JP6134561B2 - Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body - Google Patents

Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body Download PDF

Info

Publication number
JP6134561B2
JP6134561B2 JP2013082876A JP2013082876A JP6134561B2 JP 6134561 B2 JP6134561 B2 JP 6134561B2 JP 2013082876 A JP2013082876 A JP 2013082876A JP 2013082876 A JP2013082876 A JP 2013082876A JP 6134561 B2 JP6134561 B2 JP 6134561B2
Authority
JP
Japan
Prior art keywords
sintered body
zirconia sintered
zro
zirconia
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013082876A
Other languages
Japanese (ja)
Other versions
JP2014205586A (en
Inventor
野枝 古藤
野枝 古藤
大西 宏司
宏司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2013082876A priority Critical patent/JP6134561B2/en
Publication of JP2014205586A publication Critical patent/JP2014205586A/en
Application granted granted Critical
Publication of JP6134561B2 publication Critical patent/JP6134561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、耐摩耗性及び耐久性に優れた新規なジルコニア質焼結体、及び該ジルコニア質焼結体からなる粉砕・分散用メディアに関する。   The present invention relates to a novel zirconia sintered body excellent in wear resistance and durability, and a pulverizing / dispersing medium comprising the zirconia sintered body.

近年、電子材料等の高機能材料の製造には、微粉化や高分散化などに加え高純度化が要求されている。そのような材料に使用される粉砕機は、従来のボールミルから高速で粉砕・分散メディアを攪拌することにより高い粉砕・分散効率を有する媒体攪拌型ミルが主流となっており、特許文献1〜2のように、耐摩耗性、耐衝撃性に優れたY強化ジルコニア(Y−TZP)製の粉砕・分散用メディアが用いられている。Y−TZPメディアは優れた耐摩耗性を有していることから高効率の粉砕・分散が可能で、かつ被粉砕・分散粉体へのメディアからの摩耗粉の混入を極力少なくできる点で、セラミック積層コンデンサーであるチタン酸バリウム等の電子材料粉体の粉砕・分散に広く採用されている。 In recent years, in order to produce highly functional materials such as electronic materials, high purity is required in addition to fine powder and high dispersion. As a pulverizer used for such a material, a medium stirring type mill having a high pulverization / dispersion efficiency by stirring the pulverization / dispersion medium at a high speed from a conventional ball mill has become the mainstream. As described above, a pulverizing / dispersing medium made of Y 2 O 3 reinforced zirconia (Y-TZP) having excellent wear resistance and impact resistance is used. Since Y-TZP media has excellent wear resistance, it is possible to pulverize and disperse highly efficiently, and to reduce the amount of wear powder from the media to the pulverized and dispersed powder as much as possible. Widely used for pulverization and dispersion of electronic material powder such as barium titanate, which is a ceramic multilayer capacitor.

しかしながら、年々、電子部品の特性向上が図られるに従って、従来のY−TZPメディアが有する摩耗特性ではメディアからの被粉砕・分散粉体への摩耗粉の混入による電子部品特性への影響が大きくなってきており、メディアからの摩耗粉の混入を一層抑制できるメディアが求められるようになってきた。また、電子部品の使用用途の広がりから材料組成が多様化し、同時に多岐にわたる粉体製造方法の採用により、使用される原料粉体特性も大きく変化している。そのため、粉体粒度だけでなく、粉体硬さも大きく変動し、従来のY−TZPメディアでは十分対応出来ない場合が指摘されており、粉体硬さが高くなっても摩耗が少ないY−TZPメディアが求められている。   However, as the characteristics of electronic parts are improved year by year, the wear characteristics of conventional Y-TZP media have a greater effect on the characteristics of electronic parts due to the inclusion of wear powder from the media into the pulverized / dispersed powder. Accordingly, there has been a demand for media that can further suppress the mixing of wear powder from the media. In addition, the material composition has been diversified due to the wide use of electronic parts, and at the same time, the characteristics of raw material powder to be used have changed greatly due to the adoption of various powder manufacturing methods. For this reason, not only the powder particle size but also the powder hardness greatly fluctuates, and it has been pointed out that conventional Y-TZP media cannot sufficiently cope with it. Media is in demand.

従来のY−TZPメディアでは媒体攪拌型ミル等で粉体を水等の溶媒を用いて粉砕・分散した場合、Y−TZPの結晶粒界が水により腐食され、その結果、摩耗特性が劣化することが指摘されていたが、これらの問題を改善したY−TZPメディアが特許文献3〜4に開示されている。しかしながら、これらのY−TZPメディアはスラリー温度に対する耐摩耗の劣化は抑えられるが、前記高硬度の粉体の粉砕・分散における摩耗特性の劣化は抑えられない。
そのため、高靭性、耐衝撃性などの機械的特性を有し、高硬度の被粉砕物にも対応可能で且つ耐摩耗性のより優れたジルコニア質粉砕・分散用メディアが望まれている。
In conventional Y-TZP media, when the powder is pulverized and dispersed with a solvent such as water in a medium stirring mill or the like, the crystal grain boundaries of Y-TZP are corroded by water, resulting in deterioration of wear characteristics. However, Y-TZP media that improve these problems are disclosed in Patent Documents 3 to 4. However, these Y-TZP media can suppress the deterioration of the wear resistance with respect to the slurry temperature, but cannot suppress the deterioration of the wear characteristics in the pulverization / dispersion of the high hardness powder.
Therefore, there is a demand for a zirconia grinding / dispersing medium that has mechanical properties such as high toughness and impact resistance, can cope with a high-hardness object to be pulverized, and has better wear resistance.

特開昭58−15079号公報JP 58-15079 A 特開平4−349170号公報JP-A-4-349170 特開2000−239063号公報JP 2000-239063 A 特開2004−307339号公報JP 2004-307339 A

本発明は、耐摩耗性の優れたジルコニア質焼結体の提供を目的とする。また、該ジルコニア質焼結体からなる、従来のY−TZP粉砕・分散用メディアと同等又はそれ以上の機械的特性を有し、特に硬い粉体の粉砕・分散においても耐摩耗性の優れた粉砕・分散用メディアの提供を目的とする。   An object of the present invention is to provide a zirconia sintered body having excellent wear resistance. In addition, it has mechanical characteristics equal to or higher than those of conventional Y-TZP grinding / dispersing media made of the zirconia sintered body, and particularly excellent in wear resistance even when grinding and dispersing hard powders. The purpose is to provide media for grinding and dispersion.

本発明者らは、鋭意研究を重ねた結果、上記課題が下記の発明によって解決できることを見出した。
1) 次の(a)〜(f)の要件を満たすZrO−Y系ジルコニア質焼結体。
(a)ZrO結晶の97体積%以上が正方晶である。
(b)〔Y〕と〔ZrO〕のモル比(〔Y〕/〔ZrO〕)が、
2.3/97.7〜3.5/96.5の範囲にある。
(c)Alを、5重量%を超え30重量%以下含有する。
(d)SiOとAlの重量比(SiO/Al)が、0.7/99.3
4.0/96.0の範囲にある。
(e)平均結晶粒径が0.3〜0.7μmである。
(f)相対密度が95%以上である。
2) 1)記載のジルコニア質焼結体からなる粉砕・分散用メディア。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following invention.
1) The following (a) meets the requirements of ~ (f) ZrO 2 -Y 2 O 3 zirconia sintered body.
(A) 97% by volume or more of the ZrO 2 crystal is tetragonal.
(B) [Y 2 O 3] and molar ratio of [ZrO 2] ([Y 2 O 3] / [ZrO 2]) is,
It is in the range of 2.3 / 97.7 to 3.5 / 96.5.
(C) the Al 2 O 3, containing 30 wt% or less than 5 wt%.
(D) The weight ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) is 0.7 / 99.3.
It is in the range of ~ 4.0 / 96.0 .
(E) The average crystal grain size is 0.3 to 0.7 μm.
(F) The relative density is 95% or more.
2) A pulverizing / dispersing medium comprising the zirconia sintered body according to 1).

本発明によれば、耐摩耗性の優れたジルコニア質焼結体を提供できる。また、従来のY−TZP粉砕・分散用メディアと同等又はそれ以上の機械的特性を有し、特に硬い粉体の粉砕・分散においても耐摩耗性の優れたジルコニア質焼結体からなる粉砕・分散用メディアを提供できる。また、本発明のジルコニア質焼結体は、ベアリングボール等の産業用耐摩耗構造部材として広い分野に使用できる。   According to the present invention, a zirconia sintered body having excellent wear resistance can be provided. In addition, it has mechanical properties equal to or better than those of conventional Y-TZP grinding / dispersing media, and is especially made of a zirconia sintered body having excellent wear resistance even in grinding / dispersing hard powder. Distributing media can be provided. The zirconia sintered body of the present invention can be used in a wide range of industrial wear-resistant structural members such as bearing balls.

以下、上記本発明について詳しく説明する。
要件(a):ZrO結晶の97体積%以上が正方晶である点について
本発明ではZrO結晶の97体積%以上を正方晶とする。好ましくは99体積%以上である。ジルコニア質焼結体が単斜晶を多く含有していると、その結晶周辺に微細なクラックが生じ機械的特性の低下をきたす。一方、立方晶を多く含有していると機械的特性の低下だけでなく、結晶粒界付近にYが偏在しやすくなって耐久性の低下をきたす。
ジルコニアの結晶相である単斜晶系ジルコニア(M)の存在の有無及び含有量は、X線回折により求めることができる。即ち、焼結体及び加工した焼結体製品の表面は応力誘起相変態により正方晶から単斜晶に変態しており、真の結晶相を同定することができないため、焼結体表面を鏡面まで研磨し、X線回折により、回折角27〜34度の範囲で測定して、次式により求める。
Hereinafter, the present invention will be described in detail.
Requirements (a): more than 97% by volume of ZrO 2 crystals more than 97 volume% of ZrO 2 crystals and tetragonal in the present invention for point tetragonal. Preferably it is 99 volume% or more. If the zirconia sintered body contains a large amount of monoclinic crystals, fine cracks are generated around the crystal and mechanical properties are deteriorated. On the other hand, if a large amount of cubic crystals are contained, not only the mechanical properties are lowered, but also Y 2 O 3 tends to be unevenly distributed in the vicinity of the grain boundaries, resulting in a decrease in durability.
Presence / absence and content of monoclinic zirconia (M), which is a zirconia crystal phase, can be determined by X-ray diffraction. That is, the surface of the sintered body and the processed sintered body product are transformed from tetragonal to monoclinic by stress-induced phase transformation, and the true crystal phase cannot be identified. And measured by X-ray diffraction in a diffraction angle range of 27 to 34 degrees, and obtained by the following equation.

Figure 0006134561
Figure 0006134561

また、正方晶系ジルコニア(T)及び立方晶系ジルコニア(C)の存在の有無及び含有量は、単斜晶系ジルコニアの有無を確認した方法と同様にして、X線回折により、回折角70〜77度の範囲で測定して、次式により求める。

Figure 0006134561
The presence and content of tetragonal zirconia (T) and cubic zirconia (C) were determined by X-ray diffraction in the same manner as in the method for confirming the presence or absence of monoclinic zirconia. Measured in a range of ˜77 degrees and obtained by the following formula.
Figure 0006134561

要件(b):〔Y〕と〔ZrO〕のモル比(〔Y〕/〔ZrO〕)が
2.3/97.7〜3.5/96.5の範囲にある点について
本発明では、〔Y〕/〔ZrO〕モル比を2.3/97.7〜3.5/96.5の範囲内とする。好ましくは2.5/97.5〜3.0/97.0である。
また、ZrO原料中に少量含有することのあるHfOが混入していてもよく、要件(b)における〔ZrO〕量は、ZrOとHfOの合計量のことである。
また、Y添加量の30モル%までは他の希土類酸化物の1種又は2種以上で置換したものも用いることができ、例えば、CeO、Nd、Yb、Dy等が安価な点で好ましい。上記〔Y〕はこれらの合計量を意味する。
ZrO原料に添加する〔Y〕の割合が2.3/97.7未満の場合には、焼結体中の単斜晶系ジルコニア量が増加し、焼結体内部にクラックが発生し、負荷が加わったり長時間使用するとクラックが進展し、割れや欠けが発生し、結果的に耐久性及び耐摩耗性の低下をきたす。一方、〔Y〕の割合が3.5/96.5を超えると、正方晶系ジルコニア量が低下し立方晶系ジルコニア量が増加するため機械的特性が低下する。
Requirement (b): The molar ratio of [Y 2 O 3 ] to [ZrO 2 ] ([Y 2 O 3 ] / [ZrO 2 ]) is
2.3 / 97.7 to 3.5 / 96.5 In the present invention for points in the range of, [Y 2 O 3] / a [ZrO 2] molar ratio of 2.3 / 97.7 to 3.5 Within the range of /96.5. Preferably it is 2.5 / 97.5-3.0 / 97.0.
Moreover, HfO 2 that may be contained in a small amount in the ZrO 2 raw material may be mixed, and the [ZrO 2 ] amount in the requirement (b) is the total amount of ZrO 2 and HfO 2 .
Further, up to 30 mol% of the amount of Y 2 O 3 added can be substituted with one or more of the other rare earth oxides, for example, CeO 2 , Nd 2 O 3 , Yb 2 O 3. , Dy 2 O 3 and the like are preferable in terms of inexpensiveness. The above [Y 2 O 3 ] means the total amount of these.
When the ratio of [Y 2 O 3 ] added to the ZrO 2 raw material is less than 2.3 / 97.7, the amount of monoclinic zirconia in the sintered body increases and cracks are formed inside the sintered body. When it is generated and a load is applied or it is used for a long time, cracks develop and cracks and chips occur, resulting in a decrease in durability and wear resistance. On the other hand, when the ratio of [Y 2 O 3 ] exceeds 3.5 / 96.5, the amount of tetragonal zirconia decreases and the amount of cubic zirconia increases, so that the mechanical properties deteriorate.

要件(c):Alを、5重量%を超え30重量%以下含有する点について
本発明のジルコニア質焼結体のAl含有量は5重量%を超え30重量%以下、好ましくは5重量%を超え20重量%以下とする。アルミナはジルコニア結晶粒界に偏析し、また、同時に結晶粒子としてジルコニア結晶粒界に存在し、粒界結合強度の向上に寄与するため、耐衝撃性や耐摩耗性の向上が図れる。しかしながら、特許文献3〜4に記載されているように、ZrOは、Al含有量が5重量%を超えると焼結性が低下することが指摘されており、焼結性の低下に伴い耐摩耗性など機械的特性が低下する。
これに対し、本発明では、後述するSiO/Al重量比を特定の範囲内とすることにより、Al含有量が5重量%を超えても機械的特性が低下せず、更に5重量%を超え30重量%以下の範囲では、従来のY−TZPメディアよりも優れた耐摩耗性を有し、更には高硬度の粉体の粉砕・分散処理においても優れた耐久性及び耐摩耗性を有することを見出した。Al含有量が5重量%以下ではAl添加の効果がなく耐摩耗性の向上を図ることができない。またAl含有量が30重量%を超えると硬度は向上するが、靭性が低下し耐衝撃性の低下や耐摩耗性の低下を招く。
Requirements (c): Al a 2 O 3, 5 Al 2 O 3 content of the zirconia sintered body of the present invention for the points containing wt% of more than 30 wt% 30 wt% more than 5 wt% or less, Preferably, it is more than 5% by weight and 20% by weight or less. Alumina segregates at the zirconia grain boundaries and simultaneously exists as crystal grains at the zirconia grain boundaries and contributes to the improvement of the grain boundary bond strength, so that the impact resistance and wear resistance can be improved. However, as described in Patent Documents 3 to 4, it has been pointed out that ZrO 2 has a decrease in sinterability when the Al 2 O 3 content exceeds 5% by weight. As a result, mechanical properties such as wear resistance deteriorate.
In contrast, in the present invention, is made within a specific range of SiO 2 / Al 2 O 3 weight ratio, which will be described later, even if Al 2 O 3 content exceeds 5% by weight does not decrease mechanical properties Furthermore, in the range of more than 5% by weight and 30% by weight or less, it has superior wear resistance compared to conventional Y-TZP media, and also has excellent durability in pulverizing / dispersing processing of high hardness powder. And found to have wear resistance. When the Al 2 O 3 content is 5% by weight or less, there is no effect of adding Al 2 O 3 and the wear resistance cannot be improved. On the other hand, when the Al 2 O 3 content exceeds 30% by weight, the hardness is improved, but the toughness is lowered, and the impact resistance and the wear resistance are lowered.

要件(d):SiOとAlの重量比(SiO/Al)が、
0.7/99.34.0/96.0の範囲にある点について
本発明では、SiO/Al重量比を0.7/99.34.0/96.0の範囲内とする。SiOを含有すると焼結性が向上し、また粒界強度の向上により耐摩耗性が向上する効果がある。SiOが上記割合よりも少ないと焼結性の向上効果は得られず、耐摩耗性の向上を図ることができないし、強度の向上も図れない。一方、SiOが上記割合よりも多いと、ZrO結晶粒界にSiOの第二相が形成され、耐久性及び耐摩耗性が劣化する。
Requirement (d): The weight ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) is
0.7 / 99.3 In the present invention for points in the range of ~ 4.0 / 96.0, SiO 2 / Al 2 O 3 weight ratio 0.7 / 99.3 to 4.0 / 96.0 Within the range of When SiO 2 is contained, the sinterability is improved, and the wear resistance is improved by the improvement of the grain boundary strength. If SiO 2 is less than the above ratio, the effect of improving the sinterability cannot be obtained, the wear resistance cannot be improved, and the strength cannot be improved. On the other hand, SiO 2 is the larger than the ratio, the second phase of SiO 2 is formed on the ZrO 2 grain boundaries, durability and abrasion resistance is deteriorated.

要件(e):平均結晶粒径が0.3〜0.7μmである点について
本発明では、平均結晶粒径を0.3〜0.7μmとする。好ましくは0.3〜0.4μmである。平均結晶粒径が0.3μm未満では靭性の低下が起こり、硬い粉体を粉砕・分散した際にチッピング発生等のトラブルの原因となる。また、平均結晶粒径が0.7μmを超えると、耐久性及び耐摩耗性が劣化する。上記平均結晶粒径は、メディア断面を鏡面にまで研磨し、次いで熱エッチング又は化学エッチングを施した後、走査電子顕微鏡で観察し、インターセプト法により10点測定した平均値とする。
算出式は次の通りである。

D=1.5×L/n

〔D:平均結晶粒径(μm)、L:測定長さ(μm)、n:L当たりの結晶粒子数〕
Requirement (e): Regarding the point where the average crystal grain size is 0.3 to 0.7 μm In the present invention, the average crystal grain size is set to 0.3 to 0.7 μm. Preferably it is 0.3-0.4 micrometer. When the average crystal grain size is less than 0.3 μm, the toughness is lowered, and this causes troubles such as chipping when the hard powder is pulverized and dispersed. On the other hand, when the average crystal grain size exceeds 0.7 μm, durability and wear resistance are deteriorated. The average crystal grain size is an average value obtained by polishing the cross section of the medium to a mirror surface, then performing thermal etching or chemical etching, then observing with a scanning electron microscope and measuring 10 points by the intercept method.
The calculation formula is as follows.

D = 1.5 × L / n

[D: average crystal grain size (μm), L: measurement length (μm), n: number of crystal grains per L]

要件(f):相対密度が95%以上である点について
相対密度が95%未満の場合は欠陥となる気孔が多く存在し、強度、硬度の低下が起こり、その結果、耐摩耗性の低下だけでなく、耐久性の低下が起こる。相対密度の上限は、99.5%程度である。相対密度(R.D.)の算出式は次の通りである。

R.D.={Dx/〔(Wa+Wz)/(Wa/Da+Wz/Dz)〕}×100

Dx:かさ密度(g/cm
Da:Al理論密度(3.99g/cm
Dz:ZrO理論密度(6.1g/cm
Wa:Al重量%
Wz:ZrO重量%
Requirement (f): Regarding the point where the relative density is 95% or more When the relative density is less than 95%, there are many pores that become defects, resulting in a decrease in strength and hardness, resulting in only a decrease in wear resistance. Rather, the durability is reduced. The upper limit of the relative density is about 99.5%. The formula for calculating the relative density (RD) is as follows.

R. D. = {Dx / [(Wa + Wz) / (Wa / Da + Wz / Dz)]} × 100

Dx: Bulk density (g / cm 3 )
Da: Al 2 O 3 theoretical density (3.99 g / cm 3 )
Dz: ZrO 2 theoretical density (6.1 g / cm 3 )
Wa: Al 2 O 3 % by weight
Wz: 2 % by weight of ZrO

本発明のジルコニア質焼結体は種々の方法で作製できるが、例えば次の(1)(2)の方法が挙げられる。
(1)ZrOとYの含有量が所定のモル比となるようにジルコニウム化合物の水溶液とイットリウム化合物の水溶液を均一に混合し、加水分解し、水和物を得、脱水、乾燥させた後、400〜1250℃で仮焼し、ジルコニア粉体を得る方法。
(2)ZrOとYの含有量が所定のモル比となるように、ジルコニウム化合物とイットリウム化合物を、酸化物あるいは塩の形態で水あるいは有機溶媒を用いて湿式で混合し、脱水、乾燥させた後、400〜1250℃で仮焼し、ジルコニア粉体を得る方法。
なお、Y以外の成分は、上記(1)や(2)などの方法で合成を行う前に添加してもよいし、後述する仮焼粉体の粉砕・分散時に、水酸化物、炭酸化物、酸化物等の形態で添加してもよい。
The zirconia sintered body of the present invention can be produced by various methods, and examples thereof include the following methods (1) and (2).
(1) An aqueous solution of a zirconium compound and an aqueous solution of an yttrium compound are uniformly mixed so that the content of ZrO 2 and Y 2 O 3 is a predetermined molar ratio, and hydrolyzed to obtain a hydrate, dehydrated and dried. And then calcining at 400 to 1250 ° C. to obtain zirconia powder.
(2) A zirconium compound and an yttrium compound are mixed in a wet form using water or an organic solvent in the form of an oxide or a salt so that the contents of ZrO 2 and Y 2 O 3 are in a predetermined molar ratio, followed by dehydration. A method of obtaining zirconia powder by drying and calcining at 400 to 1250 ° C.
In addition, components other than Y 2 O 3 may be added before the synthesis by the method (1) or (2), or during the pulverization / dispersion of the calcined powder described later. , Carbonate, oxide, etc. may be added.

得られた仮焼粉体を湿式で粉砕・分散し、乾燥して成形用粉体を得る。必要に応じて、成形助剤の添加やスプレードライヤーによる整粒を行う。
得られた成形用粉体の粒度は、比表面積3〜30m/g、好ましくは5〜20m/gとする。この範囲に収まるように粉砕・分散条件を制御する必要がある。前記範囲を外れると、成形性や焼結性の低下が起こり、焼結体に気孔や欠陥が多く存在するため、耐摩耗性及び耐久性に劣ることになる。
得られた成形用粉体を用いて、水を含有させたアルコール類、パラフィン系炭化水素等の有機溶媒、可溶性高分子又は水を用いて、転動造粒成形法により成形体を得る。
The obtained calcined powder is pulverized and dispersed by a wet process and dried to obtain a molding powder. If necessary, add a molding aid and adjust the size with a spray dryer.
The resulting particle size of the molding powder has a specific surface area of 3~30m 2 / g, preferably between 5 to 20 m 2 / g. It is necessary to control pulverization / dispersion conditions so as to be within this range. If it is out of the above range, the moldability and sinterability are lowered, and the sintered body has many pores and defects, resulting in poor wear resistance and durability.
Using the obtained molding powder, a molded body is obtained by a rolling granulation molding method using an alcohol containing water, an organic solvent such as paraffinic hydrocarbon, a soluble polymer or water.

次いで、得られた成形体を1300〜1550℃程度で焼成して、本発明のジルコニア質焼結体を得る。また、必要に応じてHIP(Hot isostatic press)処理を施すことにより、焼結体内部の欠陥を低減又は小さくして、摩擦、衝撃、圧壊等に対する抵抗性を高くすることができ、耐摩耗性や耐久性を向上させることが出来る。HIP処理は、常圧焼結した後、ArやNなどの不活性雰囲気又はO雰囲気下、1150〜1550℃、500〜2000気圧で処理することが望ましい。
更に、焼成過程で汚染された上記焼結体の表面を研磨などにより除去すれば、本発明の粉砕・分散用メディアが得られる。
なお、得られるジルコニア質焼結体は、製造工程で混入することがある各種成分(TiO、Fe、CaO、MgO、NaOなど)の総量が0.1重量%程度までであれば、耐摩耗性などの効果が低下することはない。
Subsequently, the obtained molded body is fired at about 1300 to 1550 ° C. to obtain the zirconia sintered body of the present invention. In addition, by performing HIP (hot isostatic press) treatment as necessary, defects inside the sintered body can be reduced or reduced to increase resistance to friction, impact, crushing, etc., and wear resistance And durability can be improved. The HIP treatment is preferably performed at 1150 to 1550 ° C. and 500 to 2000 atmospheres in an inert atmosphere such as Ar or N 2 or an O 2 atmosphere after sintering under normal pressure.
Furthermore, if the surface of the sintered body contaminated in the firing process is removed by polishing or the like, the pulverizing / dispersing medium of the present invention can be obtained.
The obtained zirconia sintered body has a total amount of various components (TiO 2 , Fe 2 O 3 , CaO, MgO, Na 2 O, etc.) that may be mixed in the manufacturing process up to about 0.1% by weight. If so, the effects such as wear resistance are not reduced.

以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.

実施例1〜、比較例1〜10
純度99.9重量%のオキシ塩化ジルコニウムと、純度99.9重量%の硝酸イットリウムを、表1の実施例及び比較例の各欄に示す組成となるように水溶液にして混合した。次いで、得られた水溶液を加熱還流下で加水分解し、脱水、乾燥し、Yが固溶した水和ジルコニウムを得、これを600〜1200℃で1時間仮焼し、得られたジルコニア粉体を湿式で粉砕・分散した。なお、Y以外の成分であるAlは酸化アルミニウム粉体(純度99.99%、平均粒子径0.2μm)を、SiOはシリカゾル(純度99.9%、平均粒子径0.02μm)を、粉砕時に所定量添加混合した。
次いで、得られた各スラリーを乾燥、整粒して成形用粉体とし、水を用いて転動造粒成形し、得られた各成形体を約1280〜1600℃で焼成し、放冷して直径1mmの球状のジルコニア質焼結体を得た。各ジルコニア質焼結体の焼成温度、化学組成、特性を表1に示す。
Examples 1-8 , Comparative Examples 1-10
Zirconium oxychloride having a purity of 99.9% by weight and yttrium nitrate having a purity of 99.9% by weight were mixed in an aqueous solution so as to have the compositions shown in the columns of Examples and Comparative Examples in Table 1. Next, the obtained aqueous solution was hydrolyzed under heating and refluxing, dehydrated and dried to obtain hydrated zirconium in which Y 2 O 3 was dissolved, and this was calcined at 600 to 1200 ° C. for 1 hour. Zirconia powder was pulverized and dispersed wet. Al 2 O 3 which is a component other than Y 2 O 3 is aluminum oxide powder (purity 99.99%, average particle size 0.2 μm), and SiO 2 is silica sol (purity 99.9%, average particle size). 0.02 μm) was added and mixed in a predetermined amount during grinding.
Next, each obtained slurry is dried and granulated to form a powder for molding, and rolling granulation molding is performed using water. Each obtained molded body is fired at about 1280 to 1600 ° C. and allowed to cool. Thus, a spherical zirconia sintered body having a diameter of 1 mm was obtained. Table 1 shows the firing temperature, chemical composition, and characteristics of each zirconia sintered body.

上記ジルコニア質焼結体をバレル研磨によって仕上げ、実施例及び比較例の粉砕・分散用メディアの評価用試料とした。
次いで、各評価用試料400ccを、内容積600ccのダイノーミル(シンマルエンタープライゼス社製:タイプKDL、ベッセルはニッカトー社製の高強度ジルコニア:YTZ)に入れ、10℃に保持した濃度20重量%のBaTiOスラリー(BaTiO粉体の比表面積は2.7m/g)及び濃度20重量%のAlスラリー(Al粉体の比表面積は5.6m/g)を400cc/minで循環させ、ディスク周速8m/secで24時間を1回として5回運転し、時間あたりのメディア摩耗率(即ち、ジルコニア質焼結体摩耗率)を測定し、それぞれの5回平均値を表1に示した。メディア摩耗率はテスト前後の時間あたりの重量変化率として次式により算出した。
The zirconia sintered body was finished by barrel polishing, and used as a sample for evaluation of the grinding / dispersing media of Examples and Comparative Examples.
Next, 400 cc of each evaluation sample was put into a dyno mill having an internal volume of 600 cc (manufactured by Shinmaru Enterprises Co., Ltd .: type KDL, Vessel is a high-strength zirconia manufactured by Nikkato Co., Ltd .: YTZ), and the concentration of 20% by weight held at 10 ° C. 400 cc of BaTiO 3 slurry (specific surface area of BaTiO 3 powder is 2.7 m 2 / g) and Al 2 O 3 slurry having a concentration of 20% by weight (specific surface area of Al 2 O 3 powder is 5.6 m 2 / g) Circulate at a speed of 5 min / min, drive 5 times at a disk peripheral speed of 8 m / sec for 24 hours, and measure the media wear rate per hour (ie, zirconia sintered body wear rate). The values are shown in Table 1. The media wear rate was calculated by the following equation as the weight change rate per hour before and after the test.

Figure 0006134561
また、表2に、実施例1、3、4、比較例3、7、8のBaTiO粉砕摩耗率、及びAl粉砕摩耗率の5回平均値及び20回平均値を示す。
Figure 0006134561
Table 2 shows the 5-times average value and 20-times average values of BaTiO 3 pulverized wear rate and Al 2 O 3 pulverized wear rate of Examples 1, 3 , 4 and Comparative Examples 3, 7, and 8.

表1、表2から分かるように、実施例では優れた耐摩耗性及び耐久性を示し、硬度の低いチタン酸バリウムの粉砕を行う場合、及び硬度の高いアルミナ粉体を粉砕する場合のいずれにおいても、かつ長時間の使用においても優れた耐摩耗性、耐久性を示した。
これに対し、比較例では本発明の要件(a)〜(f)を満たさないため、耐摩耗性及び耐久性に劣る結果となった。また、比較例1、2、5、10では、摩耗試験後にワレが発生した。
As can be seen from Tables 1 and 2, the examples show excellent wear resistance and durability, and when pulverizing barium titanate with low hardness and when pulverizing high hardness alumina powder. In addition, it showed excellent wear resistance and durability even after long-term use.
On the other hand, since the comparative examples did not satisfy the requirements (a) to (f) of the present invention, the results were inferior in wear resistance and durability. In Comparative Examples 1, 2, 5, and 10, cracks occurred after the wear test.

Figure 0006134561
Figure 0006134561

Figure 0006134561
Figure 0006134561

Claims (2)

次の(a)〜(f)の要件を満たすZrO−Y系ジルコニア質焼結体。
(a)ZrO結晶の97体積%以上が正方晶である。
(b)〔Y〕と〔ZrO〕のモル比(〔Y〕/〔ZrO〕)が、
2.3/97.7〜3.5/96.5の範囲にある。
(c)Alを、5重量%を超え30重量%以下含有する。
(d)SiOとAlの重量比(SiO/Al)が、0.7/99.3
4.0/96.0の範囲にある。
(e)平均結晶粒径が0.3〜0.7μmである。
(f)相対密度が95%以上である。
The following (a) meets the requirements of ~ (f) ZrO 2 -Y 2 O 3 zirconia sintered body.
(A) 97% by volume or more of the ZrO 2 crystal is tetragonal.
(B) [Y 2 O 3] and molar ratio of [ZrO 2] ([Y 2 O 3] / [ZrO 2]) is,
It is in the range of 2.3 / 97.7 to 3.5 / 96.5.
(C) the Al 2 O 3, containing 30 wt% or less than 5 wt%.
(D) The weight ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) is 0.7 / 99.3.
It is in the range of ~ 4.0 / 96.0 .
(E) The average crystal grain size is 0.3 to 0.7 μm.
(F) The relative density is 95% or more.
請求項1記載のジルコニア質焼結体からなる粉砕・分散用メディア。   A pulverizing / dispersing medium comprising the zirconia sintered body according to claim 1.
JP2013082876A 2013-04-11 2013-04-11 Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body Active JP6134561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082876A JP6134561B2 (en) 2013-04-11 2013-04-11 Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082876A JP6134561B2 (en) 2013-04-11 2013-04-11 Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body

Publications (2)

Publication Number Publication Date
JP2014205586A JP2014205586A (en) 2014-10-30
JP6134561B2 true JP6134561B2 (en) 2017-05-24

Family

ID=52119500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082876A Active JP6134561B2 (en) 2013-04-11 2013-04-11 Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body

Country Status (1)

Country Link
JP (1) JP6134561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315348B (en) * 2021-12-22 2023-06-30 西南科技大学 Preparation method of fully-stable tetragonal YSZ target and EB-PVD coating with ultra-long service life
JPWO2023210268A1 (en) * 2022-04-25 2023-11-02

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218967A (en) * 1989-11-06 1991-09-26 Osaka Cement Co Ltd High-strength alumina-zirconia-based ceramics sintered body
JPH05339045A (en) * 1992-06-05 1993-12-21 Sumitomo Electric Ind Ltd Nonlinear ceramics
JPH07215758A (en) * 1994-01-28 1995-08-15 Shinagawa Refract Co Ltd Zirconia sintered compact
US6749653B2 (en) * 2002-02-21 2004-06-15 3M Innovative Properties Company Abrasive particles containing sintered, polycrystalline zirconia
JP2004075425A (en) * 2002-08-12 2004-03-11 Nitsukatoo:Kk Partially stabilized zirconia sintered compact

Also Published As

Publication number Publication date
JP2014205586A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5653423B2 (en) Sintered products based on alumina and zirconia
US4977114A (en) Zirconia ceramics and method for producing same
EP2173684B1 (en) Grinding beads and method of producing the same
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
JP3970462B2 (en) Grinding / dispersing media comprising a zirconia sintered body having excellent durability and method for producing the same
JP6134561B2 (en) Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body
US6905993B2 (en) Zirconia based sintered body excellent in durability and wear resistant parts using the same
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP7325275B2 (en) Wear-resistant alumina sintered body
JP6632287B2 (en) Zirconia micro media
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance
JP2002154873A (en) Zirconia sintered compact excellent in durability
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP4410044B2 (en) Zirconia sintered body excellent in wear resistance and durability and method for producing the same
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP5036271B2 (en) Zirconia conductive sintered body
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
JPH09188562A (en) Zirconia-based sintered compact, production of the same and material for crushing part
KR102263516B1 (en) Ceramic bead producing method
JP2004075425A (en) Partially stabilized zirconia sintered compact
JP2008150220A (en) Alumina-zirconia composite powder and method for manufacturing the same
CN114787086A (en) Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
Xu et al. Fabrication and characterization of (Nd, Y)-TZP ceramics from stabilizer-coated nanopowder
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250