or SiO 2 has been proposed (JP-A-6- 239662
Publication). However, the crushing component material using this zirconia-based sintered body has a problem in crushing and kneading electronic component materials using B 2 O 3 or the like as an additive.

【0010】本発明は、上記欠点,問題点に鑑み成され
たものであって、その目的とするところは、機械的特性
及び耐低温劣化性に優れた高密度のジルコニア質焼結体
及びその製造方法並びにこのジルコニア質焼結体を用い
た粉砕用部品材料を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks and problems, and an object of the present invention is to provide a high-density zirconia-based sintered body excellent in mechanical properties and low-temperature deterioration resistance, and the same. It is an object of the present invention to provide a manufacturing method and a crushing part material using the zirconia-based sintered body.

【0011】[0011]

【課題を解決するための手段】本発明に係るジルコニア
質焼結体は、ZrO2を主成分とし、所定範囲のY2O3とYb2O
3,Er2O3及びHo2O3よりなる群から選ばれる1種又は2
種以上の希土類金属酸化物からなる安定化剤を含む配合
物を焼結して得ることを特徴とし、これにより特に機械
的特性及び耐低温劣化性に優れたジルコニア質焼結体を
提供するものである。
A zirconia-based sintered body according to the present invention contains ZrO 2 as a main component and contains Y 2 O 3 and Yb 2 O within a predetermined range.
1 or 2 selected from the group consisting of 3 , Er 2 O 3 and Ho 2 O 3.
A zirconia-based sintered body characterized by being obtained by sintering a compound containing a stabilizer comprising one or more rare earth metal oxides, which is particularly excellent in mechanical properties and low temperature deterioration resistance. Is.

【0012】また、本発明に係るジルコニア質焼結体の
製造方法は、所定の原料組成となるように、中和共沈
法,加水分解法,アルコキシド法などの化学合成法又は
酸化物混合法により原料配合物を調製し、これを所定温
度(500〜1200℃)で仮焼した後、解砕工程を経て得た原
料粉末を成形し、所定温度(1300〜1650℃)で焼結するこ
とを特徴とし、これにより比較的低い温度で焼結させる
ことが可能であり、且つ機械的特性及び耐低温劣化性に
優れたジルコニア質焼結体を得ることができるものであ
る。
The method for producing a zirconia-based sintered body according to the present invention is a chemical synthesis method such as a neutralization coprecipitation method, a hydrolysis method, an alkoxide method or an oxide mixing method so that a predetermined raw material composition is obtained. Prepare a raw material blend by calcination at a predetermined temperature (500 ~ 1200 ℃), then shape the raw material powder obtained through the crushing process, and sinter at a predetermined temperature (1300 ~ 1650 ℃) This makes it possible to obtain a zirconia-based sintered body that can be sintered at a relatively low temperature and that has excellent mechanical properties and low-temperature deterioration resistance.

【0013】さらに、本発明に係る粉砕用部品材料は、
所定の平均粒子径(2μm以下)、所定のかさ密度(6.0g
/cm3以上)である機械的特性及び耐低温劣化性に優れ
た高密度のジルコニア質焼結体を用いることを特徴とす
る。
Further, the crushing component material according to the present invention is
Specified average particle size (2μm or less), Specified bulk density (6.0g
/ Cm 3 or more) and a high-density zirconia-based sintered body excellent in mechanical properties and low-temperature deterioration resistance are used.

【0014】即ち、本発明に係るジルコニア質焼結体
は、「ZrO2を主成分とし、Y2O3とYb2O3,Er2O3及びHo2O
3よりなる群から選ばれる1種又は2種以上の希土類金
属酸化物とで安定化され、且つ安定化剤としての希土類
金属酸化物(R2O3)中に占めるY2O3の割合が30〜40モル%
であり、得られる結晶粒子が主として正方晶の相又は正
方晶と立方晶との混合相よりなることを特徴とするジル
コニア質焼結体。」(請求項1)を要旨とし、また、上記
ジルコニア質焼結体において、 ・焼結体中のR2O3の含有量が2.0〜3.0モル%であること
(請求項2)、 ・焼結体中のY2O3の含有量が1.0モル%以下であること
(請求項3)、を特徴とする。
That is, the zirconia-based sintered body according to the present invention has "ZrO 2 as a main component, Y 2 O 3 and Yb 2 O 3 , Er 2 O 3 and Ho 2 O.
Stabilized with one or more rare earth metal oxides selected from the group consisting of 3 , and the proportion of Y 2 O 3 in the rare earth metal oxide (R 2 O 3 ) as a stabilizer is 30-40 mol%
And a crystal grain obtained is mainly composed of a tetragonal phase or a mixed phase of a tetragonal crystal and a cubic crystal. (Claim 1), and in the zirconia-based sintered body, the content of R 2 O 3 in the sintered body is 2.0 to 3.0 mol%.
(Claim 2), The content of Y 2 O 3 in the sintered body is 1.0 mol% or less.
(Claim 3),

【0015】また、本発明に係るジルコニア質焼結体の
製造方法は、「ZrO2を主成分とし、Y2O3とYb2O3,Er2O3
及びHo2O3よりなる群から選ばれる1種又は2種以上の
希土類金属酸化物とで安定化され、且つ安定化剤として
の希土類金属酸化物(R2O3)中に占めるY2O3の割合が30〜
40モル%であるジルコニア質焼結体の製造方法であっ
て、(1) 原料組成として、該焼結体中の前記希土類金属
酸化物(R2O3)からなる安定化剤の含有量が2.0〜3.0モル
%で、そのうちY2O3の含有量が1.0モル%以下となるよ
うに、中和共沈法,加水分解法,アルコキシド法などの
化学合成法又は酸化物混合法により原料配合物を調製す
る工程、(2) 上記配合物を500〜1200℃で仮焼する工
程、(3) 上記解砕物を成形する工程、(4) 上記成形体を
1300〜1650℃で焼結する工程、を含むことを特徴とする
ジルコニア質焼結体の製造方法。」(請求項4)を要旨と
する。
Further, the method for producing a zirconia-based sintered body according to the present invention is as follows: "ZrO 2 is the main component, Y 2 O 3 and Yb 2 O 3 , Er 2 O 3
Y 2 O which is stabilized with one or more rare earth metal oxides selected from the group consisting of and Ho 2 O 3 and which is contained in the rare earth metal oxide (R 2 O 3 ) as a stabilizer. 3 to 30
A method for producing a zirconia-based sintered body which is 40 mol%, wherein (1) as a raw material composition, a content of a stabilizer composed of the rare earth metal oxide (R 2 O 3 ) in the sintered body is 2.0 to 3.0 mol%, of which the content of Y 2 O 3 is 1.0 mol% or less, the raw materials are blended by a chemical synthesis method such as a neutralization coprecipitation method, a hydrolysis method, an alkoxide method or an oxide mixing method. A step of preparing a product, (2) a step of calcining the above-mentioned compound at 500 to 1200 ° C., (3) a step of molding the above-mentioned crushed product, (4) the above-mentioned molded body
A method for producing a zirconia-based sintered body, comprising a step of sintering at 1300 to 1650 ° C. (Claim 4) is the gist.

【0016】さらに、本発明に係る粉砕用部品材料は、
前記請求項1,2又は3に示されるジルコニア質焼結体
を用いて構成された粉砕用部品材料であって、「焼結体
の平均粒子径が2μm以下で、且つかさ密度が6.0g/c
3以上であることを特徴とするジルコニア質焼結体を
用いた粉砕用部品材料。」(請求項5)を要旨とする。
Further, the crushing component material according to the present invention is
A crushing part material constituted by using the zirconia-based sintered body according to claim 1, 2 or 3, wherein the average particle diameter of the sintered body is 2 μm or less and the bulk density is 6.0 g / c
A pulverized part material using a zirconia-based sintered body characterized by having a size of at least m 3 . (Claim 5) is the gist.

【0017】[0017]

【発明の実施の形態】以下、本発明のジルコニア質焼結
体及びその製造方法、並びに、粉砕用部品材料につい
て、順に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The zirconia-based sintered body of the present invention, the method for producing the same, and the material for crushing parts will be described in detail below.

【0018】まず、本発明に係るジルコニア質焼結体に
ついて説明する。本発明に係るジルコニア質焼結体は、
前記したとおり、ZrO2を主成分とし、Y2O3とYb2O3,Er2
O3及びHo2O3よりなる群から選ばれる1種又は2種以上
の希土類金属酸化物を安定化剤として用いるものであ
る。(Tm2O3及びLu2O3を用いることもできるが、Tm2O3
びLu2O3は非常に高価であり、ジルコニア製品とした場
合、市場競争力で問題となる。)
First, the zirconia-based sintered body according to the present invention will be described. The zirconia-based sintered body according to the present invention,
As described above, ZrO 2 is the main component, and Y 2 O 3 and Yb 2 O 3 , Er 2
One or more rare earth metal oxides selected from the group consisting of O 3 and Ho 2 O 3 are used as a stabilizer. (Tm 2 O 3 and Lu 2 O 3 can also be used, but Tm 2 O 3 and Lu 2 O 3 are very expensive, and when used as a zirconia product, they pose a problem in terms of market competitiveness.)

【0019】本発明で用いる安定化剤について、0.5モ
ル%以下であれば、上記Y2O3,Yb2O3,Er2O3,Ho2O3
外に他の希土類金属酸化物(例えばLa2O3,CeO2,Pr
6O11,Nd2O3,Sm2O3,Eu2O3,Gd2O3,Tb4O7,Dy2O3,Tm
2O3,Lu2O3,Sc2O3など)を含むことが可能であり、これ
も本発明に包含されるものである。その理由は、上記の
ような他の希土類金属酸化物が0.5モル%未満含まれて
いても、機械的強度に顕著な変化は認められないからで
ある。ただし、0.5モル%を超えて含むと、機械的強度
の低下が見られ、本発明で目的とする所望のジルコニア
質焼結体が得られないので好ましくない。
With respect to the stabilizer used in the present invention, if it is 0.5 mol% or less, in addition to the above Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3 , other rare earth metal oxides (eg, La 2 O 3 , CeO 2 , Pr
6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Tm
2 O 3 , Lu 2 O 3 , Sc 2 O 3 and the like), which are also included in the present invention. The reason is that even if the content of the other rare earth metal oxides as described above is less than 0.5 mol%, no significant change is observed in the mechanical strength. However, if the content exceeds 0.5 mol%, the mechanical strength is lowered, and the desired zirconia-based sintered body intended in the present invention cannot be obtained, which is not preferable.

【0020】本発明に係るジルコニア質焼結体におい
て、安定化剤としての希土類金属酸化物(R2O3)中のY2O3
の割合が30〜40モル%であることを特徴とする。希土類
金属酸化物(R2O3)中のY2O3の割合が30モル%未満のもの
では、強度的には向上するが、耐低温劣化性の悪いもの
となり、一方、40モル%を超えるものでは、耐低温劣化
性の低下は見られないけれども、高い強度を有するもの
は得られないので好ましくない。
In the zirconia-based sintered body according to the present invention, Y 2 O 3 in the rare earth metal oxide (R 2 O 3 ) as a stabilizer is used.
Is 30 to 40 mol%. When the proportion of Y 2 O 3 in the rare earth metal oxide (R 2 O 3 ) is less than 30 mol%, the strength is improved, but the low temperature deterioration resistance is poor, while 40 mol% is used. If it exceeds the above range, deterioration in low temperature deterioration resistance is not observed, but one having high strength cannot be obtained, which is not preferable.

【0021】また、本発明に係るジルコニア質焼結体に
おいて、安定化剤としての希土類金属酸化物(R2O3)の含
有量が2.0〜3.0モル%の範囲内にあることが好ましい。
R2O3の含有量が2.0モル%未満では、得られるジルコニ
ア質焼結体に安定した正方晶を常温で維持させることが
でき難く、正方晶から単斜晶に転移する際に生じる体積
変化により亀裂を伴うので、所望の焼結体を得ることが
できない。一方、R2O3の含有量が3.0モル%を超えるも
のでは、高い強度を有するものは得られないので好まし
くない。
Further, in the zirconia-based sintered body according to the present invention, the content of the rare earth metal oxide (R 2 O 3 ) as a stabilizer is preferably in the range of 2.0 to 3.0 mol%.
When the content of R 2 O 3 is less than 2.0 mol%, it is difficult to maintain a stable tetragonal crystal in the obtained zirconia-based sintered body at room temperature, and the change in volume occurs when the tetragonal crystal changes to the monoclinic crystal. Therefore, a desired sintered body cannot be obtained because cracks occur. On the other hand, if the content of R 2 O 3 exceeds 3.0 mol%, a material having high strength cannot be obtained, which is not preferable.

【0022】さらに、本発明に係るジルコニア質焼結体
において、安定化剤であるY2O3の含有量は1.0モル%以
下とするのが好ましい。Y2O3の含有量が1.0モル%を超
えるものでは、耐低温劣化性の低下はみられないけれど
も、高い強度を有するものは得られないので好ましくな
い。
Further, in the zirconia-based sintered body according to the present invention, the content of Y 2 O 3 as a stabilizer is preferably 1.0 mol% or less. When the content of Y 2 O 3 exceeds 1.0 mol%, the low-temperature deterioration resistance is not deteriorated, but a material having high strength cannot be obtained, which is not preferable.

【0023】また、本発明に係るジルコニア焼結体は、
該焼結体中の結晶粒子が主として正方晶の相又は正方晶
と立方晶との混合相よりなることを特徴とする。この理
由は、結晶粒子が単斜晶を含む場合、耐低温劣化性が低
下する傾向が認められ、本発明で目的とする耐低温劣化
性に優れたジルコニア焼結体が得られないからである。
The zirconia sintered body according to the present invention is
The crystal grains in the sintered body are mainly composed of a tetragonal phase or a mixed phase of tetragonal and cubic. The reason for this is that when the crystal grains include monoclinic crystals, the low temperature deterioration resistance tends to decrease, and the zirconia sintered body excellent in low temperature deterioration resistance aimed at by the present invention cannot be obtained. .

【0024】次に、本発明に係るジルコニア質焼結体の
製造方法について説明する。まず、中和共沈法,加水分
解法,アルコキシド法などの化学合成法又は酸化物混合
法を用いて、ZrO2とR2O3を前記所定原料組成になるよう
に調製する。次に、この原料粉を500〜1200℃の温度範
囲内で仮焼し、該仮焼粉を解砕した後成形し、1300〜16
50℃の温度範囲内で焼結(本焼成)する。
Next, a method of manufacturing the zirconia-based sintered body according to the present invention will be described. First, a chemical synthesis method such as a neutralization coprecipitation method, a hydrolysis method, an alkoxide method, or an oxide mixing method is used to prepare ZrO 2 and R 2 O 3 so as to have the predetermined raw material composition. Next, this raw material powder is calcined within a temperature range of 500 to 1200 ° C., the calcined powder is crushed and then molded, and 1300 to 16
Sintering (main firing) within a temperature range of 50 ° C.

【0025】500〜1200℃の仮焼は、本発明の製造方法
において重要な要件の1つであり、これは、混合原料を
できる限り均一なものにするためであり、また、ZrO2
一部を予め相転移させておき、焼成過程(本焼成工程)で
の焼結の促進を図るためである。
The calcination at 500 to 1200 ° C. is one of the important requirements in the production method of the present invention, in order to make the mixed raw material as uniform as possible, and one of ZrO 2 This is to promote the sintering in the firing process (main firing process) by preliminarily undergoing phase transition of the part.

【0026】仮焼条件の下限値である500℃は、仮焼に
よってZrO2の単斜晶の一部を正方晶に相転移させること
が可能な最低温度である。一般に、ZrO2の単斜晶から正
方晶への転移は“1170℃付近”と言われているが、ZrO2
に安定化剤を加えることによりその温度は低温側に移動
し、例えばY2O3を安定化剤として用いたものでは、800
℃程度の温度で相転移が見られる。なお、この温度は、
安定化剤の種類或いは量により異なる値となる。
The lower limit of the calcination conditions, 500 ° C., is the lowest temperature at which part of the monoclinic ZrO 2 crystal can be transformed into a tetragonal crystal by calcination. In general, the transition from the monoclinic ZrO 2 to tetragonal Although it is said that "around 1170 ℃", ZrO 2
The temperature is shifted to the low temperature side by adding a stabilizer to, for example, when using Y 2 O 3 as a stabilizer,
A phase transition is observed at a temperature of about ℃. This temperature is
The value varies depending on the type or amount of stabilizer.

【0027】一方、仮焼温度の上限値である1200℃は、
仮焼後の原料に見られる凝集粉が解砕工程により十分解
砕され得る最高温度であり、この温度を超えて仮焼を行
ったものでは、解砕後においても凝集粒が残留し、これ
が大きな破壊点となり、ジルコニア質焼結体の強度の低
下を招くので好ましくない。従って、本発明の方法にお
ける仮焼温度は500〜1200℃が好ましいが、仮焼を行っ
た後の原料は幾分凝集しているため、解砕を必要とす
る。
On the other hand, the upper limit of the calcination temperature of 1200 ° C. is
The agglomerated powder found in the raw material after calcination is the maximum temperature at which it can be sufficiently crushed in the crushing process, and in the case where calcination is performed above this temperature, agglomerated particles remain after crushing, This is not preferable because it becomes a large breaking point and causes a decrease in strength of the zirconia-based sintered body. Therefore, the calcination temperature in the method of the present invention is preferably 500 to 1200 ° C., but the raw material after the calcination is somewhat agglomerated, so crushing is necessary.

【0028】本発明の方法において、焼結(本焼成)温度
は、前記したように、1300〜1650℃が好ましく、特に13
50〜1500℃がより好ましい。1300℃未満では機械的特性
の低いものしか得られず、一方、1650℃を超えると結晶
粒の異常粒成長などが生じ、このため高靱性な焼結体が
得られないので好ましくない。
In the method of the present invention, the sintering (main firing) temperature is preferably 1300 to 1650 ° C., particularly 13 ° C., as described above.
50 to 1500 ° C is more preferable. If the temperature is lower than 1300 ° C, only those having low mechanical properties can be obtained. On the other hand, if the temperature is higher than 1650 ° C, abnormal grain growth of crystal grains occurs, which makes it impossible to obtain a high toughness sintered body.

【0029】本発明の方法において、特に加圧焼結処理
によりジルコニア質焼結体を製造するのが好ましい。そ
の理由は、加圧焼結処理ににより、より一層強度の高い
ジルコニア質焼結体を製造することができるからであ
る。例えば、後記する実施例においてCIP成形後の焼
成により製造された強度1300MPa以上のものは、HIP
処理により1500MPa以上の高強度な焼結体とすることが
できる(後記表2中の組成No.11参照)。
In the method of the present invention, it is particularly preferable to produce the zirconia-based sintered body by pressure sintering. The reason is that it is possible to manufacture a zirconia-based sintered body having higher strength by the pressure sintering process. For example, in the examples described later, those manufactured by firing after CIP molding and having a strength of 1300 MPa or more are HIP
A high-strength sintered body of 1500 MPa or more can be obtained by the treatment (see composition No. 11 in Table 2 below).

【0030】次に、本発明に係る粉砕用部品材料につい
て説明する。本発明に係る粉砕用部品材料は、前記した
本発明に係るジルコニア質焼結体を用いて構成された粉
砕用部品材料であって、該焼結体の平均粒子径が2μm
以下で、且つかさ密度が6.0g/cm3以上であるジルコ
ニア質焼結体を用いた粉砕用部品材料を特徴とする。
Next, the material for crushing parts according to the present invention will be described. The crushing component material according to the present invention is a crushing component material formed by using the zirconia-based sintered body according to the present invention, and the average particle diameter of the sintered body is 2 μm.
The following is characterized by a crushing part material using a zirconia-based sintered body having a bulk density of 6.0 g / cm 3 or more.

【0031】平均粒子径が2μmを超えるような焼結体
では、耐摩耗性及び耐低温劣化性の面において良好な特
性を得ることができず、また、かさ密度が6.0g/cm3
未満の焼結体では、粉砕媒体(メデイア)として用いたと
きに現れる粉砕効率が小さなものとなってしまうこと及
び強度特性が低い値となるので好ましくない。
With a sintered body having an average particle size of more than 2 μm, good properties in terms of wear resistance and low temperature deterioration resistance cannot be obtained, and the bulk density is 6.0 g / cm 3.
A sintered body of less than 1 is not preferable because the pulverization efficiency that appears when used as a pulverization medium (media) becomes small and the strength characteristic becomes a low value.

【0032】また、本発明に係る粉砕用部品材料は、前
記した本発明に係るジルコニア質焼結体(焼結体中の結
晶粒子が主として正方晶の相又は正方晶と立方晶との混
合相よりなる)ものを使用するが、これは、結晶粒子が
単斜晶を含む場合、耐低温劣化性が低下する傾向が認め
られ、このために粉砕用部品材料としたとき、装置稼働
時に発生する熱及び装置洗浄後の乾燥時の熱により低温
劣化が生じるからである。
Further, the crushing component material according to the present invention is the zirconia-based sintered body according to the above-mentioned present invention (a phase in which the crystal grains in the sintered body are mainly tetragonal or a mixed phase of tetragonal and cubic). However, when the crystal particles include monoclinic crystals, the low temperature deterioration resistance tends to decrease. This is because low temperature deterioration occurs due to heat and heat during drying after cleaning the device.

【0033】なお、焼結体の結晶相(単斜晶,正方晶,
立方晶)含有量は、焼結体表面を#600のダイヤモンド砥
石で研削した後、1〜5μmのダイヤモンド粒により鏡面
に仕上げ、その表面のX線回折による強度比より以下の
式を用いて求めた。
The crystal phase of the sintered body (monoclinic, tetragonal,
(Cubic crystal) content is obtained by grinding the surface of the sintered body with a # 600 diamond grindstone, then finishing it to a mirror surface with 1-5 μm diamond grains, and using the formula below from the intensity ratio of the surface by X-ray diffraction. It was

【0034】[0034]

【数1】 [Equation 1]

【0035】また、平均粒子の測定は、焼結体表面を#
600のダイヤモンド砥石で研削して鏡面に仕上げた焼結
体の表面をフッ化水素酸によりエッチング処理を行い、
電子顕微鏡写真で粒子を50個以上含むような一定面積
(S)内にある粒子数(n)を数え、粒子1個あたりの平均
面積(s)に等しい面積の円の直径(d)を次式により計算
した。 ・式………d=(4S/π)1/2 そして、直径(d)を同一試料の3カ所以上の視野につい
て求めて、その平均粒子径とした。なお、粒子数(n)
は、一定面積(S)に完全に含まれる粒子の数と一定面積
の境界線で切られる粒子の数の1/2との和とした。(こ
の測定法の詳細については、特公昭61−21184号公報参
照。)
The average particle size is measured on the surface of the sintered body by #
The surface of the sintered body, which was ground to a mirror surface by grinding with 600 diamond grindstones, was etched with hydrofluoric acid,
A certain area in the electron micrograph that contains 50 or more particles
The number (n) of particles in (S) was counted, and the diameter (d) of a circle having an area equal to the average area (s) per particle was calculated by the following formula. Formula ... d = (4S / π) 1/2 Then, the diameter (d) was obtained for three or more visual fields of the same sample and defined as the average particle size. The number of particles (n)
Is the sum of the number of particles completely contained in the constant area (S) and 1/2 of the number of particles cut at the boundary line of the constant area. (For details of this measuring method, see JP-B-61-21184.)

【0036】[0036]

【作用】本発明に係るジルコニア質焼結体によれば、機
械的特性及び耐低温劣化性に優れたジルコニア質焼結体
を提供することができる。また、本発明に係る製造方法
によれば、所定の原料組成となるように中和共沈法,加
水分解法,アルコキシド法などの化学合成法又は酸化物
混合法により調製された原料を用い、これを所定温度で
仮焼した後、解砕工程を経て得た原料粉末を成形し、所
定温度で焼成することにより、高い機械的特性を有し、
耐低温劣化性に優れたジルコニア質焼結体を得ることが
できる。
According to the zirconia-based sintered body of the present invention, it is possible to provide a zirconia-based sintered body having excellent mechanical properties and low-temperature deterioration resistance. Further, according to the production method of the present invention, a raw material prepared by a chemical synthesis method such as a neutralization coprecipitation method, a hydrolysis method, an alkoxide method or an oxide mixing method so that a predetermined raw material composition is obtained, After calcining this at a predetermined temperature, the raw material powder obtained through the crushing step is molded, and by firing at a predetermined temperature, it has high mechanical properties,
It is possible to obtain a zirconia-based sintered body excellent in low-temperature deterioration resistance.

【0037】さらに、本発明に係る粉砕用部品材料(本
発明で規定する組成を有し、かつ本発明で規定する結晶
構成相,平均粒子径,かさ密度を満足するジルコニア質
焼結体を用いた粉砕用部品材料)によれば、高い機械的
特性を有し、耐低温劣化性及び耐摩耗性に優れた、しか
も粉砕効率の良い粉砕用部品材料を提供することができ
る。
Further, the crushing component material according to the present invention (using a zirconia-based sintered body having the composition specified in the present invention and satisfying the crystal constitution phase, the average particle size and the bulk density specified in the present invention) According to the conventional crushing part material), it is possible to provide a crushing part material having high mechanical properties, excellent low temperature deterioration resistance and abrasion resistance, and good crushing efficiency.

【0038】[0038]

【実施例】次に、本発明の実施例を比較例と共に挙げ、
本発明をより具体的に説明するが、本発明は、以下の実
施例に限定されるものではなく、前記した本発明の要旨
を逸脱しない限り、種々の変更,変形が可能である。
Next, examples of the present invention will be described together with comparative examples.
The present invention will be described more specifically, but the present invention is not limited to the following examples, and various changes and modifications can be made without departing from the gist of the present invention.

【0039】(実施例1)本実施例1では、中和共沈法
により出発原料を調製した。即ちジルコニア(Zr)源とし
てZrOCl2水溶液を、希土類金属(R)源としてRCl3水溶液
を用い、 表1に示す組成になるように配合混合した
後、アンモニア水を加えて水酸化物の形で共沈させ、乾
燥して出発混合物を調製した。
Example 1 In this Example 1, starting materials were prepared by the neutralization coprecipitation method. That is, using a ZrOCl 2 aqueous solution as a zirconia (Zr) source and an RCl 3 aqueous solution as a rare earth metal (R) source, mixing and mixing so as to have the composition shown in Table 1, and adding ammonia water to form a hydroxide. A starting mixture was prepared by coprecipitation and drying.

【0040】[0040]

【表1】 [Table 1]

【0041】次に、表2に示す温度にて仮焼を行い(た
だし、表2の組成No.11中「仮焼温度0℃」のものは仮
焼せず)、得られた仮焼粉をイオン交換水中で“ジルコ
ニア製のポツトとボ−ルを用いた遊星型ボ−ルミル”に
て解砕し、アクリル系共重合樹脂を3重量%加えてスプ
レ−造粒を行った。この造粒粉を100MPaの圧力でCIP
成形し、表2に示す温度で本焼成を行った。
Next, calcination was performed at the temperatures shown in Table 2 (however, the composition No. 11 in Table 2 having a calcination temperature of 0 ° C. was not calcinated), and the obtained calcined powder was obtained. Was crushed in ion-exchanged water with a "planetary ball mill using a zirconia pot and a ball", and 3% by weight of an acrylic copolymer resin was added to carry out spray granulation. CIP this granulated powder at a pressure of 100 MPa
It was molded and subjected to main firing at the temperatures shown in Table 2.

【0042】得られた各ジルコニア質焼結体について
「ファインセラミックスの曲げ強さ試験方法(JIS R160
1)に基づく3点曲げ強さ」「ビッカ−ス硬さ(JIS R161
0)」「IF法により求めた破壊靱性値(JIS R1607)」
「焼結体の耐低温劣化性」を測定した。その結果を表2
に示す。なお、焼結体の“耐低温劣化性”は、3点曲げ
強さ用試験片をオ−トクレ−ブに入れ、200℃の熱水中
にて50時間保持した後、3点曲げ強さ劣化の程度を測定
して判断した。○印は試験前に対し20%以下の強度劣化
が認められたもの、△印は試験前に対し20〜50%の強度
劣化が認められたもの、×印は試験前に対し50%以上の
強度劣化が認められたものである。
Regarding each of the obtained zirconia-based sintered bodies, "Bending strength test method for fine ceramics (JIS R160
3 point bending strength based on 1) "Vickers hardness (JIS R161
0) "" Fracture toughness value determined by the IF method (JIS R1607) "
The "low temperature deterioration resistance of the sintered body" was measured. Table 2 shows the results.
Shown in The "low temperature deterioration resistance" of the sintered body was determined by placing the test piece for 3-point bending strength in an autoclave and holding it in hot water at 200 ° C for 50 hours. It was judged by measuring the degree of deterioration. ○ indicates 20% or less strength deterioration before the test, △ indicates 20 to 50% strength deterioration before the test, and × indicates 50% or more before the test. Deterioration of strength was observed.

【0043】[0043]

【表2】 [Table 2]

【0044】表2から、安定化剤R2O3の含有量及びY2O3
とYb2O3,Er2O3及びHo2O3よりなる群から選ばれる1種
又は2種以上の希土類金属酸化物の量比関係が本発明の
所定範囲内である実施例では、高い強度を示し、しかも
耐低温劣化性に優れたジルコニア質焼結体が得られるこ
とが理解できる。そして、本発明で規定する所定範囲の
1つでもはずれたものでは、本発明のジルコニア質焼結
体が得ることができない。
From Table 2, the content of stabilizer R 2 O 3 and Y 2 O 3
And the amount ratio relationship of one or more rare earth metal oxides selected from the group consisting of Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3 is within the predetermined range of the present invention, it is high. It can be understood that a zirconia-based sintered body that exhibits strength and is excellent in low-temperature deterioration resistance can be obtained. And even if it falls outside one of the predetermined ranges defined in the present invention, the zirconia-based sintered body of the present invention cannot be obtained.

【0045】例えば、本発明は、安定化剤としてY2O3
必須成分とし“希土類金属酸化物(R2O3)中に占めるY2O3
の割合が30〜40モル%”と規定するが、Y2O3を用いない
組成No.2,3,4の比較例及びY2O3を用いてもR2O3中に占
めるY2O3の割合が30モル%未満である組成No.6,10,14
(Y2O3の割合:25,28,27モル%)の比較例では、いずれ
も耐低温劣化性が悪いものであった。また、安定化剤と
してY2O3のみを用いた組成No.1及びY2O3と併用してもY2
O3の割合が40モル%を超える組成No.9(Y2O3の割合:55
モル%)の比較例では、曲げ強さの低いものであった。
[0045] For example, the present invention is a Y 2 O 3 as essential components as a stabilizer "occupied in the rare earth metal oxide (R 2 O 3) Y 2 O 3
Although the proportion of is defined as 30 to 40 mol% ", even using the comparative example and Y 2 O 3 composition No.2,3,4 without using Y 2 O 3 occupied in R 2 O 3 Y 2 Composition No. 6, 10, 14 with O 3 ratio less than 30 mol%
In all of the comparative examples (Y 2 O 3 ratio: 25, 28, 27 mol%), the low temperature deterioration resistance was poor. Further, even in combination with the composition No.1 and Y 2 O 3 using only Y 2 O 3 as a stabilizer Y 2
The composition ratio of O 3 exceeds 40 mol% No.9 (ratio of Y 2 O 3: 55
In the comparative example (mol%), the bending strength was low.

【0046】さらに、本発明で規定する“R2O3:2.0〜
3.0モル%”の範囲外である組成No.5(R2O3:1.9モル%)
の比較例では、焼結せず、R2O3が3.0モル%を超える組
成No.18,19(R2O3:3.1,3.3モル%)の比較例では、曲
げ強さの低いものであった。また、本発明で規定する
“Y2O3の含有量:1.0モル%以下”の範囲外である組成N
o.13,17(Y2O3:1.1モル%,1.1モル%)の比較例でも曲
げ強さの低いものであった。
Furthermore, "R 2 O 3 : 2.0-
Composition No. 5 (R 2 O 3 : 1.9 mol%) outside the range of “3.0 mol%”
In the comparative example, without sintering, R 2 O 3 the composition exceeds 3.0 mol% Nanba18,19: In the comparative example of (R 2 O 3 3.1,3.3 mol%), but low flexural strength there were. Further, the composition N outside the range of “content of Y 2 O 3 : 1.0 mol% or less” specified in the present invention
The comparative examples of o.13 and 17 (Y 2 O 3 : 1.1 mol%, 1.1 mol%) also had low bending strength.

【0047】一方、安定化剤であるR2O3の含有量及びY2
O3とYb2O3,Er2O3及びHo2O3よりなる群から選ばれる1
種又は2種以上の希土類金属酸化物の量比関係が本発明
の所定範囲となるように調製した原料配合物を用いて
も、仮焼条件において、本発明で規定する“500〜1200
℃”の範囲外の条件下にて行った場合、本発明のジルコ
ニア質焼結体が得られない。例えば、仮焼条件として本
発明で規定する範囲外の1300℃で仮焼した比較例及び仮
焼しなかった比較例(表2の組成No.11の欄参照)では、
曲げ強度が910MPa,850MPaと低く、耐低温劣化性も悪い
ものであった。
On the other hand, the content of the stabilizer R 2 O 3 and Y 2
1 selected from the group consisting of O 3 and Yb 2 O 3 , Er 2 O 3 and Ho 2 O 3
Even if a raw material mixture prepared so that the amount ratio relationship of one kind or two or more kinds of rare earth metal oxides falls within the predetermined range of the present invention is used, "500 to 1200" specified in the present invention under calcination conditions.
The zirconia-based sintered body of the present invention cannot be obtained under the conditions outside the range of “° C.”. For example, as a calcination condition, a comparative example of calcination at 1300 ° C. outside the range specified by the present invention and In the comparative example which was not calcined (see the column of composition No. 11 in Table 2),
The bending strength was low at 910MPa and 850MPa, and the low temperature deterioration resistance was also poor.

【0048】さらに、焼結(本焼成)条件として、本発明
で規定する“1300〜1650℃”の範囲外である1700℃で焼
結した比較例及び1250℃で焼結した比較例(表2の組成N
o.11の欄参照)では、前者の高温焼結したものは、焼き
台との反応が認められ、曲げ強度も840MPaと低く、後者
の低温焼結したものでは、曲げ強度が560MPaと極端に低
く、いずれも本発明で所望するジルコニア質焼結体が得
られなかった。
Further, as a sintering (main firing) condition, a comparative example sintered at 1700 ° C., which is outside the range of “1300 to 1650 ° C.” specified in the present invention, and a comparative example sintered at 1250 ° C. (Table 2) Composition N
(Refer to column o.11), the former high-temperature sintered material had a reaction with the baking platform and the bending strength was low at 840 MPa, while the latter low-temperature sintered material had an extremely high bending strength of 560 MPa. It was low, and none of the zirconia-based sintered bodies desired in the present invention was obtained.

【0049】表2中の組成No.11欄中の“(HIP処
理)”は、1000℃で仮焼し1500℃で本焼した焼結体を更
に1400℃で200MPaでHIP処理したものである。このよ
うに更にHIP処理することにより、1530MPaという高
強度の焼結体とすることができる。
"(HIP treatment)" in the column of composition No. 11 in Table 2 is a sintered body which was calcined at 1000 ° C and finally calcined at 1500 ° C, which was further HIP treated at 1400 ° C and 200 MPa. . By further HIPing in this way, a sintered body having a high strength of 1530 MPa can be obtained.

【0050】なお、前記実施例1では、中和共沈法によ
り出発原料を調製したものであるが、酸化物混合法によ
る出発原料においても、実施例1の中和共沈法と同様な
結果が得られた。即ち、酸化ジルコニウム(ZrO2)及び希
土類金属酸化物(R2O3)を秤量し、溶媒としてイオン交換
水を使用し、ジルコニア製のポットとボ−ルを用いた遊
星型ボ−ルミルにて混練した後、乾燥して得た酸化物混
合法による出発原料を用い、その後実施例1と同一条件
でジルコニア質焼結体を製造した。得られたジルコニア
質焼結体は、中和共沈法による実施例1のジルコニア質
焼結体と同様な特性を有するものが得られた。
Although the starting material was prepared by the neutralization coprecipitation method in Example 1, the same results as in the neutralization coprecipitation method of Example 1 were also obtained in the starting materials prepared by the oxide mixing method. was gotten. That is, zirconium oxide (ZrO 2 ) and rare earth metal oxide (R 2 O 3 ) are weighed, using ion-exchanged water as a solvent, in a planetary ball mill using a zirconia pot and a ball. A zirconia-based sintered body was produced under the same conditions as in Example 1, using the starting material obtained by the oxide mixing method obtained by kneading and drying. The obtained zirconia-based sintered body had the same characteristics as the zirconia-based sintered body of Example 1 obtained by the neutralization coprecipitation method.

【0051】(実施例2)前記実施例1の方法によって
調製した原料を用い、次の表3に示す仮焼温度で仮焼
し、直径1/2インチのボ−ル形状になるように成形した
後、同じく表3に示す温度で焼成(本焼成)を行い、粉砕
用メディアを作製した。
(Example 2) Using the raw material prepared by the method of Example 1 above, it was calcined at a calcining temperature shown in Table 3 below and molded into a ball shape having a diameter of 1/2 inch. After that, calcination (main calcination) was also carried out at the temperature shown in Table 3 to prepare a grinding medium.

【0052】得られた粉砕用メディアを使用して、摩耗
テストを行った。摩耗テストは、2リットルアルミナ質
ボ−ルミルポツトを用い、試料メディア3.6kgと800c
cの水及び被砕物として電融アルミナ粉末(#325)を入
れ、回転数100rpmで48時間回転させ、テスト前後の
メディア重量の減少量を測定した。表3に、用いた原料
の組成No.及び粉砕用メディアの摩耗率量、被砕後の平
均粒子径を示す。
An abrasion test was carried out using the obtained grinding media. For the abrasion test, a 2 liter alumina ball mill pot was used, and the sample media was 3.6 kg and 800 c.
The water of c and the fused alumina powder (# 325) as a crushed object were put therein, and the mixture was rotated at a rotation speed of 100 rpm for 48 hours, and the reduction amount of the media weight before and after the test was measured. Table 3 shows the composition No. of the raw materials used, the amount of wear of the grinding media, and the average particle size after grinding.

【0053】[0053]

【表3】 [Table 3]

【0054】表3から明らかなように、本発明のジルコ
ニア質焼結体を用いた粉砕用部品材料は、耐摩耗率が小
さく、被砕物の粉砕効率が高く、且つ耐低温劣化性に優
れているため、熱水試験(200℃の熱水中にて50時間保
持)を行った後においても摩耗率が変化しないことが認
められた(表3の組成No.11参照)。
As is clear from Table 3, the material for crushing using the zirconia-based sintered body of the present invention has a small wear resistance, a high crushing efficiency of the crushed object, and an excellent resistance to low temperature deterioration. Therefore, it was confirmed that the wear rate did not change even after the hot water test (holding in hot water at 200 ° C. for 50 hours) (see composition No. 11 in Table 3).

【0055】これに対して、安定化剤としてY2O3単独使
用の組成No.1の比較例,Y2O3を使用しない組成No.2の比
較例,Y2O3とYb2O3を併用したものであるが、本発明で
規定する範囲外の組成No.10,13の比較例では、いずれ
も組成No.11の実施例よりも劣るものであった。
[0055] In contrast, Comparative Examples Comparative Example of Y 2 O 3 alone composition No.1 as a stabilizer, the composition does not use the Y 2 O 3 No.2, Y 2 O 3 and Yb 2 O Although the composition No. 3 was used in combination, the comparative examples of compositions No. 10 and 13 outside the range specified in the present invention were inferior to the examples of composition No. 11.

【0056】[0056]

【発明の効果】本発明に係るジルコニア質焼結体は、Zr
O2を主成分とし、所定範囲のY2O3とYb2O3,Er2O3及びHo
2O3よりなる群から選ばれる1種又は2種以上の希土類
金属酸化物からなる所定範囲の安定化剤を含む配合物を
焼結してなることを特徴とし、これにより機械的特性及
び耐低温劣化性に優れたジルコニア質焼結体を提供する
ものである。
The zirconia-based sintered body according to the present invention is Zr
O 2 as a main component and Y 2 O 3 and Yb 2 O 3 , Er 2 O 3 and Ho within a predetermined range
It is characterized in that a composition containing one or more rare earth metal oxides selected from the group consisting of 2 O 3 and containing a stabilizer in a predetermined range is sintered, whereby mechanical properties and resistance are improved. The present invention provides a zirconia-based sintered body that is excellent in low-temperature deterioration.

【0057】また、本発明に係るジルコニア質焼結体の
製造方法は、所定の原料組成となるように化学合成法又
は酸化物混合法により原料配合物を調製し、これを所定
温度(500〜1200℃)で仮焼した後、解砕工程を経て得た
原料粉末を成形し、所定温度(1300〜1650℃)で焼成する
ことを特徴とし、従来にない高い機械的特性を有し、且
つ耐低温劣化性に優れたジルコニア質焼結体を製造する
ことができる効果が生じる。
In addition, in the method for producing a zirconia-based sintered body according to the present invention, a raw material mixture is prepared by a chemical synthesis method or an oxide mixing method so that a predetermined raw material composition is obtained, and the raw material mixture is prepared at a predetermined temperature (500 to 500). After calcination at 1200 ° C), the raw material powder obtained through the crushing step is molded, and characterized by firing at a predetermined temperature (1300 to 1650 ° C), which has high mechanical properties that have never existed before, and The effect that the zirconia-based sintered body excellent in low temperature deterioration resistance can be manufactured is produced.

【0058】そして、本発明によれば、高強度,潤滑
性,断熱性,熱膨張特性,酸素イオン導電性等の様々な
特性を備え、これら各特性を利用して工業的に幅広い応
用分野が望まれているジルコニア質焼結体を提供するこ
とができ、しかも耐低温劣化性に優れたジルコニア質焼
結体を提供することが可能であり、その工業的有用性は
極めて大である。
Further, according to the present invention, various characteristics such as high strength, lubricity, heat insulation, thermal expansion characteristics, and oxygen ion conductivity are provided, and by utilizing these characteristics, industrially wide application fields can be obtained. It is possible to provide a desired zirconia-based sintered body, and it is also possible to provide a zirconia-based sintered body excellent in low-temperature deterioration resistance, and its industrial utility is extremely large.

【0059】更に、本発明に係る組成を有するジルコニ
ア質焼結体を用いた粉砕用部品材料によれば、高強度
で、且つ耐摩耗性,耐低温劣化性に優れ、粉砕効率の良
い粉砕用部品材料を提供することができる。このような
本発明の粉砕用部品材料は、乾式又は湿式でセラミック
ス,金属,有機高分子などの粒子を微粉砕する各種粉砕
装置に使用される内張材,粉砕媒体(メデイア)等の粉砕
用部品材料として工業的に極めて有用である。
Furthermore, according to the crushing component material using the zirconia-based sintered body having the composition according to the present invention, the crushing material having high strength, excellent wear resistance and low temperature deterioration resistance and good crushing efficiency Part materials can be provided. Such a crushing component material of the present invention is used for crushing a lining material, a crushing medium (media), etc. used in various crushing devices for finely crushing particles of ceramics, metals, organic polymers, etc. in a dry or wet manner. It is extremely useful industrially as a part material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ZrO2を主成分とし、Y2O3とYb2O3,Er2O3
及びHo2O3よりなる群から選ばれる1種又は2種以上の
希土類金属酸化物とで安定化され、且つ安定化剤として
の希土類金属酸化物(R2O3)中に占めるY2O3の割合が30〜
40モル%であり、得られる結晶粒子が主として正方晶の
相又は正方晶と立方晶との混合相よりなることを特徴と
するジルコニア質焼結体。
1. A method comprising ZrO 2 as a main component, Y 2 O 3 , Yb 2 O 3 and Er 2 O 3
Y 2 O which is stabilized with one or more rare earth metal oxides selected from the group consisting of and Ho 2 O 3 and which is contained in the rare earth metal oxide (R 2 O 3 ) as a stabilizer. 3 to 30
The zirconia-based sintered body is 40 mol% and the obtained crystal grains are mainly composed of a tetragonal phase or a mixed phase of tetragonal and cubic.
【請求項2】 請求項1に記載のジルコニア質焼結体で
あって、該焼結体中の安定化剤(R2O3)の含有量が2.0〜
3.0モル%であることを特徴とするジルコニア質焼結
体。
2. The zirconia-based sintered body according to claim 1, wherein the content of the stabilizer (R 2 O 3 ) in the sintered body is 2.0 to
A zirconia-based sintered body characterized by being 3.0 mol%.
【請求項3】 請求項1又は2に記載のジルコニア質焼
結体であって、該焼結体中の安定化剤であるY2O3の含有
量が1.0モル%以下であることを特徴とするジルコニア
質焼結体。
3. The zirconia-based sintered body according to claim 1 or 2, wherein the content of Y 2 O 3 which is a stabilizer in the sintered body is 1.0 mol% or less. And a zirconia-based sintered body.
【請求項4】 ZrO2を主成分とし、Y2O3とYb2O3,Er2O3
及びHo2O3よりなる群から選ばれる1種又は2種以上の
希土類金属酸化物とで安定化され、且つ安定化剤として
の希土類金属酸化物(R2O3)中に占めるY2O3の割合が30〜
40モル%であるジルコニア質焼結体の製造方法であっ
て、(1) 原料組成として、該焼結体中の前記希土類金属
酸化物(R2O3)からなる安定化剤の含有量が2.0〜3.0モル
%で、そのうちY2O3の含有量が1.0モル%以下となるよ
うに、中和共沈法,加水分解法,アルコキシド法などの
化学合成法又は酸化物混合法により原料配合物を調製す
る工程、(2) 上記配合物を500〜1200℃で仮焼する工
程、(3) 上記解砕物を成形する工程、(4) 上記成形体を
1300〜1650℃で焼結する工程、を含むことを特徴とする
ジルコニア質焼結体の製造方法。
4. Y 2 O 3 , Yb 2 O 3 , and Er 2 O 3 containing ZrO 2 as a main component.
Y 2 O which is stabilized with one or more rare earth metal oxides selected from the group consisting of and Ho 2 O 3 and which is contained in the rare earth metal oxide (R 2 O 3 ) as a stabilizer. 3 to 30
A method for producing a zirconia-based sintered body which is 40 mol%, wherein (1) as a raw material composition, a content of a stabilizer composed of the rare earth metal oxide (R 2 O 3 ) in the sintered body is 2.0 to 3.0 mol%, of which the content of Y 2 O 3 is 1.0 mol% or less, the raw materials are blended by a chemical synthesis method such as a neutralization coprecipitation method, a hydrolysis method, an alkoxide method or an oxide mixing method. A step of preparing a product, (2) a step of calcining the above-mentioned compound at 500 to 1200 ° C., (3) a step of molding the above-mentioned crushed product, (4) the above-mentioned molded body
A method for producing a zirconia-based sintered body, comprising a step of sintering at 1300 to 1650 ° C.
【請求項5】 請求項1,2又は3に示されるジルコニ
ア質焼結体を用いて構成された粉砕用部品材料であっ
て、該焼結体の平均粒子径が2μm以下で、且つかさ密
度が6.0g/cm3以上であることを特徴とするジルコニ
ア質焼結体を用3いた粉砕用部品材料。
5. A crushing component material formed by using the zirconia-based sintered body according to claim 1, 2, or 3, wherein the average particle diameter of the sintered body is 2 μm or less and the bulk density is Is 6.0 g / cm 3 or more, a crushing part material using 3 zirconia-based sintered bodies.
JP00349996A 1996-01-12 1996-01-12 Zirconia sintered body, method for producing the same, and pulverized component material Expired - Fee Related JP3736649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00349996A JP3736649B2 (en) 1996-01-12 1996-01-12 Zirconia sintered body, method for producing the same, and pulverized component material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00349996A JP3736649B2 (en) 1996-01-12 1996-01-12 Zirconia sintered body, method for producing the same, and pulverized component material

Publications (2)

Publication Number Publication Date
JPH09188562A true JPH09188562A (en) 1997-07-22
JP3736649B2 JP3736649B2 (en) 2006-01-18

Family

ID=11559051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00349996A Expired - Fee Related JP3736649B2 (en) 1996-01-12 1996-01-12 Zirconia sintered body, method for producing the same, and pulverized component material

Country Status (1)

Country Link
JP (1) JP3736649B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311265A (en) * 2011-08-10 2012-01-11 东华大学 Preparation method for monodisperse cubic phase yttrium-stabilized zirconium dioxide nanometer powder
WO2014104236A1 (en) 2012-12-28 2014-07-03 東ソー株式会社 Colored light-transmitting zirconia sintered body and use thereof
DE102017223879A1 (en) * 2017-12-29 2019-07-04 Siemens Aktiengesellschaft Ceramic material, method of manufacture, layer and layer system
DE102018203895A1 (en) * 2018-03-14 2019-09-19 Siemens Aktiengesellschaft Ceramic material, layer and layer system
KR20220048093A (en) * 2020-10-12 2022-04-19 부산대학교 산학협력단 Luthetium-stabilized zirconia, method of synthesis for luthetium-stabilized zirconia, and solid electrolyte comprising the same
EP4074673A1 (en) * 2021-04-12 2022-10-19 Tosoh Corporation Sintered body
WO2023163205A1 (en) * 2022-02-28 2023-08-31 東ソー株式会社 Sintered body, method for manufacturing sintered body, powder, and pre-sintered body
WO2023210268A1 (en) * 2022-04-25 2023-11-02 株式会社ニッカトー Zirconia media, bearing ball, and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311265A (en) * 2011-08-10 2012-01-11 东华大学 Preparation method for monodisperse cubic phase yttrium-stabilized zirconium dioxide nanometer powder
EP3838248A1 (en) 2012-12-28 2021-06-23 Tosoh Corporation Colored translucent zirconia sintered body and its use
KR20150099708A (en) 2012-12-28 2015-09-01 토소가부시키가이샤 Colored light-transmitting zirconia sintered body and use thereof
US9428422B2 (en) 2012-12-28 2016-08-30 Tosoh Corporation Colored translucent zirconia sintered body and its use
WO2014104236A1 (en) 2012-12-28 2014-07-03 東ソー株式会社 Colored light-transmitting zirconia sintered body and use thereof
DE102017223879A1 (en) * 2017-12-29 2019-07-04 Siemens Aktiengesellschaft Ceramic material, method of manufacture, layer and layer system
DE102018203895A1 (en) * 2018-03-14 2019-09-19 Siemens Aktiengesellschaft Ceramic material, layer and layer system
KR20220048093A (en) * 2020-10-12 2022-04-19 부산대학교 산학협력단 Luthetium-stabilized zirconia, method of synthesis for luthetium-stabilized zirconia, and solid electrolyte comprising the same
WO2022080668A1 (en) * 2020-10-12 2022-04-21 부산대학교 산학협력단 Lutetium-stabilized zirconia, production method for same, and solid electrolyte comprising same
EP4074673A1 (en) * 2021-04-12 2022-10-19 Tosoh Corporation Sintered body
US20220332649A1 (en) * 2021-04-12 2022-10-20 Tosoh Corporation Sintered body
WO2023163205A1 (en) * 2022-02-28 2023-08-31 東ソー株式会社 Sintered body, method for manufacturing sintered body, powder, and pre-sintered body
WO2023210268A1 (en) * 2022-04-25 2023-11-02 株式会社ニッカトー Zirconia media, bearing ball, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3736649B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3368090B2 (en) Zirconia-based sintered body, method for producing the same, crushing component material and orthodontic bracket material
EP2674408B1 (en) Translucent zirconia sintered body and use of the same
US20070179041A1 (en) Zirconia Ceramic
JPH10101418A (en) Zirconia-based composite ceramic sintered compact and its production
JPS6140621B2 (en)
US4900701A (en) Zirconia sintered body and process for the production thereof
JPS59162173A (en) Zirconia sintered body
JP3265518B2 (en) Zirconia ball and manufacturing method thereof
JPH09188562A (en) Zirconia-based sintered compact, production of the same and material for crushing part
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
WO2022075345A1 (en) Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
JPH08337473A (en) Member for dispersing-pulverizing machine made of zirconia
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JP2024506837A (en) Yttrium aluminum garnet powder and method for synthesizing it
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP6134561B2 (en) Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body
JPH07215758A (en) Zirconia sintered compact
JPH06239662A (en) High strength zirconia sintered product and its production and part material for grinding and ceramic dice
JPH01290558A (en) Zirconia sintered body
JPS647030B2 (en)
WO2023042893A1 (en) Powder composition, calcined body, sintered body, and method for producing same
Mondal et al. Novel synthesis of advanced composites of α-Al2O3 reinforced with Ce TZP through co-precipitation process
JPH0840770A (en) Zirconia sintered product and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees