JP2008150220A - Alumina-zirconia composite powder and method for manufacturing the same - Google Patents

Alumina-zirconia composite powder and method for manufacturing the same Download PDF

Info

Publication number
JP2008150220A
JP2008150220A JP2006336582A JP2006336582A JP2008150220A JP 2008150220 A JP2008150220 A JP 2008150220A JP 2006336582 A JP2006336582 A JP 2006336582A JP 2006336582 A JP2006336582 A JP 2006336582A JP 2008150220 A JP2008150220 A JP 2008150220A
Authority
JP
Japan
Prior art keywords
powder
alumina
zirconia
mol
monoclinic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006336582A
Other languages
Japanese (ja)
Inventor
Takuya Matsubara
拓也 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006336582A priority Critical patent/JP2008150220A/en
Publication of JP2008150220A publication Critical patent/JP2008150220A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an alumina-zirconia composite powder for obtaining a dense sintered compact at a lower sintering temperature without adding a sintering aid, and to provide a method for inexpensively and efficiently manufacturing this raw powder. <P>SOLUTION: The alumina-zirconia composite powder comprises zirconia powder containing 1.5-4 mol% of yttria and α-alumina powder, wherein the weight ratio between the zirconia powder and the alumina powder is 15:85 to 40:60 and the percentage of monoclinic crystals in the zirconia powder is 45-60 mol%. The method for manufacturing the alumina-zirconia composite powder includes: singularly wet-milling zirconia powder containing <10 mol% of monoclinic crystals in which 1.5-4 mol% of yttria is allowed to enter into solid solution until the ratio of monoclinic crystals attains to 35-45 mol%; adding α-alumina powder and continuing further wet milling and mixing; finishing wet milling at the point of time when the percentage of monoclinic crystals in the zirconia powder becomes 45-60 mol%; and drying the resultant slurry. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアルミナより高い抗折強度を持ち、かつ高い耐摩耗性、耐熱衝撃性をもつ、アルミナ−ジルコニア複合材料を、より低温の焼結温度で緻密な焼結体を得ることを目的とした、アルミナ−ジルコニア複合粉末とそれをより安価な手法で製造する方法に関するものである。   An object of the present invention is to obtain an alumina-zirconia composite material having a higher bending strength than alumina and having a high wear resistance and thermal shock resistance, and a dense sintered body at a lower sintering temperature. The present invention relates to an alumina-zirconia composite powder and a method for producing it with a cheaper technique.

アルミナ焼結体の強度を向上させるために、アルミナマトリックス中にジルコニア粒子を分散させたアルミナ−ジルコニア複合材料が注目され、研究されてきた。また、さまざまな用途開発が進み、その特性を生かした分野で、使用されている。   In order to improve the strength of the alumina sintered body, an alumina-zirconia composite material in which zirconia particles are dispersed in an alumina matrix has attracted attention and has been studied. In addition, various applications are being developed, and they are used in fields that take advantage of their characteristics.

特許文献1によればイットリアで安定化したジルコニアを15〜30モル%の比率でアルミナマトリックス中に含有させ、ジルコニアの正方晶を安定的に残留させ、これによって強靭な焼結体とした技術が提示されている。   According to Patent Literature 1, zirconia stabilized with yttria is contained in an alumina matrix at a ratio of 15 to 30 mol%, and the tetragonal crystals of zirconia are stably left, thereby forming a tough sintered body. Presented.

このようなアルミナジルコニア材料はアルミナより強度・靱性が高い上に、アルミナ並みの耐摩耗性をもつことから、切削工具や軸受け部材、摺動部材に用いられている。
ただし、これらの材料の焼結温度はアルミナの焼結温度に依存し、理論密度の98%以上の緻密度を得るためには1600℃程度の焼結温度が必要となる。
Such an alumina zirconia material has higher strength and toughness than alumina and has wear resistance comparable to that of alumina, and is therefore used for cutting tools, bearing members, and sliding members.
However, the sintering temperature of these materials depends on the sintering temperature of alumina, and a sintering temperature of about 1600 ° C. is required to obtain a density of 98% or more of the theoretical density.

これらの材料を低温焼結化する試みとしては、特許文献2のように、アルミナの焼結助剤となるMnやFe,Coなどを微量添加した材料が挙げられる。
またさらに最近の試みとして、特許文献3のようにHIP焼結をすることで焼結温度を下げる試みや、特許文献4のように、原料にナノ粒子を混ぜることにより焼結性が向上すると言った報告もある。
特開昭61−21963 特開昭62−59565 特開2006−62921 特開2006−1806
As an attempt to low-temperature sinter these materials, there is a material to which a small amount of Mn, Fe, Co, or the like, which is an alumina sintering aid, is added as in Patent Document 2.
Furthermore, as a more recent attempt, it is said that the sintering temperature is improved by performing HIP sintering as in Patent Document 3 and that the sinterability is improved by mixing nanoparticles with the raw material as in Patent Document 4. There are also reports.
JP 61-21963 JP 62-59565 A JP 2006-62921 A JP 2006-1806

特許文献1または2のような粉末は、アルミナ原料粉末とジルコニア原料粉末を同時にポットに所定量入れて混合する方法をとっている。この方法は比較的廉価な製法であるが、アルミナの粒径に焼結性が影響されてしまい、低温で緻密な焼結体を得ることが難しい。
また特許文献2のようなアルミナの焼結助剤を添加して低温で焼結する方法では緻密な焼結体が得られるが、焼結体のアルミナの結晶粒子径が大きくなることでアルミナージルコニア複合材料の特徴である優れた耐摩耗性かつ、高強度・高靱性の性能が得られなくなる。
特許文献3のようにHIP処理することで、原料に関係なく低温で高密度な焼結体が得られるが、HIP処理にはかなりの費用がかかるため、廉価な製品に使用することができない。
特許文献4には原料にアルコキシド法により得られたナノ粒子を混ぜることで低温焼結が可能になる方法が記載されている。本方法は優れた方法であるが、ナノ粒子を事前に準備する複雑な工程が必要であり、コストアップになってしまう。
Patent Document 1 or 2 uses a method in which a predetermined amount of alumina raw material powder and zirconia raw material powder are simultaneously put in a pot and mixed. This method is a relatively inexpensive method, but the sinterability is affected by the particle size of alumina, and it is difficult to obtain a dense sintered body at a low temperature.
In addition, a dense sintered body can be obtained by the method of sintering at a low temperature by adding an alumina sintering aid as in Patent Document 2, but the alumina crystal grain size is increased by increasing the crystal grain size of the sintered body. Excellent wear resistance and high strength and toughness, which are the characteristics of zirconia composite materials, cannot be obtained.
By performing the HIP treatment as in Patent Document 3, a high-density sintered body can be obtained at a low temperature regardless of the raw material. However, since the HIP treatment requires considerable cost, it cannot be used for an inexpensive product.
Patent Document 4 describes a method that enables low-temperature sintering by mixing nanoparticles obtained by an alkoxide method with a raw material. Although this method is an excellent method, it requires a complicated process for preparing nanoparticles in advance, resulting in an increase in cost.

このような課題に対してアルミナ−ジルコニア複合粉末に限り、焼結助剤を添加せずにより低温の焼結温度で緻密な焼結体となることができる原料粉末を得ることで、低コスト、低環境負荷、省エネルギー等の社会的要請にも適合したアルミナージルコニア複合焼結体を供与することが本発明の目的である。   To obtain a raw material powder that can be a dense sintered body at a low sintering temperature without adding a sintering aid, only for the alumina-zirconia composite powder for such a problem, low cost, It is an object of the present invention to provide an alumina-zirconia composite sintered body that meets social demands such as low environmental load and energy saving.

上記の目的を達成するために、本発明によれば、イットリアを1.5〜4モル%含むジルコニア粉末と、α−アルミナ粉末からなり、ジルコニア粉末/アルミナ粉末の重量割合が15/85〜40/60でありかつ、ジルコニア粉末の単斜晶の割合が45〜60モル%であることを特徴とするアルミナ−ジルコニア複合粉末とすることで、同じ重量割合で混合したジルコニア−アルミナ複合粉末と比べて約50℃程度焼結温度を低くすることができる。 In order to achieve the above object, according to the present invention, the zirconia powder containing 1.5 to 4 mol% of yttria and α-alumina powder, and the weight ratio of zirconia powder / alumina powder is 15/85 to 40. / 60 and the proportion of monoclinic crystals in the zirconia powder is 45 to 60 mol%, compared with the zirconia-alumina composite powder mixed at the same weight ratio by using an alumina-zirconia composite powder characterized in that Thus, the sintering temperature can be lowered by about 50 ° C.

また本発明の原料粉末を製造する方法としては、イットリアを1.5〜4モル%を固溶させた単斜晶の割合が10モル%未満のジルコニア粉末を、湿式粉砕し、単斜晶率が35〜45モル%になるまで単独で粉砕した後、α−アルミナ粉末を加えさらに湿式粉砕・混合を1時間以上継続し、ジルコニア粉末の単斜晶の割合が45〜60モル%となった時点で粉砕を終了し、得られたスラリーを乾燥させることで本発明のアルミナ−ジルコニア複合粉末が得られる。   In addition, as a method for producing the raw material powder of the present invention, zirconia powder having a monoclinic crystal ratio of less than 10 mol% in which 1.5 to 4 mol% of yttria is solid-solved is wet-pulverized to obtain a monoclinic crystal ratio. After being pulverized alone until 35 to 45 mol%, α-alumina powder was added and further wet pulverization and mixing were continued for 1 hour or more, and the ratio of monoclinic crystals of zirconia powder became 45 to 60 mol%. The pulverization is finished at the time point, and the resulting slurry is dried to obtain the alumina-zirconia composite powder of the present invention.

本発明の粉末を用いることで、従来の粉末より焼結温度が約50℃低い温度で緻密なアルミナ−ジルコニア複合材料が得られることより、エネルギーコストが低下できる。さらには、本複合粉末の製造方法についても、特殊な設備を使用することが無いため、低コストで製造可能である。
本発明の粉末で、より低温な焼結温度で得られた焼結体は、焼結体の結晶粒子径が小さく、より耐摩耗性に優れた性能を持つことが期待できる。
By using the powder of the present invention, a dense alumina-zirconia composite material can be obtained at a temperature lower by about 50 ° C. than the conventional powder, thereby reducing the energy cost. Furthermore, the present composite powder can be manufactured at low cost because no special equipment is used.
The sintered body obtained with the powder of the present invention at a lower sintering temperature can be expected to have a smaller crystal grain size and a more excellent wear resistance.

以下、本発明を実施するための最良の形態について具体的に説明する。
まず、本発明の粉末は、アルミナ−ジルコニア複合材料の材料であり、焼結体におけるジルコニアは主に正方晶に準安定化されることが必要である。ジルコニアが正方晶に準安定化されることで、脆性破壊時に応力誘起変態で単斜晶に変態することで、アルミナに比べ高強度・高靱性の材料となるからである。
The best mode for carrying out the present invention will be specifically described below.
First, the powder of the present invention is a material of an alumina-zirconia composite material, and zirconia in a sintered body needs to be metastabilized mainly to tetragonal crystals. This is because zirconia is metastabilized to tetragonal crystal and transformed into monoclinic crystal by stress-induced transformation at the time of brittle fracture, resulting in a material having higher strength and higher toughness than alumina.

本発明のジルコニア粉末とアルミナ粉末の割合については、上記のアルミナージルコニア複合素材の性能を発揮する上でジルコニア/アルミナの重量比で15/85〜40/60であることが好ましい。さらには20/80〜35/65の割合であることがより好ましい。ジルコニアが15重量%を下回ると、本発明のジルコニア添加による低温焼結性の発現についての効果が見られなくなること。さらには40重量%より多いと、アルミナの本来持つ高い硬度が得られなくなるため好ましくない。   The ratio of the zirconia powder to the alumina powder of the present invention is preferably 15/85 to 40/60 in terms of the weight ratio of zirconia / alumina in order to exhibit the performance of the above-mentioned alumina-zirconia composite material. Furthermore, the ratio is more preferably 20/80 to 35/65. When zirconia is less than 15% by weight, the effect of low temperature sinterability due to the addition of zirconia of the present invention is not observed. Furthermore, if it exceeds 40% by weight, the high hardness inherent in alumina cannot be obtained, which is not preferable.

本発明のアルミナ−ジルコニア複合粉末は、α−アルミナ粉末とジルコニア粉末をそれぞれ湿式混合にて混合する方法により得られるものであり、アルミナおよびジルコニアを塩やアルコキシドの溶液状態で混合した状態から製作されるものについてはコストと均一度が劣るため好ましくない。   The alumina-zirconia composite powder of the present invention is obtained by a method of mixing α-alumina powder and zirconia powder by wet mixing, respectively, and is manufactured from a state in which alumina and zirconia are mixed in a solution state of salt or alkoxide. About thing, since cost and uniformity are inferior, it is not preferable.

混合前のα−アルミナ粉末については、比表面積が5〜10m2/gのものが好ましい。比表面積が5m2/g未満であると、焼結性が著しく劣り、焼結密度が低下するため好ましくない。また比表面積が10m2/gを超えると焼結性は向上するが、粉体としての嵩密度が高くなりすぎてしまい、成形充填時のブリッジングや成形圧力伝達ムラによる焼結体の変形等が発生しやすくなり好ましくない。また、使用するα−アルミナ粉末の平均二次粒子径は1μm以下であることが好ましい。平均二次粒子径が1μmより大きいと、混合時の粉砕により複合粉末としての平均二次粒子径が0.5μm以下にならないため、焼結性が劣り焼結密度が低くなるため好ましくない。なお、平均二次粒子径の測定方法については後述する。 The α-alumina powder before mixing preferably has a specific surface area of 5 to 10 m 2 / g. When the specific surface area is less than 5 m 2 / g, the sinterability is remarkably inferior and the sintered density is lowered, which is not preferable. In addition, if the specific surface area exceeds 10 m 2 / g, the sinterability is improved, but the bulk density as a powder becomes too high, and bridging during molding filling and deformation of the sintered body due to molding pressure transmission unevenness, etc. Is likely to occur. Moreover, it is preferable that the average secondary particle diameter of the alpha alumina powder to be used is 1 micrometer or less. When the average secondary particle diameter is larger than 1 μm, the average secondary particle diameter as a composite powder does not become 0.5 μm or less due to the pulverization at the time of mixing. In addition, the measuring method of an average secondary particle diameter is mentioned later.

一方ジルコニアについては安定化剤がすでに固溶されている状態の粉末により構成されることが必要である。ジルコニアに固溶される安定化剤については、代表的なものとしてイットリア、セリア、マグネシア、カルシア等があげられる。ここで本発明に最適な安定化剤としては、もっとも少量で正方晶に安定化され、強度が高いイットリアである。また正方晶に安定化させるために最適なイットリアの量については、ジルコニアに対し1.5から4モル%であることが好ましく、さらには2〜3.5モル%であることがさらに好ましい。イットリアの量が1.5モル%未満であると、ジルコニア全てが正方晶に安定することができずに高強度のアルミナ−ジルコニア複合材料にならない。また4モル%を超えるとジルコニアの中に立方晶に変態する割合が多くなり、応力誘起変態が発現しにくくなることから強度の低下がみられる。   On the other hand, zirconia needs to be composed of powder in a state where the stabilizer is already in solid solution. Representative examples of the stabilizer dissolved in zirconia include yttria, ceria, magnesia, calcia and the like. Here, the most suitable stabilizer for the present invention is yttria, which is stabilized to tetragonal crystal in the smallest amount and has high strength. The optimum amount of yttria for stabilizing the tetragonal crystal is preferably 1.5 to 4 mol%, more preferably 2 to 3.5 mol%, based on zirconia. If the amount of yttria is less than 1.5 mol%, all of the zirconia cannot be stabilized to tetragonal crystals, and a high-strength alumina-zirconia composite material cannot be obtained. On the other hand, when the amount exceeds 4 mol%, the ratio of transformation into cubic crystals in zirconia increases, and stress-induced transformation is less likely to occur, and thus a decrease in strength is observed.

ここで使用されるジルコニア粉末は安定化剤がすでに固溶している必要があると前述したが、このようなジルコニア粉末は、共沈法や加水分解法、熱分解法など液相段階でジルコニアとイットリアを溶液段階で均一混合して焼成することにより得られる。均一性の指標としては焼成された粉末の単斜晶の割合が10モル%未満であることが必要である。単斜晶の割合についての測定方法については後述する。   As described above, the zirconia powder used here needs to have the stabilizer already dissolved therein, but such zirconia powder is used in the liquid phase stage such as coprecipitation method, hydrolysis method, thermal decomposition method. And yttria are uniformly mixed at the solution stage and fired. As an index of uniformity, the ratio of monoclinic crystals in the fired powder needs to be less than 10 mol%. A measuring method for the monoclinic crystal ratio will be described later.

また、この焼成粉末の物性としては、比表面積が5〜15m2/gであることが好ましい。比表面積が5m2/g未満であると、ジルコニア粉末の焼結性が悪化し、焼結密度が低くなりすぎてしまう。また比表面積が15m2/gを超えると粉砕後の粉末の嵩密度が低くなり、充填性が悪くなることで焼結体に内部欠陥を発生させる原因となるため好ましくない。また、各種の合成法により得られたジルコニア焼成粉末の平均二次粒子の大きさは5μm以下であることが好ましく、さらには3μm以下であることが好ましい。平均二次粒子の大きさが5μmより大きいと、粉砕により平均二次粒径を0.5μm以下にすることが難しくなるためである。 Moreover, as a physical property of this baked powder, it is preferable that a specific surface area is 5-15 m < 2 > / g. When the specific surface area is less than 5 m 2 / g, the sinterability of the zirconia powder deteriorates and the sintered density becomes too low. On the other hand, if the specific surface area exceeds 15 m 2 / g, the bulk density of the powder after pulverization becomes low and the filling property is deteriorated, thereby causing internal defects in the sintered body. In addition, the average secondary particle size of the zirconia fired powder obtained by various synthesis methods is preferably 5 μm or less, and more preferably 3 μm or less. This is because if the average secondary particle size is larger than 5 μm, it becomes difficult to reduce the average secondary particle size to 0.5 μm or less by pulverization.

本発明のアルミナ−ジルコニア複合粉末の特徴として、含まれるジルコニア粉末の単斜晶の割合が45〜60モル%であることで、焼結性が飛躍的に向上する効果があることを発明者は見出した。具体的に言うと、アルミナとジルコニアの混合割合が同じ粉末で理論密度の99%に達する焼成温度が30〜50℃低下することが判明した。その効果については不明な点が多いが、次のように推察している。まず、ジルコニアはアルミナの焼結時の焼結阻害剤として働き、アルミナのみの焼結時に比べ焼結温度を50℃程度上昇させる効果がある。ここで湿式粉砕されたジルコニア微粒子は粉砕により、表面エネルギーの高い新生面が生成している。この新生面の結晶相はもともと単斜晶が10モル%未満であったものが粉末粉砕エネルギーによる応力誘起変態により単斜晶がかなり多くなっており、この表面エネルギーの高い単斜晶面は焼結時にアルミナに対する焼結阻害効果が著しく低下しており、結果、本来アルミナとジルコニア界面の焼結が進まなかった部分でより低温で焼結できるためと考えられる。ただし、本発明でいう粉末の単斜晶の割合45〜60モル%というのは、あくまでバルクとしての粉体の単斜晶の割合であり、破砕時の新生面の単斜晶の割合を示したものではない。   As a feature of the alumina-zirconia composite powder of the present invention, the inventor has the effect that the sinterability is drastically improved when the proportion of monoclinic crystals in the contained zirconia powder is 45 to 60 mol%. I found it. Specifically, it has been found that the firing temperature at which 99% of the theoretical density is reached with a powder having the same mixing ratio of alumina and zirconia is reduced by 30 to 50 ° C. There are many unclear points about the effect, but I guess as follows. First, zirconia acts as a sintering inhibitor during the sintering of alumina, and has the effect of raising the sintering temperature by about 50 ° C. compared to the sintering of alumina alone. Here, the wet-ground zirconia fine particles generate a new surface having a high surface energy by pulverization. Although the crystal phase of this new surface was originally monoclinic less than 10 mol%, the monoclinic crystal was considerably increased due to the stress-induced transformation by the powder grinding energy. This monoclinic surface with high surface energy was sintered. It is thought that sometimes the sintering inhibition effect on alumina is remarkably lowered, and as a result, it is possible to sinter at a lower temperature in the portion where the sintering of the alumina and zirconia interface did not proceed. However, the proportion of monoclinic crystals in the present invention of 45 to 60 mol% is the proportion of monoclinic crystals of powder as a bulk, and indicates the proportion of monoclinic crystals on the new surface at the time of crushing. It is not a thing.

ここで単斜晶率が45モル%より低い場合、ジルコニアの破断面の単斜晶の燒結性に寄与する効果が小さく、焼成温度の低下がそれほど大きくならない。また60モル%より大きいと焼結時に正方晶に戻りきらなくなるものが出てくるため焼結体の単斜晶の割合が大きくなりすぎてしまい強度、靱性に低下が見られるため好ましくない。   Here, when the monoclinic crystal ratio is lower than 45 mol%, the effect of contributing to the monoclinic sintering property of the fracture surface of zirconia is small, and the reduction in the firing temperature is not so great. On the other hand, if it is larger than 60 mol%, some of the sintered body will not return to tetragonal crystals, so the proportion of monoclinic crystals in the sintered body becomes too large, and the strength and toughness are reduced.

アルミナ−ジルコニア混合粉末としての平均二次粒子径は0.1μm〜0.5μmであることが好ましい。混合粉末の平均二次粒子径が0.1μm以下であると、スラリーとして分散状態を維持することが難しく、乾燥時に強い凝集を発生することから、成形時に乾燥粉末がつぶれずに焼結体に欠陥ポアが多数できてしまう。また0.5μmを超えると焼結性が低下し、焼結密度が高くならない。混合粉末の比表面積としては7〜20m2/gであることが好ましい。これは上述したα−アルミナ及び、ジルコニアそれぞれの粉末を湿式粉砕混合した後の比表面積である。比表面積が7m2/g未満であると、焼結性が悪く焼結密度が高くならない。20m2/g超えると粉砕後の粉末の嵩密度が低くなり、充填性が悪くなることで焼結体に内部欠陥を発生させる原因となるため好ましくない。 The average secondary particle size of the alumina-zirconia mixed powder is preferably 0.1 μm to 0.5 μm. If the average secondary particle size of the mixed powder is 0.1 μm or less, it is difficult to maintain a dispersed state as a slurry, and strong agglomeration occurs during drying. Many defective pores are formed. On the other hand, if it exceeds 0.5 μm, the sinterability is lowered and the sintered density is not increased. The specific surface area of the mixed powder is preferably 7 to 20 m 2 / g. This is the specific surface area after the above-mentioned α-alumina and each powder of zirconia are wet pulverized and mixed. When the specific surface area is less than 7 m 2 / g, the sinterability is poor and the sintered density is not increased. If it exceeds 20 m 2 / g, the bulk density of the powder after pulverization is lowered, and the filling property is deteriorated, which causes internal defects in the sintered body, which is not preferable.

本発明のアルミナ−ジルコニア複合粉末の作成方法について述べる。
上述したジルコニア焼成粉末をまず所定量計量し、所定量の水を加え、アトライターやビーズミルナノどのメディア分散型湿式粉砕機で単独で粉砕する。粉砕の効率は内部のメディアの種類・大きさや攪拌速度により変わるが、使用するメディアはアルミナまたは高強度ジルコニアであることが好ましい。またメディアの大きさはボール形状で5mm以下であることが好ましい。
A method for producing the alumina-zirconia composite powder of the present invention will be described.
First, a predetermined amount of the above-mentioned zirconia calcined powder is weighed, a predetermined amount of water is added, and it is pulverized independently by a media dispersion type wet pulverizer such as an attritor or a bead mill nano. The efficiency of pulverization varies depending on the type and size of the internal media and the stirring speed, but the media used is preferably alumina or high-strength zirconia. The media size is preferably 5 mm or less in a ball shape.

所定時間粉砕後、ジルコニアの単斜晶の割合が35〜45モル%になったことを確認し、上述のα−アルミナを所定量計量し、所定量の水を加え、再び湿式粉砕・混合を継続する。この際、内部のメディア径や攪拌速度などの条件を変更してもかまわない。さらにジルコニアとアルミナの均一度を高くするためにこの湿式粉砕の時間は1時間以上必要である。最終的にジルコニアの単斜晶の割合が45〜60モル%となっていることを確認し、湿式粉砕・混合を終了する。この湿式粉砕時にセルナD−305(中京油脂製)等の無機物質の残渣を含まない分散剤を所定量添加し、より分散した状態で湿式粉砕を実施すると効果が高い。湿式混合後のスラリーをスプレードライヤー等の噴霧乾燥機にて乾燥することで複合粉末が得られる。噴霧乾燥する前のスラリーに成形性を向上させるためのPVAやアクリル樹脂系の有機バインダーを添加してもよい。   After grinding for a predetermined time, confirm that the proportion of monoclinic zirconia is 35 to 45 mol%, weigh a predetermined amount of the above-mentioned α-alumina, add a predetermined amount of water, and wet-grind and mix again. continue. At this time, conditions such as the internal media diameter and stirring speed may be changed. Furthermore, in order to increase the uniformity of zirconia and alumina, the wet pulverization time needs to be 1 hour or more. Finally, it is confirmed that the ratio of monoclinic zirconia is 45 to 60 mol%, and the wet pulverization / mixing is finished. When wet pulverization is carried out in a more dispersed state by adding a predetermined amount of a dispersant containing no inorganic substance residue such as Selna D-305 (manufactured by Chukyo Yushi) during this wet pulverization, the effect is high. The composite powder is obtained by drying the slurry after the wet mixing with a spray dryer such as a spray dryer. PVA or an acrylic organic binder for improving moldability may be added to the slurry before spray drying.

以下本発明を実施例及び比較例で具体的に説明する。ただし本発明はこれらの実施例のみにより限定されるものではない。
まず実施例の物性測定、評価の実施方法についてまとめた。
・ 平均二次粒子径
測定物質が粉末の場合は、0.5g程度を水50cm3に入れ、超音波分散器を利用して充分分散させる。また測定物質がスラリーの場合スポイトで1〜2g程度を水50cm3に入れ超音波分散器を利用して充分分散した試料を作成する。この試料をレーザー回折型粒度分布測定装置(HORIBA製LA−920)にて測定する。測定結果のメジアン径を平均二次粒子径とした。
・ ジルコニアの単斜晶の割合
粉末X線回折測定によりジルコニアの単斜晶相の111面および11−1面、正方晶相の111面の反射ピーク強度Im(111)、Im(11−1)、It(111)、より、次の(1)式により算出される。
単斜晶相の割合[モル%]=[Im(111)+Im(11−1)]/[Im(111)+Im(11−1)+It(111)]×100 (1)
焼結体の場合はX線回折測定により単斜晶相の111面および11−1面、正方晶相の111面および立方晶相の111面の反射ピーク強度Im(111)、Im(11−1)、It(111)、Ic(111)より、次の(2)式により算出される。
単斜晶相率=[Im(111)+Im(11−1)]/[Im(111)+Im(11−1)+It(111)+Ic(111)] (2)
・ 比表面積測定
モノソーブMS−17(ユアサアイオニクス社製)にて標準ガス(He/N2)を使用したBET1点法により測定した。
・ 成形・焼結方法
粉末を水中等圧成形法(CIP成形)で圧力98MPaで成形した成形体を所定形状に加工し、成形体の密度を測定した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited only to these examples.
First, physical property measurement and evaluation methods of the examples were summarized.
-Average secondary particle diameter When the substance to be measured is powder, about 0.5 g is put in 50 cm 3 of water and sufficiently dispersed using an ultrasonic disperser. When the measurement substance is a slurry, about 1 to 2 g is put into 50 cm 3 of water with a dropper, and a sufficiently dispersed sample is prepared using an ultrasonic disperser. This sample is measured with a laser diffraction type particle size distribution analyzer (LA-920 manufactured by HORIBA). The median diameter of the measurement result was taken as the average secondary particle diameter.
-Ratio of monoclinic zirconia: Reflection peak intensities Im (111) and Im (11-1) of the 111 and 11-1 planes of the monoclinic phase of zirconia and the 111 plane of the tetragonal phase by powder X-ray diffraction , It (111), and the following equation (1) is calculated.
Proportion of monoclinic phase [mol%] = [Im (111) + Im (11-1)] / [Im (111) + Im (11-1) + It (111)] × 100 (1)
In the case of a sintered body, the reflection peak intensities Im (111) and Im (11−) of the monoclinic phase 111 plane and the 11-1 plane, the tetragonal phase 111 plane, and the cubic phase 111 plane are measured by X-ray diffraction measurement. 1) It is calculated from the following equation (2) from It (111) and Ic (111).
Monoclinic phase ratio = [Im (111) + Im (11-1)] / [Im (111) + Im (11-1) + It (111) + Ic (111)] (2)
It was measured by BET1 point method using a standard gas (the He / N 2) at - specific surface area measuring Monosorb MS-17 (manufactured by Yuasa Ionics Inc.).
-Molding / Sintering Method A molded body obtained by molding powder at a pressure of 98 MPa by an underwater isobaric molding method (CIP molding) was processed into a predetermined shape, and the density of the molded body was measured.

有機バインダーが入っている物については500℃で10時間脱脂を実施し、100℃/hで最高温度まで昇温して、最高温度で2時間キープ、その後100℃/hで1000℃まで冷却後炉冷で室温まで冷却する。
・ 焼結体密度測定方法
焼結体を固体比重測定方法(JIS Z 8807−1976)の液中秤量法にて焼結体密度を測定した。また、アルミナと正方晶ジルコニアの混合比による理論密度を求めて、理論密度比(測定密度)/(理論密度)×100[%]を算出した。
For those containing organic binders, degrease at 500 ° C for 10 hours, raise the temperature to 100 ° C / h to the maximum temperature, keep at the maximum temperature for 2 hours, and then cool to 1000 ° C at 100 ° C / h Cool to room temperature with furnace cooling.
-Sintered body density measuring method The sintered compact density was measured by the submerged weighing method of the sintered compact of the solid specific gravity measuring method (JIS Z 8807-1976). Moreover, the theoretical density by the mixing ratio of alumina and tetragonal zirconia was obtained, and the theoretical density ratio (measured density) / (theoretical density) × 100 [%] was calculated.

実施例1
オキシ塩化ジルコニウムと塩化イットリウムをイットリアが2.8モル%となるように混合した溶液からアルカリ添加共沈法で得られたジルコニア水和物を1000℃で焼成することで比表面積;7m2/g、平均二次粒子径が2.5μm、単斜晶の割合が3モル%のジルコニア粉末を得た。本ジルコニア粉末を約濃度40重量%になるように水を添加し粉砕メディア径が3mmのアトリッジミルで200rpmの速度で湿式粉砕した。単斜晶の割合が40モル%であることを確認し、湿式粉砕を1度停止し、比表面積7m2/g、平均二次粒子径0.5μmのα−アルミナ粉末をジルコニア/アルミナの重量比が30/70となる割合で添加し、濃度が約35重量%となるように水を添加してさらに湿式粉砕を継続した。2時間後粉砕を停止し、粉末の物性を測定したところ表1の実施例1のとおりとなった。
本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。
本粉末を成形し、1500℃、1550℃、1600℃でそれぞれ焼結し、焼結体密度を測定して理論密度比を求め、JIS R 1601−1995の3点曲げ試験により平均強度をもとめた。また、ビッカース法(荷重30kg)により硬度を測定し、X線回折法で焼結体の単斜晶率を測定した。それぞれの測定結果を表2の実施例1欄にまとめた。
Example 1
Zirconia hydrate obtained by alkali addition coprecipitation method from a solution in which zirconium oxychloride and yttrium chloride are mixed so that yttria is 2.8 mol% is calcined at 1000 ° C., specific surface area: 7 m 2 / g A zirconia powder having an average secondary particle diameter of 2.5 μm and a monoclinic crystal ratio of 3 mol% was obtained. Water was added to the zirconia powder to a concentration of about 40% by weight, and wet pulverization was performed at a speed of 200 rpm in an attrid mill having a pulverization media diameter of 3 mm. After confirming that the monoclinic crystal ratio was 40 mol%, the wet grinding was stopped once, and α-alumina powder having a specific surface area of 7 m 2 / g and an average secondary particle size of 0.5 μm was added to the weight of zirconia / alumina. The ratio was 30/70, and water was added so that the concentration was about 35% by weight. After 2 hours, pulverization was stopped and the physical properties of the powder were measured.
1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.
This powder was molded, sintered at 1500 ° C., 1550 ° C., and 1600 ° C., respectively, and the density of the sintered body was measured to determine the theoretical density ratio, and the average strength was determined by a three-point bending test of JIS R 1601-1995. . Further, the hardness was measured by the Vickers method (load 30 kg), and the monoclinic rate of the sintered body was measured by the X-ray diffraction method. The respective measurement results are summarized in the column of Example 1 in Table 2.

比較例1
実施例1と同様の方法で表面積;7m2/g、平均二次粒子径が2.5μm、単斜晶の割合が3モル%のジルコニア粉末を得た。比表面積7m2/g、平均二次粒子径0.5μmのα−アルミナ粉末を濃度が約40重量%となるように水を添加して粉砕メディア径が3mmのアトリッジミルで200rpmの速度で湿式粉砕した。1時間粉砕後、上記ジルコニア粉末をジルコニア/アルミナの重量比が30/70となる割合で添加し、濃度が約35重量%となるように水を添加してさらに湿式粉砕を継続した。1時間後粉砕を停止した。
本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。
本粉末を成形し、実施例1と同じ条件で焼結し、それぞれ物性評価を実施した結果を表2の比較例1欄にまとめた。
Comparative Example 1
A zirconia powder having a surface area of 7 m 2 / g, an average secondary particle size of 2.5 μm, and a monoclinic crystal ratio of 3 mol% was obtained in the same manner as in Example 1. Addition of water to α-alumina powder with specific surface area of 7m 2 / g and average secondary particle size of 0.5μm so that the concentration is about 40% by weight, and wet milling at 200rpm in an attrid mill with a grinding media diameter of 3mm did. After pulverization for 1 hour, the zirconia powder was added at a ratio such that the weight ratio of zirconia / alumina was 30/70, water was added so that the concentration was about 35% by weight, and wet pulverization was further continued. The grinding was stopped after 1 hour.
1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.
This powder was molded, sintered under the same conditions as in Example 1, and the results of physical property evaluation were summarized in the Comparative Example 1 column of Table 2.

実施例1と比較例1を比較すると、同じジルコニア粉末およびアルミナ粉末を混合したのにも関わらず、実施例1は1500℃の焼結温度で理論密度の98.0%、と強度600MPa、硬度1600となり、比較例1は1500℃では理論密度の96.1%、強度410MPa、硬度1470と実施例1より明らかに物性が低下している。また実施例1は比較例1の1550℃焼結時と同等の物性となり、焼結温度が約50℃低くなっていることが確認された。   Comparing Example 1 and Comparative Example 1, although the same zirconia powder and alumina powder were mixed, Example 1 had a theoretical density of 98.0% at a sintering temperature of 1500 ° C., strength of 600 MPa, and hardness. The physical properties of Comparative Example 1 are clearly lower than those of Example 1 at 1500 ° C. and 96.1% of the theoretical density, the strength of 410 MPa, and the hardness of 1470. In addition, Example 1 has the same physical properties as those of Comparative Example 1 during sintering at 1550 ° C., and it has been confirmed that the sintering temperature is about 50 ° C. lower.

Figure 2008150220
Figure 2008150220

Figure 2008150220
Figure 2008150220

実施例2
オキシ塩化ジルコニウムと塩化イットリウムをイットリアが3.0モル%となるように混合した溶液からアルカリ添加共沈法で得られたジルコニア水和物を930℃で焼成することで比表面積;12m2/g、平均二次粒子径が2.1μm、単斜晶の割合が7モル%のジルコニア粉末を得た。本ジルコニア粉末を約濃度40重量%になるように水を添加し粉砕メディア径が1mmのビーズミルで回転翼の周速15m/secの速度で湿式粉砕した。単斜晶の割合が37モル%であることを確認し、湿式粉砕を1度停止し、比表面積10m2/g、平均二次粒子径0.2μmのα−アルミナ粉末をジルコニア/アルミナの重量比が20/80となる割合で添加し、濃度が約35重量%となるように水を添加してさらに同条件で湿式粉砕を継続した。スラリーのミル本体内の滞留時間が1時間となる時間で粉砕を停止し、粉末の物性を測定したところ表1の実施例2のとおりとなった。
本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。
Example 2
Zirconia hydrate obtained by alkali addition coprecipitation method from a solution in which zirconium oxychloride and yttrium chloride are mixed so that yttria is 3.0 mol% is calcined at 930 ° C., specific surface area: 12 m 2 / g A zirconia powder having an average secondary particle diameter of 2.1 μm and a monoclinic crystal ratio of 7 mol% was obtained. The zirconia powder was wet-pulverized with a bead mill having a grinding media diameter of 1 mm at a peripheral speed of 15 m / sec. After confirming that the ratio of monoclinic crystal was 37 mol%, the wet grinding was stopped once, and α-alumina powder having a specific surface area of 10 m 2 / g and an average secondary particle diameter of 0.2 μm was added to the weight of zirconia / alumina. The ratio was 20/80, water was added so that the concentration was about 35% by weight, and wet grinding was continued under the same conditions. Grinding was stopped at a time when the residence time of the slurry in the mill body was 1 hour, and the physical properties of the powder were measured. The result was as shown in Example 2 in Table 1.
1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.

本粉末を成形し、1450℃、1500℃、1550℃でそれぞれ焼結し、焼結体密度を測定して理論密度比を求め、JIS R 1601−1995の3点曲げ試験により平均強度をもとめた。また、ビッカース法(荷重30kg)により硬度を測定し、X線回折法で焼結体の単斜晶率を測定した。それぞれの測定結果を表2の実施例2欄にまとめた。   This powder was molded, sintered at 1450 ° C., 1500 ° C. and 1550 ° C., respectively, and the density of the sintered body was measured to determine the theoretical density ratio, and the average strength was determined by a three-point bending test of JIS R 1601-1995. . Further, the hardness was measured by the Vickers method (load 30 kg), and the monoclinic rate of the sintered body was measured by the X-ray diffraction method. The respective measurement results are summarized in Example 2 column of Table 2.

比較例2
実施例2と同様の方法で比表面積;12m2/g、平均二次粒子径が2.1μm、単斜晶の割合が7モル%のジルコニア粉末を得た。このジルコニア粉末と比表面積10m2/g、平均二次粒子径0.2μmのα−アルミナ粉末をジルコニア/アルミナの重量比が20/80となる割合で秤量した粉末を、濃度が約35重量%となるように水を添加して粉砕メディア径が1mmのビーズミルで回転翼の周速15m/secの速度で滞留時間が30分となる時間、湿式粉砕した。粉末の物性を測定したところ表1の比較例2の通りとなった。本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。
Comparative Example 2
A zirconia powder having a specific surface area of 12 m 2 / g, an average secondary particle diameter of 2.1 μm, and a monoclinic crystal ratio of 7 mol% was obtained in the same manner as in Example 2. This zirconia powder and an α-alumina powder having a specific surface area of 10 m 2 / g and an average secondary particle diameter of 0.2 μm were weighed at a ratio of zirconia / alumina of 20/80, and the concentration was about 35% by weight. Water was added so that the pulverization media diameter was 1 mm, and wet pulverization was performed at a peripheral speed of 15 m / sec of the rotary blade for a residence time of 30 minutes. When the physical properties of the powder were measured, it was as shown in Comparative Example 2 in Table 1. 1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.

本粉末を成形し、1450℃、1500℃、1550℃でそれぞれ焼結し、焼結体密度を測定して理論密度比を求め、JIS R 1601−1995の3点曲げ試験により平均強度をもとめた。また、ビッカース法(荷重30kg)により硬度を測定し、X線回折法で焼結体の単斜晶率を測定した。それぞれの測定結果を表2の比較例2欄にまとめた。   This powder was molded, sintered at 1450 ° C., 1500 ° C. and 1550 ° C., respectively, and the density of the sintered body was measured to determine the theoretical density ratio, and the average strength was determined by a three-point bending test of JIS R 1601-1995. . Further, the hardness was measured by the Vickers method (load 30 kg), and the monoclinic rate of the sintered body was measured by the X-ray diffraction method. The respective measurement results are summarized in the Comparative Example 2 column of Table 2.

実施例2と比較例2を比較すると、同じジルコニア粉末およびアルミナ粉末を混合したのにも関わらず、実施例2は1450℃の焼結温度で理論密度の98.0%、と強度420MPa、硬度1650となり、比較例2は1450℃では理論密度の95.0%、強度290MPa、硬度1450と実施例2より明らかに物性が低下している。また実施例2は比較例2の1500℃焼結時と同等の物性となり、焼結温度が約50℃低くなっていることが確認された。   Comparing Example 2 and Comparative Example 2, although the same zirconia powder and alumina powder were mixed, Example 2 had a theoretical density of 98.0% at a sintering temperature of 1450 ° C., strength of 420 MPa, and hardness. The physical properties of Comparative Example 2 are clearly lower than those of Example 2 at 1450 ° C., 95.0% of the theoretical density, strength 290 MPa, and hardness 1450. In addition, Example 2 had the same physical properties as those of Comparative Example 2 during 1500 ° C. sintering, and it was confirmed that the sintering temperature was about 50 ° C. lower.

比較例3
オキシ塩化ジルコニウムと塩化イットリウムをイットリアが1.0モル%となるように混合した溶液からアルカリ添加共沈法で得られたジルコニア水和物を900℃で焼成することで比表面積;18m2/g、平均二次粒子径が2.0μm、単斜晶の割合が19モル%のジルコニア粉末を得た。本ジルコニア粉末を約濃度40重量%になるように水を添加し粉砕メディア径が1mmのビーズミルで回転翼の周速15m/secの速度で滞留時間が1時間となるよう湿式粉砕したところ単斜晶の割合が73モル%となっていた。湿式粉砕を1度停止し、比表面積17m2/g、平均二次粒子径0.2μmのα−アルミナ粉末をジルコニア/アルミナの重量比が30/80となる割合で添加し、濃度が約35重量%となるように水を添加してさらに同条件で湿式粉砕を継続した。スラリーのミル本体内の滞留時間が1時間となる時間で粉砕を停止し、粉末の物性を測定したところ表1の実施例3のとおりとなった。
本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。
Comparative Example 3
Zirconia hydrate obtained by alkali addition coprecipitation method from a solution in which zirconium oxychloride and yttrium chloride are mixed so that yttria is 1.0 mol% is calcined at 900 ° C., specific surface area; 18 m 2 / g A zirconia powder having an average secondary particle diameter of 2.0 μm and a monoclinic crystal ratio of 19 mol% was obtained. When this zirconia powder was wet-pulverized with a bead mill having a grinding media diameter of 1 mm and a residence time of 1 hour at a peripheral speed of 15 m / sec. The proportion of crystals was 73 mol%. Wet pulverization is stopped once, α-alumina powder having a specific surface area of 17 m 2 / g and an average secondary particle size of 0.2 μm is added at a ratio of zirconia / alumina weight ratio of 30/80, and the concentration is about 35 Water was added so that it might become weight%, and the wet grinding was further continued under the same conditions. Crushing was stopped when the slurry stayed in the mill body for 1 hour, and the physical properties of the powder were measured. The results were as shown in Example 3 in Table 1.
1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.

本粉末を成形し、1500℃で焼結し、焼結体密度を測定して理論密度比を求め、JIS R 1601−1995の3点曲げ試験により平均強度をもとめた。また、ビッカース法(荷重30kg)により硬度を測定し、X線回折法で焼結体の単斜晶率を測定した。測定結果は表2の比較例3のとおりとなった。   This powder was molded, sintered at 1500 ° C., the density of the sintered body was measured to determine the theoretical density ratio, and the average strength was determined by a three-point bending test of JIS R 1601-1995. Further, the hardness was measured by the Vickers method (load 30 kg), and the monoclinic rate of the sintered body was measured by the X-ray diffraction method. The measurement results were as shown in Comparative Example 3 in Table 2.

比較例4
オキシ塩化ジルコニウムと塩化イットリウムをイットリアが5.0モル%となるように混合した溶液からアルカリ添加共沈法で得られたジルコニア水和物を1150℃で焼成することで比表面積;2.5m2/g、平均二次粒子径が5.5μm、単斜晶の割合が0モル%のジルコニア粉末を得た。このジルコニア粉末と比表面積5m2/g、平均二次粒子径0.6μmのα−アルミナ粉末をジルコニア/アルミナの重量比が30/70となる割合で秤量した粉末を、濃度が約35重量%となるように水を添加して粉砕メディア径が3mmのアトリッジミルで200rpmの速度で湿式粉砕した。2時間後粉砕を停止し、粉末の物性を測定したところ表1の比較例4のとおりとなった。
Comparative Example 4
Zirconia hydrate obtained by alkali addition coprecipitation method from a solution in which zirconium oxychloride and yttrium chloride are mixed so that yttria is 5.0 mol% is calcined at 1150 ° C. to give a specific surface area of 2.5 m 2 A zirconia powder having an average secondary particle size of 5.5 μm and a monoclinic crystal ratio of 0 mol% was obtained. This zirconia powder and an α-alumina powder having a specific surface area of 5 m 2 / g and an average secondary particle diameter of 0.6 μm were weighed at a ratio of zirconia / alumina of 30/70, and the concentration was about 35% by weight. Water was added so that the wet grinding was performed at 200 rpm with an attrid mill having a grinding media diameter of 3 mm. After 2 hours, the pulverization was stopped, and the physical properties of the powder were measured.

本スラリーに成形助剤としてPVA(GL−05)を固形分に対して1重量%添加して、噴霧乾燥機により顆粒状に噴霧乾燥した。   1% by weight of PVA (GL-05) was added to the slurry as a molding aid based on the solid content, and the slurry was spray-dried in a granular form by a spray dryer.

本粉末を成形し、1600℃で焼結し、焼結体密度を測定して理論密度比を求め、JIS R 1601−1995の3点曲げ試験により平均強度をもとめた。また、ビッカース法(荷重30kg)により硬度を測定し、X線回折法で焼結体の単斜晶率を測定した。測定結果は表2の比較例4のとおりとなった。   This powder was molded, sintered at 1600 ° C., the density of the sintered body was measured to determine the theoretical density ratio, and the average strength was determined by a three-point bending test of JIS R 1601-1995. Further, the hardness was measured by the Vickers method (load 30 kg), and the monoclinic rate of the sintered body was measured by the X-ray diffraction method. The measurement results are as shown in Comparative Example 4 in Table 2.

Claims (5)

イットリアを1.5〜4モル%含むジルコニア粉末と、α−アルミナ粉末からなるアルミナ−ジルコニア複合粉末であって、ジルコニア粉末/アルミナ粉末の重量比が15/85〜40/60でありかつ、ジルコニア粉末中の単斜晶の割合が45〜60モル%であることを特徴とするアルミナ−ジルコニア複合粉末。 A zirconia powder containing 1.5 to 4 mol% of yttria and an alumina-zirconia composite powder comprising α-alumina powder, wherein the weight ratio of zirconia powder / alumina powder is 15/85 to 40/60, and zirconia Alumina-zirconia composite powder, wherein the proportion of monoclinic crystals in the powder is 45 to 60 mol%. 前記アルミナ−ジルコニア複合粉末の平均二次粒子径が0.1〜0.5μmであることを特徴とする請求項1に記載のアルミナ−ジルコニア複合粉末。 2. The alumina-zirconia composite powder according to claim 1, wherein an average secondary particle diameter of the alumina-zirconia composite powder is 0.1 to 0.5 μm. 前期アルミナ−ジルコニア複合粉末の比表面積が7〜20m2/gであることを特徴とする請求項1または2に記載のアルミナ−ジルコニア複合粉末。 The alumina-zirconia composite powder according to claim 1 or 2, wherein the specific surface area of the alumina-zirconia composite powder is 7 to 20 m 2 / g. 請求項1〜3に記載のアルミナ−ジルコニア複合粉末を製造する方法であって、イットリアを1.5〜4モル%を固溶させた単斜晶の割合が10モル%未満のジルコニア粉末を単斜晶率が35〜45モル%になるまで単独で湿式粉砕した後、α−アルミナ粉末を加えてさらに湿式粉砕・混合を継続し、ジルコニア粉末の単斜晶の割合が45〜60モル%となった時点で粉砕を終了し、得られたスラリーを乾燥させることを特徴とするアルミナ−ジルコニア粉末の製造方法。 A method for producing the alumina-zirconia composite powder according to claims 1 to 3, wherein a monoclinic crystal in which 1.5 to 4 mol% of yttria is dissolved is less than 10 mol%. After wet pulverization alone until the oblique crystal ratio becomes 35 to 45 mol%, α-alumina powder is added and further wet pulverization and mixing are continued. The monoclinic ratio of the zirconia powder is 45 to 60 mol%. The method for producing an alumina-zirconia powder is characterized in that the pulverization is completed at the time of reaching the point and the obtained slurry is dried. 粉砕前のジルコニア粉末の比表面積が5〜15m2/gかつ平均二次粒子径が3μm以下であり、また混合前のα−アルミナ粉末の比表面積が5〜10m2/gかつ平均二次子粒径が1μm以下であることを特徴とする請求項4記載のアルミナ−ジルコニア粉末の製造方法。 A specific surface area of 5 to 15 m 2 / g and an average secondary particle diameter of the zirconia powder before pulverization is not more 3μm or less, also the specific surface area prior to mixing of α- alumina powder is 5 to 10 m 2 / g and an average secondary element The method for producing an alumina-zirconia powder according to claim 4, wherein the particle size is 1 µm or less.
JP2006336582A 2006-12-14 2006-12-14 Alumina-zirconia composite powder and method for manufacturing the same Pending JP2008150220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336582A JP2008150220A (en) 2006-12-14 2006-12-14 Alumina-zirconia composite powder and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336582A JP2008150220A (en) 2006-12-14 2006-12-14 Alumina-zirconia composite powder and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008150220A true JP2008150220A (en) 2008-07-03

Family

ID=39652817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336582A Pending JP2008150220A (en) 2006-12-14 2006-12-14 Alumina-zirconia composite powder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008150220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098208A1 (en) * 2012-12-21 2014-06-26 東ソー株式会社 Zirconia-alumina composite sintered body, and production method therefor
US9758434B2 (en) 2015-06-01 2017-09-12 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
CN113800895A (en) * 2021-08-24 2021-12-17 萍乡市金刚科技工业园有限公司 Wear-resistant zirconium-aluminum composite ball and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098208A1 (en) * 2012-12-21 2014-06-26 東ソー株式会社 Zirconia-alumina composite sintered body, and production method therefor
US9758434B2 (en) 2015-06-01 2017-09-12 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
US10093580B2 (en) 2015-06-01 2018-10-09 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
CN113800895A (en) * 2021-08-24 2021-12-17 萍乡市金刚科技工业园有限公司 Wear-resistant zirconium-aluminum composite ball and preparation method thereof

Similar Documents

Publication Publication Date Title
Hassan et al. Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites
US20120295113A1 (en) Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, and zirconia beads
JP6221698B2 (en) Pink zirconia sintered body
US20070179041A1 (en) Zirconia Ceramic
JP2008024555A (en) Zirconia fine powder, its manufacturing method and its use
Rezaee et al. Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites
JP4670227B2 (en) Zirconia ceramics and manufacturing method thereof
JP2005082459A (en) Composite ceramic and method of manufacturing the same
JP3265518B2 (en) Zirconia ball and manufacturing method thereof
Shijina et al. Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach
WO2021049530A1 (en) Wear-resistant alumina sintered body
JP2008150220A (en) Alumina-zirconia composite powder and method for manufacturing the same
Mondal et al. Development of Ce‐PSZ‐/Y‐PSZ‐Toughened Alumina Inserts for High‐Speed Machining Steel
Benavente et al. Dense nanostructured zirconia compacts obtained by colloidal filtration of binary mixtures
JP3970462B2 (en) Grinding / dispersing media comprising a zirconia sintered body having excellent durability and method for producing the same
El‐Amir et al. Effect of waste‐derived MA spinel on sintering and stabilization behavior of partially stabilized double phase zirconia
Rodaev et al. Spherical engineering Ca-TZP ceramics made from baddeleyite: fabrication, structure and mechanical properties
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP6665542B2 (en) Zirconia powder and method for producing the same
JP2008213240A (en) Manufacturing method of alumina ceramic sintered compact and alumina ceramic sintered compact
JP6221434B2 (en) Zirconia sintered body and manufacturing method thereof
Xu et al. Phase stability and mechanical properties of TZP with a low mixed Nd2O3/Y2O3 stabiliser content
Ran et al. Synthesis, sintering and microstructure of 3Y-TZP/CuO nano-powder composites
El-Amir et al. MgAl2O4-reinforced c-ZrO2 ceramics prepared by spark plasma sintering
JP6134561B2 (en) Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body