JPH0258265A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH0258265A
JPH0258265A JP63209918A JP20991888A JPH0258265A JP H0258265 A JPH0258265 A JP H0258265A JP 63209918 A JP63209918 A JP 63209918A JP 20991888 A JP20991888 A JP 20991888A JP H0258265 A JPH0258265 A JP H0258265A
Authority
JP
Japan
Prior art keywords
region
type
base region
collector
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209918A
Other languages
Japanese (ja)
Inventor
Toshiaki Takada
高田 稔秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63209918A priority Critical patent/JPH0258265A/en
Publication of JPH0258265A publication Critical patent/JPH0258265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of breakdown strength of a collector base junction after writing, even if an epitaxial layer is thinned, to facilitate high density integration, and increase writing yield and reliability by constituting a base region, of a deep impurity region of low concentration and of a shallow impurity region of high concentration. CONSTITUTION:The title device is provided with the following; a collector region 2 of inverse conductivity type formed on a semiconductor substrate 1 of one conductivity type, a low concentration base region 5 of one conductivity type formed deeply in the collector region 2, a high concentration base region 6 of one conductivity type formed to a shallow depth in the low concentration base region 5, and an emitter region 7 of inverse conductivity type formed in the high concentration base region 6. For example, on the main surface of the P-type Si substrate 1, the N<+> type buried layer 2 for a collector region is arranged, on the surface of which an N-type epitaxial layer 3 is arranged. After a silicon oxide layer 4 reaching the buried layer 2 is arranged, the P<-> type base region 5 is arranged by deeply introducing P-type impurity, and the P<+> type base region 6 is arranged by introducing P-type impurity to a shallow depth. Next, the N-type emitter region 7 is arranged by introducing N-type impurity through a polycrystalline Si layer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体記憶装置に関し、特にプログラム可能
な読み出し専用記憶素子を有する半導体記憶装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device having a programmable read-only memory element.

〔従来の技術〕[Conventional technology]

プログラム可能な読み出し専用記憶素子(以下FROM
と記す)は、その用途からみて、特に記憶容量の高密度
化と確実なプログラムが望まれている。
Programmable read-only memory element (FROM)
In view of its intended use, high density storage capacity and reliable programming are particularly desired.

第4図は、従来の半導体記憶装置を説明するための半導
体チップの断面図である。P型シリコン基板1にN+型
埋込層2を形成し、N+型埋込層2を含む表面にN型エ
ピタキシャル層3を形成する。次に、N型エピタキシャ
ル層3を選択的に酸化してN+型埋込層2に達する酸化
シリコン膜4を設け、素子形成領域を区画する。次に、
前記素子形成領域内にP+型ベース領域6を設け、P+
型ベース領域6の上に設けた開孔部を含む表面に多結晶
シリコン層8を設け、多結晶シリコン層8を通してP+
型ベース領域6内にN型不純物を導入しN+型エミッタ
領域7を設ける。次に多結晶シリコン層8の上にアルミ
ニウム層9を堆積し、アルミニウム層9及び多結晶シリ
コン層8を選択的に順次エツチングしてエミッタ電極を
形成する。
FIG. 4 is a cross-sectional view of a semiconductor chip for explaining a conventional semiconductor memory device. An N+ type buried layer 2 is formed on a P type silicon substrate 1, and an N type epitaxial layer 3 is formed on the surface including the N+ type buried layer 2. Next, the N-type epitaxial layer 3 is selectively oxidized to form a silicon oxide film 4 that reaches the N+-type buried layer 2 to define an element formation region. next,
A P+ type base region 6 is provided in the element formation region, and a P+ type base region 6 is provided in the element forming region.
A polycrystalline silicon layer 8 is provided on the surface including the opening provided on the mold base region 6, and P+
N type impurities are introduced into type base region 6 to provide N+ type emitter region 7. Next, an aluminum layer 9 is deposited on the polycrystalline silicon layer 8, and the aluminum layer 9 and the polycrystalline silicon layer 8 are selectively and sequentially etched to form an emitter electrode.

情報の書込みを行なう場合は、エミッタ・ベース接合及
びベース・コレクタ接合に過電流を流し、逆方向バイア
スされたエミッタ・ベース接合のみを破壊することによ
り、書込みを行なうが、前記書込みにより生じたアロイ
スパイク10がエミッタ・ベース接合のみならず、ベー
ス・コレクタ接合まで破壊してしまうことがある。
When writing information, an overcurrent is applied to the emitter-base junction and the base-collector junction to destroy only the reverse biased emitter-base junction. The spike 10 may destroy not only the emitter-base junction but also the base-collector junction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ト述した従来の半導体記憶装置は、エピタキシャル層の
膜厚を薄くし、全体として接合を浅くして素子間の間隔
を狭くし、高集積化を計っていた。そのため、素子全体
の耐圧が小さく、書込電流の漏れを防ぐためにメモリセ
ルの抵抗成分を小さくして、電圧降下分を抑える必要が
あった。この電圧降下分を抑えるためメモリセルのベー
ス領域の不純!IJ7J濃度を高め、最小限必要な耐圧
を得るようにベース・コレクタ接合の深さをコントロー
ルしていた。例えば、ベース領域のホウ素の不純物は濃
度は、約1019cIo−3、ベース・コレクタ接合の
深さは0.6μm程度である。そのため、書込時に、発
生する書込スパイクが、ベース・エミッタ接合のみなら
ずコレクタ・ベース接合の耐圧をも破壊して、コレクタ
・ベース接合の耐圧を低下させてしまうため、他の素子
の書込み時に、書込み電流の漏れが起こり、書込みが不
可能となったり、書込み不足になり半導体記憶装置の書
込みの歩留りを悪化させ品質を悪くするという欠点があ
った。
In the conventional semiconductor memory device mentioned above, the thickness of the epitaxial layer is made thinner, the overall junction is made shallower, and the spacing between elements is narrowed to achieve higher integration. Therefore, the withstand voltage of the entire element is low, and in order to prevent write current leakage, it is necessary to reduce the resistance component of the memory cell and suppress the voltage drop. In order to suppress this voltage drop, impurities in the base region of the memory cell! The depth of the base-collector junction was controlled to increase the IJ7J concentration and obtain the minimum necessary withstand voltage. For example, the concentration of boron impurities in the base region is about 1019 cIo-3, and the depth of the base-collector junction is about 0.6 μm. Therefore, the write spike that occurs during writing destroys not only the base-emitter junction but also the collector-base junction breakdown voltage, reducing the collector-base junction breakdown voltage. At times, leakage of write current occurs, making writing impossible or insufficient writing, which has the drawback of deteriorating the writing yield of the semiconductor memory device and deteriorating its quality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体記録装置は、−導電型半導体基板上に設
けた逆導電型のコレクタ領域と、前記コレクタ領域内に
深く設けた一導電型の低濃度ベース領域と、前記低濃度
ベース領域内に浅く設けた一導電型の高濃度ベース領域
と、前記高濃度ベース領域内に設けた逆導電型のエミッ
タ領域とを有する。
The semiconductor recording device of the present invention includes a collector region of an opposite conductivity type provided on a semiconductor substrate of a -conductivity type, a low concentration base region of one conductivity type provided deeply within the collector region, and a low concentration base region of one conductivity type provided deeply within the collector region. It has a shallowly provided highly doped base region of one conductivity type and an emitter region of the opposite conductivity type provided within the highly doped base region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
9 第1図は本発明の第1の実施例を説明するための半導体
チップの断面図である。
Next, embodiments of the present invention will be described with reference to the drawings.9 FIG. 1 is a sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

第1図に示すように、P型シリンコン基板1の主面にコ
レクタ領域用のN+型埋込層2を設け、N+型埋込層2
を含む表面にN型エピタキシセルP!3を設ける。次に
、N型エピタキシャル層3をjπ択的に酸化してN+型
埋込層2に達する酸化シリコンM4を設け、素子形成領
域を区画する。°次に、前記素子形成領域にP型の低濃
度不純物を深く導入してP−型ベース領域5を設け、更
に、P型の高濃度不純物を浅く導入してP+型ベース領
域6を設ける。次に、P+型ベース領域6の上に設けた
開孔部を含む表面に多結晶シリコン層8を設け、多結晶
シリコン層8を通してP+型ベース領域6内にN型不純
物を導入してN型エミッタ領域7を設ける0次に、多結
晶シリコン層8の上にアルミニウム層9を堆積し、アル
ミニウム層9及び多結晶シリコン層8を選択的に順次エ
ツチングしてエミッタ電極を形成する。
As shown in FIG. 1, an N+ type buried layer 2 for a collector region is provided on the main surface of a P type silicon substrate 1.
N-type epitaxy cell P! on the surface containing 3 will be provided. Next, silicon oxide M4 is provided by selectively oxidizing the N type epitaxial layer 3 to reach the N+ type buried layer 2, thereby defining an element formation region. Next, P-type low concentration impurities are deeply introduced into the element forming region to form a P- type base region 5, and further P-type high concentration impurities are introduced shallowly to form a P+ type base region 6. Next, a polycrystalline silicon layer 8 is provided on the surface including the opening provided above the P+ type base region 6, and an N-type impurity is introduced into the P+ type base region 6 through the polycrystalline silicon layer 8 to form an N-type Formation of emitter region 7 Next, an aluminum layer 9 is deposited on the polycrystalline silicon layer 8, and the aluminum layer 9 and the polycrystalline silicon layer 8 are selectively and sequentially etched to form an emitter electrode.

このような構造では、コレクタ・ベース接合を深く形成
できるため、書込時に形成されるアロイスパイクがコレ
クタ・ベース接合にまで達することがなくコレクタ・ベ
ース接合の耐圧の劣化を防止できる。
In such a structure, since the collector-base junction can be formed deeply, the alloy spike formed during writing does not reach the collector-base junction, and deterioration of the withstand voltage of the collector-base junction can be prevented.

また、高濃度不純物の浅いP+型ベース領域6を設けて
いるため、メモリセルの抵抗成分も、小さく、素子全体
の耐圧を小さく保つことができる。
Furthermore, since the shallow P+ type base region 6 containing highly concentrated impurities is provided, the resistance component of the memory cell is also small, and the withstand voltage of the entire device can be kept low.

また、低濃度不純物の深いP−型ベース領域5は、それ
自身が書込み電流の漏れの源になちない程度の耐圧に不
純物濃度を抑えることが望ましい0例えば、第2図に示
すようなベース不純物濃度のプロファイルから、低濃度
不純物のベース・コレクタ接合の深さを1.3ノ1m(
従来は、0.6μm)不純物濃度を10】6〜1017
cI11−3(不純物はホウ素)にすると、エピタキシ
ャル層の膜厚が2.0μrnのとき、コレクタ・ベース
接合耐圧は、20V程度になる。これは、よく知られて
いるように、コレクタ・ベース接合間に逆電圧を加える
と空乏層が不純物濃度の薄い側(ベース側)によく伸び
、電界強度が大きくなりにくいためである。
Furthermore, it is preferable that the deep P-type base region 5 containing low concentration impurities has its impurity concentration suppressed to a withstand voltage that does not itself become a source of write current leakage. Based on the impurity concentration profile, the depth of the base-collector junction for low concentration impurities was set at 1.3 m (1 m).
Conventionally, the impurity concentration was 0.6 μm) 10]6 to 1017
When cI11-3 (the impurity is boron), the collector-base junction breakdown voltage is about 20V when the epitaxial layer has a thickness of 2.0 μrn. This is because, as is well known, when a reverse voltage is applied between the collector-base junction, the depletion layer extends well toward the side with lower impurity concentration (base side), making it difficult for the electric field strength to increase.

このように、本発明のメモリセルのベース領域を深い低
濃度不純物領域と浅い高濃度不純物領域の2重構造にす
ることにより、書込み後のコレクタ・ベース接合を劣化
させることなく、従来同様にメモリセルの抵抗成分も小
さくできるため、高集積化が容易で、書込歩留り及び信
頼性を向上させることができる。また、本発明はセルフ
ァラインで、メモリセルのベースを2重に形成できるた
め製造工程を増やすこともない。
In this way, by forming the base region of the memory cell of the present invention into a double structure consisting of a deep low-concentration impurity region and a shallow high-concentration impurity region, the memory cell can be used without deteriorating the collector-base junction after writing. Since the resistance component of the cell can also be reduced, it is easy to achieve high integration, and the write yield and reliability can be improved. Furthermore, since the present invention can form a double base of a memory cell using a self-aligned cell line, there is no need to increase the number of manufacturing steps.

第3図は、本発明の第2の実施例を説明するための半導
体チップの断面図である。この場合は、さらに高集積化
を計るために、エピタキシャル層の膜圧を薄くした場合
の例である。
FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a second embodiment of the present invention. This case is an example in which the film thickness of the epitaxial layer is made thinner in order to achieve higher integration.

第3図に示すように、N型エピタキシャル層3内の全域
に低濃度のP型不純物を導入し、N+型埋込層2に達す
るP−型ベース領域5を設けている以外は第1の実施例
と同じ構成からなり、このような構造にすると、エピタ
キシャル層が薄くても、メモリセルのコレクタ・ベース
接合を十分に深くできろため、害込み時にコレクタ・ベ
ース接合にアロイスパイクが達することなく、劣化のな
いコレクタ・ベース接合耐圧を得ることができる。この
ため、さらに高集積化することが容易になるという利点
がある。
As shown in FIG. 3, a low concentration P-type impurity is introduced throughout the N-type epitaxial layer 3, and a P- type base region 5 reaching the N+-type buried layer 2 is provided. It has the same configuration as the example, and with this structure, even if the epitaxial layer is thin, the collector-base junction of the memory cell can be made sufficiently deep, so that the alloy spike will not reach the collector-base junction in the event of damage. Therefore, it is possible to obtain collector-base junction breakdown voltage without deterioration. Therefore, there is an advantage that higher integration becomes easier.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、接合破壊型メモリセルの
ベース領域を深い低濃度不純物領域と浅い高濃度不純物
領域で構成することにより、エピタキシャル層の膜厚を
薄くしても書込み後のコレクタ・ベース接合耐圧を劣化
させることがない。
As explained above, in the present invention, by configuring the base region of a junction breakdown type memory cell with a deep low-concentration impurity region and a shallow high-concentration impurity region, even if the thickness of the epitaxial layer is reduced, the collector Base junction breakdown voltage does not deteriorate.

また、従来同様、メモリセルの抵抗成分も、小さいため
、素子全体の耐圧も、小さく保つことができる。そのた
め、高集積化が容易になり、書込歩留り及び信頼性を高
くすることができる半導体記憶装置を提供できる効果が
ある。
Further, as in the conventional case, since the resistance component of the memory cell is small, the withstand voltage of the entire device can also be kept low. Therefore, there is an effect that it is possible to provide a semiconductor memory device that can easily achieve high integration and improve write yield and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明するための半導体
チップの断面図、第2図は本発明のベース領域の不純物
濃度のプロファイルを示す図、第3図は本発明の第2の
実施例を説明するための半導体チップの断面図、第4図
は、従来の半導体記憶装置を説明するための半導体チッ
プの断面図である。 l・・P型シリコン基板、2・・・N゛型埋込層、3・
・・N型エピタキシャル層、4・・・酸化シリコン膜、
5・・・P−型ベース領域、6・・・P+型ベース領域
、7・・・N型エミッタ領域、8・・・多結晶シリコン
層、9・・・アルミニウム層、10・・・アロイスパイ
ク。 晃 1 図
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining the first embodiment of the present invention, FIG. 2 is a diagram showing the impurity concentration profile of the base region of the present invention, and FIG. FIG. 4 is a cross-sectional view of a semiconductor chip for explaining a conventional semiconductor memory device. l...P type silicon substrate, 2...N' type buried layer, 3...
...N-type epitaxial layer, 4...silicon oxide film,
5... P- type base region, 6... P+ type base region, 7... N-type emitter region, 8... Polycrystalline silicon layer, 9... Aluminum layer, 10... Alloy spike . Akira 1 figure

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に設けた逆導電型のコレクタ領域
と、前記コレクタ領域内に深く設けた一導電型の低濃度
ベース領域と、前記低濃度ベース領域内に浅く設けた一
導電型の高濃度ベース領域と、前記高濃度ベース領域内
に設けた逆導電型のエミッタ領域とを有することを特徴
とする半導体記憶装置。
A collector region of an opposite conductivity type provided on a semiconductor substrate of one conductivity type, a low concentration base region of one conductivity type provided deeply within the collector region, and a high concentration base region of one conductivity type provided shallowly within the low concentration base region. A semiconductor memory device comprising a doped base region and an emitter region of opposite conductivity type provided within the heavily doped base region.
JP63209918A 1988-08-23 1988-08-23 Semiconductor storage device Pending JPH0258265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209918A JPH0258265A (en) 1988-08-23 1988-08-23 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209918A JPH0258265A (en) 1988-08-23 1988-08-23 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH0258265A true JPH0258265A (en) 1990-02-27

Family

ID=16580819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209918A Pending JPH0258265A (en) 1988-08-23 1988-08-23 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH0258265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205336A (en) * 2012-03-23 2014-12-10 德克萨斯仪器股份有限公司 Sige heterojunction bipolar transistor with shallow out-diffused p+ emitter region

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626465A (en) * 1979-08-13 1981-03-14 Hitachi Ltd Semiconductor memory and the manufacturing process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626465A (en) * 1979-08-13 1981-03-14 Hitachi Ltd Semiconductor memory and the manufacturing process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205336A (en) * 2012-03-23 2014-12-10 德克萨斯仪器股份有限公司 Sige heterojunction bipolar transistor with shallow out-diffused p+ emitter region
CN104205336B (en) * 2012-03-23 2018-01-26 德克萨斯仪器股份有限公司 SiGe heterojunction bipolar transistor with from shallow-layer to external diffusion P+ emitter regions

Similar Documents

Publication Publication Date Title
JP2689047B2 (en) Insulated gate bipolar transistor and manufacturing method
US4652895A (en) Zener structures with connections to buried layer
JPH0548936B2 (en)
JPH0729914A (en) Bipolar power transistor and preparation thereof
JPS6119171A (en) Vertical npn transistor structure
JPH07176536A (en) Bipolar transistor
JPH0258265A (en) Semiconductor storage device
JPH0638478B2 (en) Semiconductor device
JPS61245573A (en) Semiconductor device
JPH07221116A (en) Transistor
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JP2830053B2 (en) Method for manufacturing semiconductor device
JP2817210B2 (en) Method for manufacturing semiconductor device
JPS63204649A (en) Semiconductor device
EP0851487A1 (en) Antimony-phosphor buried layer for a MOs FET or like semiconductor device, and method of fabrication
JPS62154779A (en) Semiconductor integrated circuit device
JPH01286356A (en) Semiconductor integrated circuit
JP2646856B2 (en) Manufacturing method of bipolar transistor
JP2631673B2 (en) Semiconductor device and manufacturing method thereof
JPS58210659A (en) Semiconductor device and manufacture thereof
JPH05335329A (en) Semiconductor device and its manufacture
JPS6347965A (en) Semiconductor integrated circuit
JPS6155781B2 (en)
JPH0123950B2 (en)
JPH0291949A (en) Transistor