JPH0256819B2 - - Google Patents

Info

Publication number
JPH0256819B2
JPH0256819B2 JP58028442A JP2844283A JPH0256819B2 JP H0256819 B2 JPH0256819 B2 JP H0256819B2 JP 58028442 A JP58028442 A JP 58028442A JP 2844283 A JP2844283 A JP 2844283A JP H0256819 B2 JPH0256819 B2 JP H0256819B2
Authority
JP
Japan
Prior art keywords
solar cell
glass substrate
cds
sintered film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58028442A
Other languages
Japanese (ja)
Other versions
JPS59155179A (en
Inventor
Hitoshi Matsumoto
Akihiko Nakano
Hiroshi Uda
Yasumasa Komatsu
Kyoshi Kuribayashi
Seiji Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58028442A priority Critical patent/JPS59155179A/en
Publication of JPS59155179A publication Critical patent/JPS59155179A/en
Publication of JPH0256819B2 publication Critical patent/JPH0256819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はCdS/CdTe積層型構造の太陽電池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solar cell having a CdS/CdTe stacked structure.

従来例の構成とその問題点 CdS膜を利用した太陽電池は、CdSが多結晶で
あつてもかなり性能の良い太陽電池が実現できる
ので、大面積化が可能であるだけでなく、製造技
術的にも制約が少なく量産しやすい等の理由によ
り広く研究されている。その中でCdS/CdTe接
合構造の太陽電池は性能が高く寿命も安定である
と言われている。
Conventional configurations and their problems Solar cells using CdS films can have fairly good performance even if the CdS is polycrystalline, so not only can they be made larger, but they also require manufacturing technology. It has been widely researched because it has few restrictions and is easy to mass produce. Among these, solar cells with a CdS/CdTe junction structure are said to have high performance and a stable lifespan.

この系の太陽電池を量産性に優れたスクリーン
印刷、焼結という方法で製造しようという試みも
なされており、この方法でつくられたCdS焼結
膜/CdTe焼結膜太陽電池(以下焼結膜形CdS/
CdTe太陽電池という)では交換効率8%程度の
ものも得られている。
Attempts have also been made to manufacture this type of solar cell by screen printing and sintering, which are excellent in mass production.
Some CdTe solar cells (CdTe solar cells) have exchange efficiencies of around 8%.

第1図はこの太陽電池の断面図であり、1はガ
ラス基板、2はCdS焼結膜、3はCdTe焼結膜、
4はカーボン電極、5は銀電極、6は銀−インジ
ウム電極である。ガラス基板1上につけたCdS焼
結膜2はn形の半導体であり、太陽電池の窓材と
しての役目もはたすので光透過率が良く低抵抗で
あることが必要である。CdTe焼結膜3はカーボ
ン電極4をつけ熱処理することにより、カーボン
電極中に含有されているアクセプタ不純物が拡散
してp形となり、CdS焼結膜との間にp−n接合
が形成され、光起電力効果が生じる。銀電極5と
銀−インジウム電極6はそれぞれ正および負側電
極である。この太陽電池の特徴は1〜6までの半
導体膜および電極をすべてスクリーン印刷および
ベルト炉中での焼成又は熱処理という簡単な工程
で作れることであり、材質費さえ安くできれば安
価な太陽電池を提供できる可能性がある。このよ
うな構造の太陽電池において、材料費のなかでも
大きな部分を占めるのはガラス基板1である。従
来はこのガラス基板に軟化温度が高く、CdS膜熱
膨脹率が似ているコーニンググラス社製の7059
(商品名)という硼硅酸ガラスを使用していたが、
高価であるために太陽電池の価格が高くなるとい
う問題点があつた。
Figure 1 is a cross-sectional view of this solar cell, where 1 is a glass substrate, 2 is a CdS sintered film, 3 is a CdTe sintered film,
4 is a carbon electrode, 5 is a silver electrode, and 6 is a silver-indium electrode. The CdS sintered film 2 deposited on the glass substrate 1 is an n-type semiconductor and also serves as a window material for solar cells, so it needs to have good light transmittance and low resistance. By attaching a carbon electrode 4 to the CdTe sintered film 3 and heat-treating it, acceptor impurities contained in the carbon electrode diffuse and become p-type, forming a p-n junction with the CdS sintered film, and photoactivation. A power effect occurs. Silver electrode 5 and silver-indium electrode 6 are positive and negative electrodes, respectively. The feature of this solar cell is that all of the semiconductor films 1 to 6 and electrodes can be made through a simple process of screen printing and firing or heat treatment in a belt furnace, and if the material cost can be kept low, an inexpensive solar cell can be provided. there is a possibility. In a solar cell having such a structure, the glass substrate 1 occupies a large portion of the material cost. Conventionally, 7059 manufactured by Corning Glass Co., Ltd., which has a high softening temperature and a CdS film thermal expansion coefficient similar to this glass substrate, was used.
(product name) was used, but
There was a problem in that the price of solar cells was high because they were expensive.

発明の目的 本発明の目的は、従来使用してきたコーニング
グラス社製の高価な7059ガラス(商品名)を使用
しないでも比較的性能の高い太陽電池を得ようと
することにある。
Purpose of the Invention The purpose of the present invention is to obtain a solar cell with relatively high performance without using the expensive 7059 glass (trade name) manufactured by Corning Glass, which has been conventionally used.

発明の構成 本発明の焼結膜形CdS/CdTe太陽電池は、ア
ルカリ含有量(Li2O、Na2OとK2Oの合計含有
量)が1〜11重量%のガラス基板を用いることを
特徴としたものであり、このガラス基板を用いる
ことにより安価で比較的高い性能の太陽電池を得
ることができる。
Structure of the Invention The sintered film type CdS/CdTe solar cell of the present invention is characterized by using a glass substrate with an alkali content (total content of Li 2 O, Na 2 O and K 2 O) of 1 to 11% by weight. By using this glass substrate, an inexpensive solar cell with relatively high performance can be obtained.

実施例の説明 以下本発明の一実施例を説明する。Description of examples An embodiment of the present invention will be described below.

5NのCdS粉末90gに融剤として働く塩化カド
ミウムを10g加え、粘度調節のためにプロピレン
グリコールを適当量入れCdSペーストを作つた。
次にこのペーストをスクリーン印刷機を用いて各
種ガラス基板上に印刷し、乾燥した後、有孔蓋付
きアルミナ製焼成ボートに入れ、ベルト式連続焼
成炉で窒素雰囲気中において焼成した。焼成炉中
央部の温度は約690℃であり、この温度で約1.5時
間焼成することによりCdS焼結膜が得られた。
A CdS paste was prepared by adding 10 g of cadmium chloride, which acts as a flux, to 90 g of 5N CdS powder, and adding an appropriate amount of propylene glycol to adjust the viscosity.
Next, this paste was printed on various glass substrates using a screen printer, dried, placed in an alumina firing boat with a perforated lid, and fired in a belt-type continuous firing furnace in a nitrogen atmosphere. The temperature at the center of the firing furnace was approximately 690°C, and a CdS sintered film was obtained by firing at this temperature for approximately 1.5 hours.

次にテルル化カドミウムの粉末100gに対し、
CdCl21gと適当量のプロピレングリコールを加
えてテルル化カドミウムペーストを作つた。この
ペーストをスクリーン印刷機を用いて、CdS焼結
膜上に印刷し、乾燥した後、有孔蓋付きアルミナ
ボートに入れ、ベルト式連続焼成炉で窒素雰囲気
中において620℃で約1時間焼成した。
Next, for 100g of cadmium telluride powder,
A cadmium telluride paste was prepared by adding 1 g of CdCl 2 and an appropriate amount of propylene glycol. This paste was printed on the CdS sintered film using a screen printer, dried, placed in an alumina boat with a perforated lid, and fired in a belt-type continuous firing furnace at 620°C for about 1 hour in a nitrogen atmosphere.

このようにして作つたテルル化カドミウム焼結
膜上にカーボンペーストをスクリーン印刷機を用
いて印刷し、乾燥後、350℃で30分間不活性ガス
中で熱処理し、カーボン電極を形成した。最後に
CdS側に銀−インジウム電極を、カーボン電極上
に銀補助電極を形成させ、太陽電池素子を完成し
た。
Carbon paste was printed on the cadmium telluride sintered film thus produced using a screen printer, and after drying, it was heat-treated at 350°C for 30 minutes in an inert gas to form a carbon electrode. lastly
A silver-indium electrode was formed on the CdS side and a silver auxiliary electrode was formed on the carbon electrode to complete the solar cell element.

太陽電池素子の性能はガラス基板をかえれば大
きく変化した。ガラス基板のどのような性質によ
つて性能が変るのかを色々調べた結果、ガラス基
板中に含有されているアルカリ量が大きな影響を
及ぼしていることが分つた。第2図にガラス基板
中のアルカリ含有量と太陽電池の真性変換効率ηi
との関係を示す。アルカリ含有量が11%まではηi
は6%をこえるが、アルカリ含有量が11%をこえ
13%になるとηiは3.3%と大巾に低下する。第2図
でアルカリ含有量0.2%のガラスは従来より使用
しているコーニンググラス社製の7059ガラスであ
る。このガラスを使用すればηiは9.0%と高いが、
値段が高いので太陽電池素子の価格は高くなる。
これに対し、アルカリ含有量が3〜4%のガラス
は値段が7059の半分程度に対してηiは8.5〜8.7%
と少し低いだけである。又、アルカリ含有量が7
%のガラスは値段が7059の1/5程度に対しηiは8.0
%と1%低いだけである。
The performance of solar cell elements changed significantly by changing the glass substrate. As a result of various investigations into the properties of the glass substrate that affect its performance, it was found that the amount of alkali contained in the glass substrate has a large effect. Figure 2 shows the alkali content in the glass substrate and the intrinsic conversion efficiency η i of the solar cell.
Indicates the relationship between Up to 11% alkali content η i
exceeds 6%, but the alkali content exceeds 11%.
At 13%, η i drops significantly to 3.3%. In Figure 2, the glass with an alkali content of 0.2% is the conventionally used 7059 glass manufactured by Corning Glass. If this glass is used, η i is as high as 9.0%, but
Since the price is high, the price of solar cell elements becomes high.
On the other hand, glass with an alkali content of 3 to 4% is about half the price of 7059, but has an η i of 8.5 to 8.7%.
This is only slightly lower. Also, the alkali content is 7
% glass costs about 1/5 of 7059, but η i is 8.0
%, which is only 1% lower.

このようにガラス基板中のアルカリ含有量が11
%以下であると、太陽電池のηiは大巾な低下がな
い。又、ガラス基板の値段はアルカリ含有量が1
%未満だと大巾に高価となるが数%だと安価であ
る。したがつて1〜11重量%のアルカリを含んだ
ガラス基板を用いると、低価格で高性能の太陽電
池を提供することができる。
In this way, the alkali content in the glass substrate is 11
% or less, η i of the solar cell does not decrease significantly. Also, the price of the glass substrate is based on the alkali content of 1
If it is less than %, it will be very expensive, but if it is a few %, it will be cheap. Therefore, by using a glass substrate containing 1 to 11% by weight of alkali, it is possible to provide a high-performance solar cell at a low price.

ここで、ガラス基板中のアルカリ含有率と変換
効率との関係について説明する。
Here, the relationship between the alkali content in the glass substrate and the conversion efficiency will be explained.

まず、アルカリ分は族元素を主成分とする
が、一般に族元素は−族化合物に対しては
アクセプター不純物となる。したがつてn型半導
体であるCdS膜の焼成中にガラス基板中のアルカ
リ分がCdS焼結膜に拡散すれば、CdS焼結膜は真
性半導体に近くなり高抵抗となつて、太陽電池の
ηiは低下すると考えられる。
First, the alkaline component is mainly composed of group elements, and group elements generally serve as acceptor impurities for -group compounds. Therefore, if the alkaline content in the glass substrate diffuses into the CdS sintered film during firing of the CdS film, which is an n-type semiconductor, the CdS sintered film becomes close to an intrinsic semiconductor and has a high resistance, and the solar cell's η i becomes It is thought that this will decrease.

一方、n型にもp型にもなるCdTe膜の焼成中
にアルカリ分がCdTe焼結膜中に拡散すれば、
CaTe焼結膜はp型になりやすくなり、太陽電池
のηiは高くなると考えられる。
On the other hand, if alkaline content diffuses into the CdTe sintered film during firing of the CdTe film, which becomes both n-type and p-type,
It is thought that the CaTe sintered film tends to become p-type, and the η i of the solar cell increases.

ガラス基板中のアルカリ分は、以上の相反する
2つの影響を太陽電池のηiに与えるのであるが、
アルカリ含有量が11重量%をこえると、前者の影
響が強くあらわれ、ガラス基板の軟化温度の低下
ともあいまつてηiは急激に低下するのであろう。
The alkaline content in the glass substrate has the above two contradictory effects on the solar cell's η i .
When the alkali content exceeds 11% by weight, the former effect appears strongly, and together with the decrease in the softening temperature of the glass substrate, η i will decrease rapidly.

発明の効果 以上の説明から明らかなように、本発明はアル
カリ含有量が1〜11重量%のガラス基板を用いれ
ば、高性能で安価な焼結膜形CdS/CdTe太陽電
池が得られることを発見したものであり、上記条
件を満足し、且つ安価に製造できるガラス基板を
選択することにより低価格の太陽電池を提供する
ことができる。
Effects of the Invention As is clear from the above explanation, the present invention has discovered that a high-performance and inexpensive sintered film type CdS/CdTe solar cell can be obtained by using a glass substrate with an alkali content of 1 to 11% by weight. By selecting a glass substrate that satisfies the above conditions and can be manufactured at low cost, a low-cost solar cell can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における焼結膜形
CdS/CdTe太陽電池の断面図、第2図はガラス
基板中のアルカリ含有量と太陽電池の真性変換効
率との関係を示す特性図である。 1……ガラス基板、2……CdS焼結膜、3……
CdTe焼結膜、4……カーボン電極、5……銀電
極、6……銀−インジウム電極。
Figure 1 shows the shape of a sintered membrane in one embodiment of the present invention.
FIG. 2, a cross-sectional view of a CdS/CdTe solar cell, is a characteristic diagram showing the relationship between the alkali content in the glass substrate and the intrinsic conversion efficiency of the solar cell. 1...Glass substrate, 2...CdS sintered film, 3...
CdTe sintered film, 4... carbon electrode, 5... silver electrode, 6... silver-indium electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス基板上にCdS焼結膜およびCdTe焼結
膜をこの順序に積層するとともに、前記ガラス基
板にアルカリ含有量が1〜11重量%のガラスを用
いたことを特徴とする太陽電池。
1. A solar cell characterized in that a CdS sintered film and a CdTe sintered film are laminated in this order on a glass substrate, and a glass having an alkali content of 1 to 11% by weight is used for the glass substrate.
JP58028442A 1983-02-24 1983-02-24 Solar cell Granted JPS59155179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028442A JPS59155179A (en) 1983-02-24 1983-02-24 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028442A JPS59155179A (en) 1983-02-24 1983-02-24 Solar cell

Publications (2)

Publication Number Publication Date
JPS59155179A JPS59155179A (en) 1984-09-04
JPH0256819B2 true JPH0256819B2 (en) 1990-12-03

Family

ID=12248787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028442A Granted JPS59155179A (en) 1983-02-24 1983-02-24 Solar cell

Country Status (1)

Country Link
JP (1) JPS59155179A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189969A (en) * 1988-01-26 1989-07-31 Sumitomo Metal Ind Ltd Photovoltaic element and manufacture thereof
JPH01293577A (en) * 1988-05-20 1989-11-27 Sumitomo Metal Ind Ltd Manufacture of photoelectromotive force element

Also Published As

Publication number Publication date
JPS59155179A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
Song et al. Wide-bandgap, low-bandgap, and tandem perovskite solar cells
JP2006049768A (en) Cis compound semiconductor thin film solar battery and manufacturing method for light absorbing layer of solar battery
JPH08500209A (en) Photovoltaic cell with thin film CdS layer
AU3865197A (en) P-type semiconductor, method for manufacturing the same, semiconductor device, photovoltaic element, and method for manufacturing semiconductor device
US5411601A (en) Substrate for solar cell and solar cell employing the substrate
JPH0256819B2 (en)
JPS6311791B2 (en)
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH07147422A (en) Cadmium telluride solar cell
JPH0730134A (en) Manufacture of solar cell
JPS61107775A (en) Solar cell
JP2523734B2 (en) Manufacturing method of photovoltaic device
JPS6240453Y2 (en)
JPH02177575A (en) Photovoltaic element
JPH02177377A (en) Manufacture of photovoltaic element
JPH01169971A (en) Manufacture of photosensor
JPH0212973A (en) Manufacture of photovoltaic element
JPH053753B2 (en)
JPS622711B2 (en)
JPH054823B2 (en)
JPS6393170A (en) Photovoltaic element and manufacture thereof
KR940001292B1 (en) Solar cell manufacturing method
JPH054824B2 (en)
JPH01168071A (en) Manufacture of photovoltaic device