JPH0262520B2 - - Google Patents

Info

Publication number
JPH0262520B2
JPH0262520B2 JP14601286A JP14601286A JPH0262520B2 JP H0262520 B2 JPH0262520 B2 JP H0262520B2 JP 14601286 A JP14601286 A JP 14601286A JP 14601286 A JP14601286 A JP 14601286A JP H0262520 B2 JPH0262520 B2 JP H0262520B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
yttrium oxide
hours
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14601286A
Other languages
Japanese (ja)
Other versions
JPS632900A (en
Inventor
Yasuhiko Kamitoku
Katsuro Masunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14601286A priority Critical patent/JPS632900A/en
Priority to EP87305058A priority patent/EP0251522A3/en
Publication of JPS632900A publication Critical patent/JPS632900A/en
Publication of JPH0262520B2 publication Critical patent/JPH0262520B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合材料の素材として有用なβ型窒化
珪素ウイスカーの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing β-type silicon nitride whiskers useful as a material for composite materials.

(従来の技術及びその問題点) 窯業協会誌91、43(1983)には、非晶質窒化珪
素粉末に酸化イツトリウム粉末を配合し、配合物
を成形した後に焼成して窒化珪素焼結体を製造す
る方法が開示されている。この報文は酸化イツト
リウムを焼結助剤として焼結体を製造する方法を
開示しているのみであり、窒化珪素ウイスカーの
製法についてはまつたく記載がない。
(Prior art and its problems) Ceramic Industry Association Magazine 91 , 43 (1983) describes a method in which yttrium oxide powder is blended with amorphous silicon nitride powder, the blend is molded, and then fired to produce a silicon nitride sintered body. A method of manufacturing is disclosed. This report only discloses a method for producing a sintered body using yttrium oxide as a sintering aid, and does not at all describe a method for producing silicon nitride whiskers.

特開昭59−147000号公報には、シリカ、カーボ
ン及び氷晶石の混合物をアンモニアと窒素との混
合雰囲気中で加熱反応させてβ型窒化珪素ウイス
カーを製造する方法が記載されている。この方法
は、生成するβ型窒化珪素ウイスカー中に原料の
シリカ及びカーボンが残留するため、これらの除
去に煩雑な操作を必要とし、さらにウイスカーの
収率が高くないという解決すべき問題点を有して
いる。
JP-A-59-147000 describes a method for producing β-type silicon nitride whiskers by subjecting a mixture of silica, carbon, and cryolite to a heating reaction in a mixed atmosphere of ammonia and nitrogen. This method requires complicated operations to remove raw materials such as silica and carbon that remain in the β-type silicon nitride whiskers that are produced, and also has the problem that the yield of whiskers is not high. are doing.

(発明の目的及び要旨) 本発明の目的は、β型窒化珪素ウイスカーを収
率よくかつ効率的に製造できる方法を提供するこ
とにある。
(Objective and Summary of the Invention) An object of the present invention is to provide a method for producing β-type silicon nitride whiskers with good yield and efficiency.

本発明の目的は、非晶質窒化珪素及びα型窒化
珪素から選ばれる原料粉末と、原料粉末100重量
部当たり酸化イツトリウム換算で0.01〜20重量部
の、酸化イツトリウム粉末又は焼成時に酸化イツ
トリウムに転化し得る化合物の粉末(以下両者を
総称してイツトリウム化合物粉末ということがあ
る)との混合粉末を、非酸化性ガス雰囲気下で焼
成するによつて達成される。
The object of the present invention is to use a raw material powder selected from amorphous silicon nitride and α-type silicon nitride, and 0.01 to 20 parts by weight of yttrium oxide in terms of yttrium oxide per 100 parts by weight of the raw material powder, or yttrium oxide powder that is converted into yttrium oxide during firing. This is achieved by firing a mixed powder with a powder of a compound capable of oxidizing (hereinafter both may be collectively referred to as yttrium compound powder) in a non-oxidizing gas atmosphere.

本発明で使用される非晶質窒化珪素粉末は、そ
れ自体公知の方法、たとえば四ハロゲン化珪素と
アンモニアとを液相又は気相で反応させた反応生
成物を加熱処理することによつて得ることがで
き、通常のX線回折によつて明確な回折現象が表
れない、いわゆる非晶質の物質である。なお、こ
の非晶質窒化珪素は珪素原子、窒素原子の他に水
素原子を含むことがある。
The amorphous silicon nitride powder used in the present invention can be obtained by a method known per se, for example, by heating a reaction product obtained by reacting silicon tetrahalide and ammonia in a liquid phase or a gas phase. It is a so-called amorphous material that does not show a clear diffraction phenomenon by ordinary X-ray diffraction. Note that this amorphous silicon nitride may contain hydrogen atoms in addition to silicon atoms and nitrogen atoms.

α型窒化珪素粉末は、上記の非晶質窒化珪素粉
末を仮焼する方法の他に、シリカの還元窒化法、
珪素の直接窒化法等の公知の方法で製造すること
ができる。α型窒化珪素粉末の比表面積は0.001
〜20m2/g、特に2〜13m2/gであることが好ま
しい。
In addition to the above-mentioned method of calcining the amorphous silicon nitride powder, α-type silicon nitride powder can be produced using the silica reduction nitriding method.
It can be manufactured by a known method such as direct silicon nitridation. The specific surface area of α-type silicon nitride powder is 0.001
It is preferably 20 m 2 /g, especially 2 to 13 m 2 /g.

本発明において焼成時に酸化イツトリウムに転
化し得る化合物の具体例としては、炭酸イツトリ
ウム、水酸化イツトリウムが挙げられる。
In the present invention, specific examples of compounds that can be converted into yttrium oxide during firing include yttrium carbonate and yttrium hydroxide.

イツトリウム化合物粉末の配合量は、非晶質窒
化珪素及びα型窒化珪素から選ばれる原料粉末
100重量部当たり、酸化イツトリウム換算で、
0.01〜20重量部、好ましくは0.5〜10重量部であ
る。イツトリウム化合物粉末の配合量が下限より
小さいとウイスカーの収率が小さくなり、その配
合量が上限より多いとウイスカー同志の融着が起
こるようになる。
The amount of yttrium compound powder is a raw material powder selected from amorphous silicon nitride and α-type silicon nitride.
Per 100 parts by weight, converted to yttrium oxide,
The amount is 0.01 to 20 parts by weight, preferably 0.5 to 10 parts by weight. If the amount of yttrium compound powder blended is smaller than the lower limit, the yield of whiskers will be lower, and if the blended amount is more than the upper limit, fusion of whiskers will occur.

原料粉末とイツトリウム化合物粉末との混合粉
末の調製法については特に制限はなく、それ自体
公知の方法、たとえば両者を乾式混合する方法、
不活性液体中で両者を湿式混合した後に不活性液
体を除去する方法等を採用することができる。混
合装置としては、V型混合機、ボールミル又は振
動ボールミルが好ましく使用される。上記混合物
の別の調製法としては、非晶質窒化珪素粉末の前
駆体、たとえばシリコンジイミド又はシリコンテ
トラミドにイツトリウム化合物粉末を混合分散さ
せ、この分散物を加熱処理する方法を採用するこ
ともできる。上記調製法において、非晶質窒化珪
素又はその前駆体を使用する場合、これらは酸素
又は水分に対してきわめて敏感であるので、制御
された不活性雰囲気下で取り扱う必要がある。
There are no particular restrictions on the method for preparing the mixed powder of the raw material powder and the yttrium compound powder, and methods known per se, such as a method of dry mixing the two,
A method may be adopted in which both are wet-mixed in an inert liquid and then the inert liquid is removed. As the mixing device, a V-type mixer, a ball mill or a vibrating ball mill is preferably used. Another method for preparing the above mixture may be to mix and disperse yttrium compound powder in a precursor of amorphous silicon nitride powder, such as silicon diimide or silicon tetraamide, and then heat-treat the dispersion. If amorphous silicon nitride or its precursors are used in the above preparation method, they must be handled under a controlled inert atmosphere since they are very sensitive to oxygen or moisture.

焼成時の非酸化性ガスを構成する非酸化性ガス
の具体例としては、窒素、アルゴン、アンモニア
あるいはこれらの混合ガスが挙げられる。焼成条
件は、混合粉末が1000℃から最高温度の間を平均
して、0.1〜40時間、好ましくは4〜20時間で加
熱されるように設定することが望ましい。焼成時
の最高温度は1800℃以下、好ましくは1500〜1750
℃の範囲内の温度である。
Specific examples of the non-oxidizing gas constituting the non-oxidizing gas during firing include nitrogen, argon, ammonia, or a mixed gas thereof. The firing conditions are desirably set so that the mixed powder is heated between 1000° C. and the maximum temperature for an average of 0.1 to 40 hours, preferably 4 to 20 hours. The maximum temperature during firing is 1800℃ or less, preferably 1500-1750
The temperature is within the range of °C.

混合粉末の焼成の際に使用される炉については
特に制限はなく、たとえば高周波誘導加熱方式又
は抵抗加熱方式によるバツチ式炉、ロータリー
炉、プツシヤー炉等を使用することができる。
There is no particular restriction on the furnace used for firing the mixed powder, and for example, a batch type furnace, rotary furnace, pusher furnace, etc. using a high frequency induction heating method or a resistance heating method can be used.

本発明で得られるβ型窒化珪素ウイスカーは金
属又はセラミツクの強化用材料として用いること
ができ、特に窒化珪素焼結体及びサイアロン焼結
体の強化用材料として好適に使用することができ
る。
The β-type silicon nitride whiskers obtained in the present invention can be used as a material for reinforcing metals or ceramics, and can be particularly suitably used as a material for reinforcing silicon nitride sintered bodies and sialon sintered bodies.

(実施例) 以下に実施例を示す。(Example) Examples are shown below.

実施例 1 シリコンジイミドを1200℃で加熱分解して得ら
れた非晶質窒化珪素粉末50gと、純度99.9%の酸
化イツトリウム1.0gとを、窒素ガス雰囲気下ボ
ールミルで1時間混合した。混合粉末を、内径
120mm、内容積450mlの黒鉛製ルツボに入れ、高周
波誘導炉中にセツトし、窒素ガス雰囲気下で、室
温から1200℃を1時間、1200〜1400℃を4時間、
1400〜1650℃を2.5時間で昇温し、さらに1650℃
に8時間保持して、焼成した。
Example 1 50 g of amorphous silicon nitride powder obtained by thermally decomposing silicon diimide at 1200° C. and 1.0 g of yttrium oxide with a purity of 99.9% were mixed in a ball mill under a nitrogen gas atmosphere for 1 hour. Mixed powder, inner diameter
It was placed in a graphite crucible with a diameter of 120 mm and an internal volume of 450 ml, set in a high frequency induction furnace, and heated at room temperature to 1200°C for 1 hour and 1200 to 1400°C for 4 hours under a nitrogen gas atmosphere.
Raise the temperature from 1400 to 1650℃ in 2.5 hours, then further to 1650℃
It was held for 8 hours and fired.

得られた粉末をX線回折によつて調べたとこ
ろ、その結晶形態はβ型であり、また走査型電子
顕微鏡による観察では、第1図に示すように、長
さ10〜40μm、径0.5〜1.5μmのウイスカーである
ことが認められた。非晶質窒化珪素を基準にした
ウイスカーの収率(以下単に収率という)は91%
であつた。
When the obtained powder was examined by X-ray diffraction, its crystal morphology was found to be β type, and observation using a scanning electron microscope revealed that it had a length of 10 to 40 μm and a diameter of 0.5 to 0.5 μm, as shown in Figure 1. It was recognized that it was a 1.5 μm whisker. The whisker yield (hereinafter simply referred to as yield) is 91% based on amorphous silicon nitride.
It was hot.

実施例 2 比表面積5.3m2/gのα型窒化珪素粉末50gと
純度99.9%の酸化イツトリウム粉末1.5gとを、
振動ボールミルで2時間混合した。混合粉末を、
内径120mm、内容積450mlの黒鉛製ルツボに入れ、
高周波誘導炉中にセツトし、窒素ガス雰囲気下
で、室温から1200℃を1時間、1200〜1750℃を
5.5時間で昇温し、さらに1750℃に6時間保持し
て、焼成した。
Example 2 50 g of α-type silicon nitride powder with a specific surface area of 5.3 m 2 /g and 1.5 g of yttrium oxide powder with a purity of 99.9%,
Mixed in a vibrating ball mill for 2 hours. Mixed powder,
Place it in a graphite crucible with an inner diameter of 120 mm and an internal volume of 450 ml.
Set in a high frequency induction furnace and heat from room temperature to 1200℃ for 1 hour, then from 1200 to 1750℃ under nitrogen gas atmosphere.
The temperature was raised over 5.5 hours, and the temperature was further maintained at 1750°C for 6 hours for firing.

得られた粉末をX線回折によつて調べたとこ
ろ、その結晶形態はβ型であり、また走査型電子
顕微鏡による観察では、長さ25〜30μm、径0.7〜
1.5μmのウイスカーであることが認められた。収
率は93%であつた。
When the obtained powder was examined by X-ray diffraction, its crystal form was β-type, and observation using a scanning electron microscope revealed that it had a length of 25-30 μm and a diameter of 0.7-30 μm.
It was recognized that it was a 1.5 μm whisker. The yield was 93%.

実施例 3 シリコンジイミドを1200℃で加熱分解して得ら
れた非晶質窒化珪素粉末200gと、純度99.9%の
酸化イツトリウム10gとを、窒素ガス雰囲気下に
ナイロン製ボールポツトを用い2時間振動ミルで
混合した。混合粉末を、内径290mm、高さ70mmの
黒鉛製ルツボに入れ、抵抗加熱式高温炉中にセツ
トし、窒素ガス雰囲気下で、室温から1200℃を1
時間、1200〜1400℃を4時間、1400〜1700℃を3
時間で昇温し、さらに1700℃に7時間保持して、
焼成した。
Example 3 200 g of amorphous silicon nitride powder obtained by thermally decomposing silicon diimide at 1200°C and 10 g of yttrium oxide with a purity of 99.9% were heated in a vibrating mill for 2 hours using a nylon ball pot under a nitrogen gas atmosphere. Mixed. The mixed powder was placed in a graphite crucible with an inner diameter of 290 mm and a height of 70 mm, set in a resistance heating high temperature furnace, and heated from room temperature to 1200°C for 1 hour under a nitrogen gas atmosphere.
time, 1200-1400℃ for 4 hours, 1400-1700℃ for 3 hours
The temperature was raised over an hour and then held at 1700℃ for 7 hours.
Fired.

得られた粉末をX線回折によつて調べたとこ
ろ、第2図に示すようにその結晶形態はβ型であ
り、また走査型電子顕微鏡による観察では、長さ
10〜40μm、径0.5〜1.5μmのウイスカーであるこ
とが認められた。
When the obtained powder was examined by X-ray diffraction, the crystal form was β type as shown in Figure 2, and observation by scanning electron microscope revealed that the length was
The whiskers were found to be 10 to 40 μm and 0.5 to 1.5 μm in diameter.

実施例 4 シリコンジイミドを1200℃で加熱分解して得ら
れた非晶質窒化珪素粉末150gと、水酸化イツト
リウム[Y(OH)3]9.3gとを、窒素ガス雰囲気
下にナイロン製ボールポツトを用い2時間振動ミ
ルで混合した。混合粉末を、内径290mm、高さ70
mmの黒鉛製ルツボに入れ、抵抗加熱式高温炉中に
セツトし、窒素ガス雰囲気下で、室温から1200℃
を1時間、1200〜1400℃を3時間、1400〜1650℃
を2時間で昇温し、さらに1650℃に12時間保持し
て、焼成した。
Example 4 150 g of amorphous silicon nitride powder obtained by thermally decomposing silicon diimide at 1200°C and 9.3 g of yttrium hydroxide [Y(OH) 3 ] were mixed in a nylon ball pot under a nitrogen gas atmosphere. Mixed on a vibratory mill for 2 hours. Mixed powder, inner diameter 290mm, height 70mm
Place it in a graphite crucible with a diameter of
for 1 hour, 1200-1400℃ for 3 hours, 1400-1650℃
The temperature was raised over 2 hours, and the temperature was further maintained at 1650°C for 12 hours for firing.

得られた粉末をX線回折によつて調べたとこ
ろ、その結晶形態はβ型であり、また走査型電子
顕微鏡による観察では、長さ15〜35μm、径0.7〜
1.5μmのウイスカーであることが認められた。収
率は89%であつた。
When the obtained powder was examined by X-ray diffraction, its crystal form was β type, and observation using a scanning electron microscope revealed that it had a length of 15 to 35 μm and a diameter of 0.7 to 0.7 μm.
It was recognized that it was a 1.5 μm whisker. The yield was 89%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られたβ型窒化珪素ウイ
スカーの粒子構造を示す図であり、第2図は実施
例3で得られたβ型窒化珪素ウイスカーのX線回
折図である。
FIG. 1 is a diagram showing the particle structure of the β-type silicon nitride whiskers obtained in Example 1, and FIG. 2 is an X-ray diffraction diagram of the β-type silicon nitride whiskers obtained in Example 3.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質窒化珪素及びα型窒化珪素から選ばれ
る原料粉末と、原料粉末100重量部当たり酸化イ
ツトリウム換算で0.01〜20重量部の、酸化イツト
リウム粉末又は焼成時に酸化イツトリウムに転化
し得る化合物の粉末との混合粉末を、非酸化性ガ
ス雰囲気下で焼成することを特徴とするβ型窒化
珪素ウイスカーの製法。
1 Raw material powder selected from amorphous silicon nitride and α-type silicon nitride, and 0.01 to 20 parts by weight of yttrium oxide in terms of yttrium oxide per 100 parts by weight of the raw material powder, yttrium oxide powder or powder of a compound that can be converted to yttrium oxide during firing. 1. A method for producing β-type silicon nitride whiskers, which comprises firing a mixed powder of β-type silicon nitride whiskers in a non-oxidizing gas atmosphere.
JP14601286A 1986-06-24 1986-06-24 Production of beta type silicon nitride whisker Granted JPS632900A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14601286A JPS632900A (en) 1986-06-24 1986-06-24 Production of beta type silicon nitride whisker
EP87305058A EP0251522A3 (en) 1986-06-24 1987-06-08 Process for production of beta-type silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14601286A JPS632900A (en) 1986-06-24 1986-06-24 Production of beta type silicon nitride whisker

Publications (2)

Publication Number Publication Date
JPS632900A JPS632900A (en) 1988-01-07
JPH0262520B2 true JPH0262520B2 (en) 1990-12-25

Family

ID=15398096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14601286A Granted JPS632900A (en) 1986-06-24 1986-06-24 Production of beta type silicon nitride whisker

Country Status (1)

Country Link
JP (1) JPS632900A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235437A (en) * 1986-10-24 1988-09-30 Ube Ind Ltd Beta-type silicon-nitride whisker compact and its production

Also Published As

Publication number Publication date
JPS632900A (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JPS62167209A (en) Alpha-sialon powder and its production
JPH0460051B2 (en)
US4716028A (en) Process for preparation of high-type silicon nitride powder
US4812298A (en) Method for producing sialon powders
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0262520B2 (en)
JPH0329760B2 (en)
JPH03261611A (en) Production of silicon nitride composite powder
Iwamoto et al. Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JPH0331680B2 (en)
Lenčéš et al. Factors influencing the crystallization and the densification of ultrafine Si/N/C powders
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JP2681843B2 (en) Manufacturing method of β-type silicon nitride whiskers
JPS62875B2 (en)
JPS63222099A (en) Beta-type silicon nitride whisker
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPH05117030A (en) Complex ceramic and its production
JP3536494B2 (en) Nitrogen-containing silane compounds
JPH0559073B2 (en)
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH0324430B2 (en)
JPS63235437A (en) Beta-type silicon-nitride whisker compact and its production
JPS6259049B2 (en)
JPS60200814A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide