JPS62191426A - Zirconia polycrystalline microballon and its production - Google Patents

Zirconia polycrystalline microballon and its production

Info

Publication number
JPS62191426A
JPS62191426A JP61032129A JP3212986A JPS62191426A JP S62191426 A JPS62191426 A JP S62191426A JP 61032129 A JP61032129 A JP 61032129A JP 3212986 A JP3212986 A JP 3212986A JP S62191426 A JPS62191426 A JP S62191426A
Authority
JP
Japan
Prior art keywords
zirconia
sol
ultrafine
less
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61032129A
Other languages
Japanese (ja)
Inventor
Etsuro Kato
加藤 悦朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61032129A priority Critical patent/JPS62191426A/en
Publication of JPS62191426A publication Critical patent/JPS62191426A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • B01J13/125Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution by evaporation of the solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying

Abstract

PURPOSE:A translucent aqueous sol in which ultramicro crystals of monoclinic ZrO2 with a specific shape are deflocculated in high dispersion is spray-dried and roasted to give the titled microballoon of very small sizes and uniform membrane thickness. CONSTITUTION:Ultrafine microcrystals of monoclinic ZrO2 of 100Angstrom or less wide rods or strips are highly deflocculated and combined with a solution or colloidal particles of at least one selected from the group consisting of rare earth metal ions such as Y<3+>, Ca<2+> and Mg<2+> to prepare a translucent aqueous sol. The sol is spray-dried form shells of porous gel on the surface of individual liquid drops and the shells are solidified by drying, then roasted over 800 deg.C, The titled microballoons which are made of ultrafine microcrystals of tetragonal or cubic ZrO2 solid solution of less than 0.5 micron in particle size and has a uniform thin film shell of 5-100 micron thickness and a diameter of 50-100 microns.

Description

【発明の詳細な説明】 純粋なジルコニア、あるいはHfO2などを含有する一
般的なジルコニア、あるいはそれにY2O3゜Cab、
 MgOなどを固溶した。いわゆる安定化、または部分
安定化ジルコニアセラミックスは、耐火材料や高強度材
料として実用されている。ジルコニアは熱伝導性が最も
小さいので中空のバルーンい。本発明は極めて微小で、
且薄く均一な膜厚を持つ、精密rtマイクロバルーンを
ジルコニアモジくはジルコニア固溶体で製造する方法に
関するものである。
[Detailed description of the invention] Pure zirconia, general zirconia containing HfO2, etc., or Y2O3°Cab,
MgO etc. were dissolved in solid solution. So-called stabilized or partially stabilized zirconia ceramics are in practical use as refractory and high-strength materials. Zirconia has the lowest thermal conductivity, so it is a hollow balloon. The present invention is extremely small,
The present invention also relates to a method for manufacturing precision rt microballoons with a thin and uniform film thickness using zirconia modules or zirconia solid solutions.

すなわち1本発明は8粒径0.5μm以下の正方または
立方型ジルコニア固溶体微結晶からなる。
That is, the present invention consists of 8 square or cubic zirconia solid solution microcrystals with a grain size of 0.5 μm or less.

厚さ5〜100μmのほぼ均一薄膜の直径50〜100
0μmのジルコニア多結晶マイクロバルーン、ならびに
その製造方法であり2本発明方法は、出発原料として幅
100Å以下の短棒状または短冊状の単斜Y8+等の稀
土類金属イオン、  Ca2+およびMg”(7)群か
ら選ばれた1種以上が可溶性塩もしくはコロイド粒子の
形で含まれる半透明の水性ゾルを調製し。
Approximately uniform thin film with a thickness of 5 to 100 μm and a diameter of 50 to 100 μm
A zirconia polycrystalline microballoon with a diameter of 0 μm and a method for producing the same.2 The method of the present invention uses rare earth metal ions such as monoclinic Y8+, Ca2+ and Mg'' (7) in the form of short rods or strips with a width of 100 Å or less as starting materials. A translucent aqueous sol is prepared containing one or more selected from the group in the form of soluble salts or colloidal particles.

この水性ゾルを噴霧乾燥により各液滴の表面に多孔質ゲ
ルの殼を形成させつつ全体を乾燥固化させ。
This aqueous sol was spray-dried to form a shell of porous gel on the surface of each droplet, and the whole was dried and solidified.

800℃以上の温度で焼成することを特徴とするもので
ある。
It is characterized by being fired at a temperature of 800°C or higher.

本発明の基礎となる研究は2本発明者によってなされた
水溶液中での単斜ジルコニア超微結晶の合成と性質に関
するもので1本発明者は既に、製塩酸中濃厚ジルコニウ
ム塩の1昼夜以上の長時間の水熱処理によって短棒状の
単斜ジルコニア超微結晶が生成すること、およ、びこの
超微結晶粒子は十分に分散解膠させると乾燥によって半
透明の多結晶多孔質ゲルとなることなどを見出し、「単
斜ジルコニア超微結晶の高分散ゾルまたはゲルおよび製
造方法」 (昭和61年1月14日、出願番号昭61−
005899号として特許、出願した。本発明者はさら
にこのゾルの性質を調べて、X線的な結晶子径100Å
以下のこのような異方形状の結晶性超微粒子が十分に分
散解膠した半透明の水性ゾルは、ジルコニアが1モル/
l程度の濃度でも半透明で流動性があり9表面から急速
に脱水させると表面に超微粒子の集合からなる多孔質多
結晶薄膜を形成すること、しかも一度び形成された薄膜
は水中においても再分散しないことを発見し、た。さら
にまたこのような超微結晶からなるゾルまたはゲルは、
 ZrO2に固溶して正方または立方結晶を安定化させ
る金属イオンを含有する可溶性塩類をゾル中に添加後ゲ
ル化させろと、またはゲル化したものにそれらを含浸さ
せると2次の熱処理において、  400’C程度の極
めて低温度から固溶体化が始まって単斜ジルコニアは正
方または立方型結晶に変化し、さらに900℃以上では
これが焼結緻密化して添加金属イオンの量によって安定
化または部分安定化ジルコニアの多結晶セラミックスに
なること等を見出した。本発明は始めに挙げた発明と、
上述した種々の発見を応用したものである。
The research that forms the basis of the present invention relates to the synthesis and properties of monoclinic zirconia ultrafine crystals in an aqueous solution conducted by the present inventor. Long-term hydrothermal treatment produces short rod-shaped monoclinic zirconia ultrafine crystals, and when the ultrafine crystal particles are sufficiently dispersed and peptized, they dry to become a translucent polycrystalline porous gel. ``Highly dispersed sol or gel of monoclinic zirconia ultrafine crystals and manufacturing method'' (January 14, 1985, application number 1981-
A patent application was filed as No. 005899. The present inventor further investigated the properties of this sol and found that the X-ray crystallite diameter was 100 Å.
The following translucent aqueous sol in which anisotropically shaped crystalline ultrafine particles are sufficiently dispersed and peptized contains 1 mol/zirconia.
It is translucent and fluid even at a concentration of about 1 liter, and when rapidly dehydrated from the surface, a porous polycrystalline thin film consisting of an aggregate of ultrafine particles is formed on the surface, and once formed, the thin film can be reused even in water. I discovered that it does not disperse. Furthermore, a sol or gel consisting of such ultrafine crystals is
If soluble salts containing metal ions that are dissolved in ZrO2 to stabilize square or cubic crystals are added to the sol and then gelled, or if the gelled product is impregnated with them, in the secondary heat treatment, 400 Monoclinic zirconia begins to form a solid solution at an extremely low temperature of 90°C and changes into a square or cubic crystal, and then at temperatures above 900°C, this becomes sintered and densified, resulting in stabilized or partially stabilized zirconia depending on the amount of added metal ions. It was discovered that polycrystalline ceramics can be obtained. The present invention includes the invention mentioned at the beginning,
This is an application of the various discoveries mentioned above.

本発明において、上記した幅100Å以下の短棒状また
は短冊状をした異方形状の単斜ジルコニア超微結晶の高
分散解膠した半透明の水性ゾルは。
In the present invention, the translucent aqueous sol is a highly dispersed peptized anisotropic monoclinic zirconia ultrafine crystal in the form of short rods or strips with a width of 100 Å or less.

均一な膜厚と微組織を持つ安定なマイクロバルーンの形
成に不可欠である。分散性の高いことが第一に重要な因
子で、半透明性がその尺度となる。
This is essential for the formation of stable microballoons with uniform thickness and microstructure. High dispersibility is the first important factor, and translucency is the measure.

例えば、十分解膠じて沈澱を生成しない見掛けの結晶子
径50Å以下の単斜ジルコニア超微粒子ゾルでも通常は
500Å以上の凝集粒子からなり、0.2モル/l程度
の濃度でも乳濁度が高くて牛乳状であり半透明ではない
。この様なゾルでは均一な膜厚のマイクロバルーンを形
成させることはできない。また粒子の異方形状性も極め
て重要な因子で。
For example, even a monoclinic zirconia ultrafine particle sol with an apparent crystallite diameter of 50 Å or less that does not fully peptize and form a precipitate usually consists of aggregated particles of 500 Å or more, and even at a concentration of about 0.2 mol/l, the emulsion is low. Tall, milky and not translucent. With such a sol, it is not possible to form microballoons with a uniform thickness. The anisotropic shape of the particles is also an extremely important factor.

ゾル液滴が急速な脱水を受けるとき、液滴表面に形成さ
れる薄膜がその形状を保存しつつしかも液滴の脱水を継
続させるに十分な多孔性を持つ必要があるからである。
This is because when a sol droplet undergoes rapid dehydration, the thin film formed on the surface of the droplet must maintain its shape and have sufficient porosity to continue dehydration of the droplet.

従って、以後の脱水は液滴表面に形成される多孔質薄膜
を通して行われ、結果として均一なジルコニア超微結晶
の多孔質殼を持ったマイクロバルーンが形成される。ゾ
ル構成ジルコニア粒子が等方性形状であったり、板状で
あれば球状のバルーンは形成されず、陥没したり破烈し
たりしたものとなる。
Therefore, subsequent dehydration is performed through the porous thin film formed on the surface of the droplet, resulting in the formation of a microballoon with a uniform porous shell of ultrafine zirconia crystals. If the zirconia particles constituting the sol have an isotropic shape or a plate shape, a spherical balloon will not be formed but will be depressed or burst.

バルーンの直径と殻の厚さは噴霧するときのゾル中IJ
i &’lジルコニアの含有m、噴霧される液滴の大き
さ、および温度など乾燥脱水条件によって決定される。
The diameter of the balloon and the thickness of the shell are determined by the IJ in the sol when spraying.
i&'l is determined by the drying and dehydration conditions such as the content m of zirconia, the size of the sprayed droplets, and the temperature.

100Å以下の超微粒子性はマイクロバルーン化、その
後の焼結や緻密化のために不可欠である。
Ultrafine particle size of 100 Å or less is essential for forming microballoons and subsequent sintering and densification.

本発明方法において、最初のゾル中にY、0. 、ある
いはCaO等の酸化物となる塩を混合しておけば。
In the method of the present invention, Y, 0. Or, if you mix a salt that becomes an oxide such as CaO.

こ9バノに一ンは400″C以上の温度で熱処理によっ
て正方または立方型ジルコニアに変化し、  1300
℃程度の温度で焼結緻密化する。この様な緻密化のため
の熱処理では、バルーンの殼を構成する超微粒子が焼結
して緻密質の敗を形成すると同時に。
This one in nine is transformed into square or cubic zirconia by heat treatment at a temperature of 400"C or higher, and 1300"
It becomes sintered and densified at a temperature of about ℃. In this heat treatment for densification, the ultrafine particles that make up the balloon shell sinter and form a dense structure.

バルーン殻内焼結も起る。しかしながら、このバルーン
間の焼結はバルーン殻内の焼結に比らべはるかに弱いの
で、1000’C以下の焼成では比較的簡単にほぐすこ
とができる。さらに高温での焼成のためには、噴霧状態
での焼成や炭素を介在させての焼成が望ましい。
Sintering within the balloon shell also occurs. However, this sintering between the balloons is much weaker than the sintering within the balloon shell, so it can be loosened relatively easily by firing at 1000'C or less. Furthermore, for firing at a higher temperature, firing in a spray state or firing with carbon interposed is desirable.

本発明によって製造できるジルコニア多結晶マイクロバ
ルーンは、径が50〜1000μm膜厚は5〜100μ
mの範囲であり、 10μm以下では通常の乾燥方法で
は中空とならず中実球となる。
The zirconia polycrystalline microballoon that can be produced according to the present invention has a diameter of 50 to 1000 μm and a film thickness of 5 to 100 μm.
If the diameter is 10 μm or less, the ball will not become hollow by normal drying methods, but will become a solid sphere.

安定化ジルコニアは極めて高融点であり、耐食性、断熱
性に優れるので、このバルーンは最高Hの耐火断熱剤と
なる。また部分安定化ジルコニアはセラミックス中最高
の強度を持つので、このようなバルーンは殻が薄くても
十分な強度を持ち。
Stabilized zirconia has an extremely high melting point and excellent corrosion resistance and heat insulation properties, making this balloon a fire-resistant heat-insulating agent with the highest H rating. In addition, partially stabilized zirconia has the highest strength among ceramics, so such balloons have sufficient strength even with thin shells.

最も優れた軽量充填材を与える。Gives the best lightweight filler.

実施例1 試薬塩化ジルコニル(Zr0CI t ・8H20)を
52f秤取し、これに蒸留水約10xtを加えたきらず
状混合物をテフロン容器中に密閉し、オートクレーブ中
で200℃に加熱し、5日間保持して水熱処理を行い、
得られた泥状混合物を蒸留水で約1,54まで稀釈し、
イオン交換樹脂で9処理してPHを5まで高めた。生成
したゾルはほぼ完全に解膠しており。
Example 1 Weighed out 52f of the reagent zirconyl chloride (Zr0CI t .8H20), added about 10xt of distilled water to it, sealed the mixture in a Teflon container, heated it to 200°C in an autoclave, and kept it for 5 days. and hydrothermal treatment.
The resulting slurry mixture was diluted with distilled water to approximately 1.54 g.
The pH was increased to 5 by treatment with an ion exchange resin. The generated sol is almost completely peptized.

半透明で透過光は赤味を帯びていた。X線的な見掛けの
結晶子径は約50人であ°す、電子顕微鏡によれば幅約
40人、長さ約100人の単斜ジルコニア短棒状超微結
晶からなり、ゾル中ジルコニアの含有S11よ約0.1
モル/4であった。このゾルに、ゾル中ジルコニア量の
6モル%のYCIsを加え、十分混合した後、これを電
子レンジ中で加熱濃縮して。
It was semi-transparent and the transmitted light had a reddish tinge. The apparent crystallite diameter according to X-rays is about 50 crystallites, and according to electron microscopy, it consists of monoclinic zirconia short rod-shaped ultrafine crystals with a width of about 40 crystallites and a length of about 100 crystallites, and the zirconia content in the sol. S11 is about 0.1
It was mol/4. To this sol, YCIs was added in an amount of 6 mol % based on the amount of zirconia in the sol, and after thorough mixing, the mixture was heated and concentrated in a microwave oven.

ジルコニア含[ifk約0.5モル/lの濃度まで濃縮
した。このゾルはなお半透明で、はとんど水のように流
動性である。このゾルを約100℃のスプレードライヤ
ー中に噴霧し、乾燥物を補集したところ、生成物は直径
50〜100.、μmの球形粒子からなっていた。これ
を乳鉢で破砕して走査電子顕微鏡で観察したところ、す
べて中空体で、殻の厚さは約l10l1であった。さら
にこれを坩堝中に填めて1300℃に焼成したところ、
緻密化した部分安定化ジルコニアの改でできた中空球が
互にゆるく焼結した多孔性の塊状物を得た。
It was concentrated to a concentration of about 0.5 mol/l of zirconia. This sol is still translucent and fluid, almost like water. When this sol was sprayed into a spray dryer at about 100°C and the dried material was collected, the product had a diameter of 50 to 100°C. , μm spherical particles. When this was crushed in a mortar and observed under a scanning electron microscope, it was found that all of the shells were hollow and the thickness of the shell was about 11011. Furthermore, when this was placed in a crucible and fired at 1300℃,
A porous mass was obtained in which hollow spheres made of densified partially stabilized zirconia were loosely sintered to each other.

Claims (1)

【特許請求の範囲】 1)粒径0.5μm以下の正方または立方型ジルコニア
固溶体超微結晶からなる、厚さ5〜100μmのほぼ均
一薄膜の直径50〜1000μmのジルコニア多結晶マ
イクロバルーン。 2)幅100Å以下の短棒状または短冊状の単斜ジルコ
ニア超微結晶が高分散状態で解膠し、かつY^3^+等
の稀土類金属イオン、Ca^2^+、およびMg^2^
+の群から選ばれた1種以上を、可溶性塩もしくはコロ
イド粒子の形で添加混合した半透明の水性ゾルを調製し
、これを噴霧乾燥により各液滴の表面に多孔質ゲルの殼
を形成させつつ全体を乾燥固化させ、800℃以上の温
度で焼成することを特徴とするジルコニア多結晶マイク
ロバルーンの製造方法。
[Scope of Claims] 1) A zirconia polycrystalline microballoon with a diameter of 50 to 1000 μm and a substantially uniform thin film of 5 to 100 μm in thickness, consisting of square or cubic zirconia solid solution ultrafine crystals with a particle size of 0.5 μm or less. 2) Short rod-shaped or strip-shaped monoclinic zirconia ultrafine crystals with a width of 100 Å or less are peptized in a highly dispersed state, and rare earth metal ions such as Y^3^+, Ca^2^+, and Mg^2 ^
A translucent aqueous sol is prepared by adding and mixing one or more selected from the group + in the form of a soluble salt or colloidal particles, and this is spray-dried to form a porous gel shell on the surface of each droplet. 1. A method for producing a zirconia polycrystalline microballoon, which comprises drying and solidifying the entire balloon at a temperature of 800°C or higher.
JP61032129A 1986-02-17 1986-02-17 Zirconia polycrystalline microballon and its production Pending JPS62191426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032129A JPS62191426A (en) 1986-02-17 1986-02-17 Zirconia polycrystalline microballon and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032129A JPS62191426A (en) 1986-02-17 1986-02-17 Zirconia polycrystalline microballon and its production

Publications (1)

Publication Number Publication Date
JPS62191426A true JPS62191426A (en) 1987-08-21

Family

ID=12350274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032129A Pending JPS62191426A (en) 1986-02-17 1986-02-17 Zirconia polycrystalline microballon and its production

Country Status (1)

Country Link
JP (1) JPS62191426A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185821A (en) * 1986-09-27 1988-08-01 Nissan Chem Ind Ltd Production of zirconium oxide fine powder
JPS63258642A (en) * 1987-04-15 1988-10-26 Agency Of Ind Science & Technol Hollow inorganic powder and grain materials and preparation of same
US5077241A (en) * 1988-11-17 1991-12-31 Minnesota Mining And Manufacturing Company Sol gel-derived ceramic bubbles
EP0601594A1 (en) * 1992-12-11 1994-06-15 Asahi Glass Company Ltd. Process for producing crystalline microballoons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185821A (en) * 1986-09-27 1988-08-01 Nissan Chem Ind Ltd Production of zirconium oxide fine powder
JPS63258642A (en) * 1987-04-15 1988-10-26 Agency Of Ind Science & Technol Hollow inorganic powder and grain materials and preparation of same
JPH059133B2 (en) * 1987-04-15 1993-02-04 Kogyo Gijutsu Incho
US5077241A (en) * 1988-11-17 1991-12-31 Minnesota Mining And Manufacturing Company Sol gel-derived ceramic bubbles
EP0601594A1 (en) * 1992-12-11 1994-06-15 Asahi Glass Company Ltd. Process for producing crystalline microballoons

Similar Documents

Publication Publication Date Title
US5492870A (en) Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology
CN108417889B (en) Preparation method of lithium lanthanum zirconium oxide based oxide powder
Yoldas Alumina gels that form porous transparent Al 2 O 3
Grosso et al. Highly organized mesoporous titania thin films showing mono‐oriented 2D hexagonal channels
US6982073B2 (en) Process for making nano-sized stabilized zirconia
US4052538A (en) Method of making sodium beta-alumina powder and sintered articles
US5983488A (en) Sol-casting of molten carbonate fuel cell matrices
JPS62191426A (en) Zirconia polycrystalline microballon and its production
Belov et al. Preparation of spherical Yttria‐stabilized zirconia powders by reactive‐spray atomization
US6110854A (en) Liquid-phase sintering process for aluminate ceramics
CN104445394A (en) Preparation method of zirconium-based oxide ceramic powder for thermal barrier coating
JP4224006B2 (en) Indium oxide powder
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JP2941038B2 (en) Polycrystalline sintered solid electrolyte
CN106117560B (en) Preparation method of aqueous solution of ployhydroxy zirconium acetate
Karpe et al. Synthesis of nanoporous SiO2-TiO2-ZrO2 ceramics using Sol-gel technology
Zhirenkina et al. Investigation of the effect of preliminary modification of solutions on the properties of precipitated hydrated zirconium oxides
JP2723312B2 (en) Production method of beta alumina fiber
WO1998051617A1 (en) Low temperature production of metal oxides
Osińska et al. Application of the sol-gel method at the fabrication of PLZT: Yb3+ ceramics
JPH0264016A (en) Zirconia-based hollow microspherical particle and production thereof
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
KR100804481B1 (en) Preparation method of copper-based cermet anode for solid oxide fuel cell
WO2023013551A1 (en) Calcium carbonate raw material for sintered body, porous calcium carbonate sintered body, compact calcium carbonate sintered body, and methods for producing these