JPH0251463A - Preparation of multiple oxide ceramic - Google Patents

Preparation of multiple oxide ceramic

Info

Publication number
JPH0251463A
JPH0251463A JP63202892A JP20289288A JPH0251463A JP H0251463 A JPH0251463 A JP H0251463A JP 63202892 A JP63202892 A JP 63202892A JP 20289288 A JP20289288 A JP 20289288A JP H0251463 A JPH0251463 A JP H0251463A
Authority
JP
Japan
Prior art keywords
site
metal
oxide
coprecipitate
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63202892A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Okabe
岡部 参省
Masaru Fujino
優 藤野
Hiroshi Iwatsubo
岩坪 浩
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63202892A priority Critical patent/JPH0251463A/en
Publication of JPH0251463A publication Critical patent/JPH0251463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a multiple perovskite type oxide ceramic constituted of uniform and fine crystal particles without causing loss of components in a stage of preparation by mixing a compound oxide prepd. by a coprecipitation method to a compsn. with a separately prepd. metal oxide having another compsn., and calcining the mixture. CONSTITUTION:An aq. soln. contg. plural kinds of water-soluble metal compds. selected from nitrates and hydroxides of metal elements of A site or B-site constituting a multiple perovskite type compd. expressed by the formula (wherein each A and A' is a 1-2 valent metal; each B and B' is a 2-6 valent metal). A coprecipitate is generated by adding aq. ammonia to the aq. soln., and the coprecipitate is treated in a rotary evaporator or in a spray dryer to remove thus a solvent. Thereafter, obtd. dry powder is calcined provisionally and an A-site or B-site multiple oxide is formed, which is weighed exactly and mixed with separately prepd. and exactly weighed B-site or A-site metal oxide, and the mixture is calcined. Thus, a multiple oxide ceramic having a compsn. expressed by the formula is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合酸化物磁器の製造方法、特に、誘電体磁器
、強誘電体磁器、圧電磁器など電子部品用磁器材料とし
て有用な複合酸化物磁器の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing composite oxide porcelain, and in particular to a method for manufacturing composite oxide porcelain useful as a porcelain material for electronic components such as dielectric porcelain, ferroelectric porcelain, and piezoelectric porcelain. Concerning a method of manufacturing porcelain.

(従来の技術) 従来、複合酸化物磁器の製造方法としては、複合酸化物
を構成する金属元素の酸化物や炭酸塩などの粉末を所定
の割合で混合し、その混合物を仮焼、粉砕したのち、所
定の形状に成形して焼成する粉末法が主として採用され
ている。
(Prior art) Conventionally, the method for manufacturing composite oxide porcelain involves mixing powders such as oxides and carbonates of metal elements constituting the composite oxide in a predetermined ratio, and then calcining and pulverizing the mixture. Later, a powder method in which the material is molded into a predetermined shape and fired has been mainly adopted.

(発明が解決しようとする課題) しかしながら、前記粉末法では、機械的粉砕によって生
成された原料粉末を用いているため、ミクロ的に均一に
分散した混合粉末を得ることは不可能であり、そのため
、反応し易い酸化物同士が先に反応してそれらの化合物
を形成し、その後に残りの酸化物が前記化合物と反応し
て最終生成物である複合酸化物を生成する、あるいは、
チタン酸ジルコン酸鉛(PZT)磁器のように、焼成の
初期段階で正方晶系および斜方晶系の2相を形成し、最
終的に正方晶系または斜方晶系結晶構造の単一相となる
など2段階で反応が進行することになり、均質な磁器を
得ることが困難であった。
(Problems to be Solved by the Invention) However, since the powder method uses raw material powder produced by mechanical pulverization, it is impossible to obtain a microscopically uniformly dispersed mixed powder; , Reactive oxides first react with each other to form those compounds, and then the remaining oxides react with said compounds to produce the final product, a composite oxide, or
Like lead zirconate titanate (PZT) porcelain, it forms two phases, tetragonal and orthorhombic, in the initial stage of firing, and finally forms a single phase with tetragonal or orthorhombic crystal structure. The reaction proceeded in two stages, making it difficult to obtain homogeneous porcelain.

しかも、粉体の粒径が極めて大きく、また、粒径の分布
も大きい粒度に偏っているため、粒径が大きく結晶粒子
が不均一な磁器しか得られないという問題があった。ま
た、粉体の粒子径が大きいことに起因して磁器が多数の
大きな空孔を有する他、パイロクロア化合物が生成し易
く、これを消失させろためには高温で焼成する必要があ
り、鉛などのように比較的低い温度で蒸発しやすい成分
を含む場合には組成が変動するという問題があった。
Moreover, since the particle size of the powder is extremely large and the particle size distribution is biased towards large particle sizes, there is a problem in that only porcelain with large particle sizes and non-uniform crystal grains can be obtained. In addition, porcelain has many large pores due to the large particle size of the powder, and pyrochlore compounds are easily generated, which requires firing at high temperatures to eliminate them. When containing components that easily evaporate at relatively low temperatures, such as this, there is a problem that the composition fluctuates.

他方、これらの問題を解決する手段として、複合ペロブ
スカイト化合物を構成する総ての金属元素を湿式反応に
より、水酸化物などの共沈体あるいは沈澱物として析出
させ、その共沈体もしくは沈澱物を濾別後、洗浄、脱水
して焼成する方法が提案されている。しかしながら、こ
れらの共沈体もしくは沈澱物であっても、多少の溶解度
を持っているため、洗浄、脱水を反復すると、それらが
溶出する分だけ成分の損失が起こり、組成の変動が避け
られないという問題があった。しかも、Aサイトの鉛を
Bサイトの成分と共沈さ仕ると、鉛が非常に蒸発し易い
PbOの形態で生成しているため、仮焼段階でpbか蒸
発してモル比にズレを生じるという問題もあった。
On the other hand, as a means to solve these problems, all the metal elements constituting the composite perovskite compound are precipitated as coprecipitates or precipitates such as hydroxides by wet reaction, and the coprecipitates or precipitates are A method has been proposed in which the material is filtered, washed, dehydrated, and then fired. However, even these coprecipitates or precipitates have some degree of solubility, so repeated washing and dehydration will cause a loss of components due to their elution, and compositional fluctuations are unavoidable. There was a problem. Moreover, when the lead at the A site is co-precipitated with the components at the B site, the lead is generated in the form of PbO, which evaporates very easily. There were also problems that occurred.

従って、本発明は、製造時に成分の損失を生じさせるこ
となく、均一で微細な結晶粒子からなる複合酸化物磁器
を製造することができる方法を得ることを目的とする。
Therefore, an object of the present invention is to obtain a method capable of producing composite oxide porcelain consisting of uniform and fine crystal grains without causing loss of components during production.

(課題を解決するための手段) 本発明は、前記課題を解決するための手段として、一般
式+  (AxA’ +−x)(ByB’ 1−Y)0
3(式中、AサイトのAおよびA゛は同じ又は異なる1
価または2価の金属、BサイトのBおよびBは同じ又は
異なる2〜6価の金属を表す。)で示される複合ペロブ
スカイト型化合物からなる複合酸化物磁器の製造方法に
おいて、 前記複合ペロブスカイト型化合物のAサイトまたはBサ
イトの金属元素の硝酸塩および水酸化物からなる群から
選ばれた少なくとも二つの水溶性金属化合物を含む水溶
液に、アンモニア水を加えて共沈体を生成させ、該共沈
体をロータリエバボレイータもしくはスプレィドライヤ
ーで溶媒を除去したのち、得られた乾燥粉末を仮焼して
AサイトまたはBサイトの金属元素の複合酸化物を生成
さけ、該AサイトまたはBサイトの金属元素の複合酸化
物を、それとは別に調製されたBサイトまたはAサイト
の金属酸化物と精秤、混合して焼成することを特徴とす
る複合酸化物磁器の製造方法を提供するものである。
(Means for Solving the Problem) The present invention provides, as a means for solving the problem, the general formula + (AxA' +-x) (ByB' 1-Y)0
3 (in the formula, A and A′ of the A site are the same or different 1
A valent or divalent metal, B and B at the B site represent the same or different divalent to hexavalent metals. ), in which at least two water-soluble porcelains selected from the group consisting of nitrates and hydroxides of metal elements at the A site or B site of the composite perovskite compound are provided. Aqueous ammonia is added to an aqueous solution containing a metal compound to form a coprecipitate, the solvent is removed from the coprecipitate using a rotary evaporator or a spray dryer, and the resulting dry powder is calcined to produce A. Precisely weigh and mix the composite oxide of the metal element at the A site or B site with the separately prepared metal oxide at the B site or A site, avoiding the generation of a composite oxide of the metal element at the site or B site. The present invention provides a method for manufacturing composite oxide porcelain, which is characterized in that the composite oxide porcelain is fired.

前記一般式で示される複合ペロブスカイト型化合物から
なる複合酸化物磁器としては、例えば、次の一般式(1
)〜(Vl)で示される!成分系、2成分系、3成分系
その他の多成分系磁器組成物が挙げられる。
As a composite oxide porcelain made of a composite perovskite type compound represented by the above general formula, for example, the following general formula (1
)~(Vl)! Examples include component type, two-component type, three-component type and other multi-component type ceramic compositions.

なお、前記複合ペロブスカイト型化合物には、電気的あ
るいは機械的特性を向上させるため、主成分である複合
ペロブスカイト型化合物にCr、Nb、Ta、B1SM
nなど金属や、アルカリ土金属、あるいは希土類元素を
添加して変性したものも含まれる。
In addition, in order to improve the electrical or mechanical properties of the composite perovskite type compound, Cr, Nb, Ta, B1SM, etc. are added to the composite perovskite type compound which is the main component.
It also includes those modified by adding metals such as n, alkaline earth metals, or rare earth elements.

前記複合ペロブスカイト型化合物の代表的なものとして
は、 一般式(1):  A” (B” +73B” 2/ 
3)Chで示される化合物、例えば、Pb(TL/3Z
r2/ 3)03、Ba(Zn+z 3Nbt/3)0
3、Ba(Cd+z 3Nbtz y)C1+、Ba(
Mg+/3Nb2/ JO3,5r(Cd+/3Nbt
/3)03%P b(Mg+/3 N bt/3)’0
3、P b(N II73Nbt/3)03、P b(
Mn+y zNbt/*)03、Pb(Mg+、z 3
Ta、/3)03、Pb(Nl+7 、Tat/ a)
03、P b(Cd+73Nbt73)03;一般式(
II):  A” (B””I/ 2B針1/2)03
で示される化合物、例えば、 Ba(F’ eli tNb+/z)03、Ba(S、
c+/lNb+/2)03、Ca(Cr+/aNb+/
JO3、Pb(Pel/lNb+72)03、Pb(P
e+7 tTa+y t)03、Pb(Sc+/lNb
+/1)Os、Pb(Sc5z tTa+y t)03
、P b(Y b+/lNb+/l)03、Pb(Yb
+/1TaI7 t)Os、Pb(Lu+/lNb+/
1)03、Pb(Ir++/、Nb、、JO3; 一般式(III):  A”” (B” I/ 2B”
 I/ *)0+で示される化合物、例えば、 Pb(Cd+/lW1/り03、P b(Mr++/l
W I/ りOs、Pb(ZnI72Wl/ JO3,
Pb(Mg+72Wl/ t)O3゜P b(Cot/
、wI/1)03、P b(N I 1/ 2W +/
 2) 03、Pb(Mg+/1Te7 t)03、P
b(Mn+/1Te72)03、P b(Co+/1T
el/1)Os、Pb(Cu+72W+/1)03一般
式(■):  A” (B”” 273B” +/ 3
)0*で示される化合物、例えば、Pb(Fet73V
b/*)Osニ一般式(V):  A” (B l/ 
t” B l/ t” )03で示される化合物、例え
ば、 Pb(Sn+/lsb+/1)03、L a(Mg+/
 2T L7 t)03、Nd(Mg17tTL7 t
)Os;及び、一般式(VT):  (A” I/ t
A3“I/ 2)B” 03で示される化合物、例えば
、 CNa+y 2La+/JTiO*、(Kl/ 、La
+/ t)Tios、(Na+/lce+7 t)Ti
O+、CNa、/zNd+/l)T io3、(Nd+
/2B i7 t)T io 3、(K +/ tB 
L/ t)T iO*、などが挙げられる。
A typical compound perovskite compound has the general formula (1): A"(B"+73B" 2/
3) Compounds represented by Ch, for example, Pb(TL/3Z
r2/3)03, Ba(Zn+z 3Nbt/3)0
3, Ba(Cd+z 3Nbtz y)C1+,Ba(
Mg+/3Nb2/ JO3,5r(Cd+/3Nbt
/3)03%P b(Mg+/3 N bt/3)'0
3, P b (N II73Nbt/3) 03, P b (
Mn+y zNbt/*)03, Pb(Mg+,z 3
Ta, /3) 03, Pb (Nl+7, Tat/a)
03, P b(Cd+73Nbt73)03; General formula (
II): A” (B””I/ 2B needle 1/2) 03
Compounds represented by, for example, Ba(F' eli tNb+/z)03, Ba(S,
c+/lNb+/2)03, Ca(Cr+/aNb+/
JO3, Pb(Pel/lNb+72)03, Pb(P
e+7 tTa+y t)03, Pb(Sc+/lNb
+/1) Os, Pb(Sc5z tTa+y t)03
, Pb(Yb+/lNb+/l)03, Pb(Yb+/l)
+/1TaI7 t)Os, Pb(Lu+/lNb+/
1) 03, Pb(Ir++/, Nb,, JO3; General formula (III): A""(B" I/ 2B"
Compounds represented by I/*)0+, for example, Pb(Cd+/lW1/ri03, Pb(Mr++/l
WI/Os, Pb(ZnI72Wl/JO3,
Pb(Mg+72Wl/t)O3゜Pb(Cot/
,wI/1)03,P b(N I 1/2W +/
2) 03,Pb(Mg+/1Te7t)03,P
b(Mn+/1Te72)03, P b(Co+/1T
el/1) Os, Pb(Cu+72W+/1)03 General formula (■): A” (B”” 273B” +/ 3
)0*, for example, Pb(Fet73V
b/*) Osni general formula (V): A” (B l/
t”B l/t”)03, for example, Pb(Sn+/lsb+/1)03, La(Mg+/
2T L7 t)03, Nd(Mg17tTL7 t
) Os; and general formula (VT): (A” I/ t
A3 “I/ 2) B” Compounds represented by 03, for example, CNa+y 2La+/JTiO*, (Kl/ , La
+/t)Tios, (Na+/lce+7t)Ti
O+, CNa, /zNd+/l)T io3, (Nd+
/2B i7 t)T io 3, (K +/ tB
L/t) TiO*, etc.

また、別に調整されたBサイトまたはAサイトの金属酸
化物とは、上記した工程を経て得られた複合酸化物でも
よく、あるいは市販の金属酸化物でもよい。
Further, the separately prepared B site or A site metal oxide may be a composite oxide obtained through the above-described steps, or may be a commercially available metal oxide.

(作用) 本発明ハ、複合ペロブスカイト型化合物を構成する金属
元素をAサイトとBサイトの成分に分け、これらのAサ
イトまたはBサイトを湿式合成法により共沈体あるいは
沈澱物として析出させることによってミクロ的に均一に
混合、分散した原料粉末が得られるようにする一方、こ
れらの共沈体もしくは沈澱物を別々にロータリエバポレ
ータもしくはスプレードライヤーで乾燥させることによ
って溶出による損失を防止すると同時に、活性の高い粉
末を得、低温度での焼成を可能にし、これによって、所
望の組成を有する複合ペロブスカイト型化合物からなる
磁器が得られる。
(Function) The present invention C. By dividing the metal element constituting the composite perovskite compound into A site and B site components, and precipitating these A site or B site as a coprecipitate or precipitate by a wet synthesis method. By drying these coprecipitates or precipitates separately using a rotary evaporator or a spray dryer, it is possible to obtain microscopically uniformly mixed and dispersed raw material powders, while preventing loss due to elution and at the same time reducing activity. A high powder is obtained, making it possible to fire at low temperatures, thereby obtaining a porcelain consisting of a composite perovskite type compound with the desired composition.

(実施例I) 硝酸マグネシウム(0,2472モル)、硝酸銅(0,
00755モル)、硝酸亜鉛(0,00251モル)、
硝酸チタニール(0,00377モル)、水酸化ニオブ
(0,500モル)および酸化タングステン(0,00
755モル)を水に溶解もしくは分散させて混合スラリ
ーを調製し、これに30%過酸化水素水とアンモニア水
の混合溶液を加えてpl−(を9〜9.5に調整して沈
澱させる。生成した沈澱物を市販のロータリエバポレー
タを用いて脱溶媒を行い、得た乾燥粉末を空気中800
℃で2時間仮焼して酸化物粉末を得た。
(Example I) Magnesium nitrate (0,2472 mol), copper nitrate (0,
00755 mol), zinc nitrate (0,00251 mol),
Titanyl nitrate (0,00377 mol), niobium hydroxide (0,500 mol) and tungsten oxide (0,00 mol)
A mixed slurry is prepared by dissolving or dispersing 755 mol) in water, and a mixed solution of 30% hydrogen peroxide and ammonia water is added to adjust pl-( to 9 to 9.5 and precipitate. The resulting precipitate was desolvented using a commercially available rotary evaporator, and the resulting dry powder was heated in air for 800 min.
The mixture was calcined at ℃ for 2 hours to obtain an oxide powder.

次いで、これとは別に調製した、または市販の四三酸化
鉛(pb3o、)を萌記酸化物粉末100gに対して2
21.541g添加、混合し、仮焼して複合ペロブスカ
イト型化合物粉末を得、この粉末にバインダを加えて造
粒したのち、円板状圧粉体を成形し、1000℃で2時
間焼成して0.985Pb(Mg+/5Nbt/3)0
3−0.010 Pb(Zn+、z tWl/ JO3
−0,005PbTi03からなる主成分100モル%
に2モル%のPb(Cu+72W+/ 2)03を添加
した組成からなる誘電体磁器円板を得た。
Next, separately prepared or commercially available trilead tetroxide (pb3o) was added at a rate of 2 to 100 g of Moeki oxide powder.
21.541g was added, mixed, and calcined to obtain a composite perovskite compound powder. After adding a binder to this powder and granulating it, a disc-shaped green compact was formed and fired at 1000°C for 2 hours. 0.985Pb(Mg+/5Nbt/3)0
3-0.010 Pb(Zn+,z tWl/ JO3
-100 mol% main component consisting of 0,005PbTi03
A dielectric ceramic disk was obtained having a composition in which 2 mol% of Pb(Cu+72W+/2)03 was added.

(実施例2) 硝酸ニッケル(0,2344モル)、硝酸ジルコニウム
(0,3594モル)、イソプロポキシチタン(0,5
000モル)および水酸化ニオブ(0,4650モル)
を水に溶解して混合液を調製し、これに30%過酸化水
素水とアンモニア水とを加えてpHを9〜9,5に調整
して沈澱を生成させる。
(Example 2) Nickel nitrate (0,2344 mol), zirconium nitrate (0,3594 mol), isopropoxy titanium (0,5 mol)
000 mol) and niobium hydroxide (0,4650 mol)
is dissolved in water to prepare a mixed solution, and 30% hydrogen peroxide and aqueous ammonia are added thereto to adjust the pH to 9 to 9.5 to form a precipitate.

この沈澱物を実施例1と同様に、脱溶媒、仮焼して得た
酸化物粉末100gに対してこれとは別に調整し、また
は市販の四三酸化鉛(PbsO4)234.081gを
添加して仮焼し、複合ペロブスカイト型化合物粉末を得
、これにバインダーを添加してペースト状にし、ドクタ
ーブレード法にてシート化し、これを1100℃で2時
間焼成して、0 、’45 Pb(NL/3Nb、/3
)03−0.32 PbTiO3−0,23PbZrO
sからなる圧電体磁器を得た。
This precipitate was separately adjusted to 100 g of oxide powder obtained by removing the solvent and calcining in the same manner as in Example 1, or 234.081 g of commercially available trilead tetraoxide (PbsO4) was added. A composite perovskite compound powder was obtained, a binder was added to the powder, and a binder was added to form a paste, which was then formed into a sheet using a doctor blade method. This was then fired at 1100°C for 2 hours to obtain 0,'45 Pb (NL). /3Nb, /3
)03-0.32 PbTiO3-0,23PbZrO
A piezoelectric ceramic made of s was obtained.

(発明の効果) 以上の説明から明らかなように、本発明によれば、湿式
合成した共沈体を洗浄、脱水することなくロークリエバ
ポレータやスプレードライヤで溶媒のみを除去するため
、原料粉末製造時に磁器成分の溶出による損失を全く生
じることがない。しかも、複合ペロブスカイト型化合物
のAサイトの成分とBサイトの成分とを酸化物の形態で
別々に生成させ、その後に両成分を混合して複合ペロブ
スカイト化合物を生成させるため、特に、鉛を含む複合
ペロブスカイト化合物の場合でも、鉛をpb3o、の形
態で添加して焼成するため、従来のように鉛が蒸発する
ことはなく、従って、モル比にズレのない磁器を得ろこ
とができる。さらに、本発明方法では、Aサイトおよび
Bサイトの成分でそれぞれ複合酸化物の結晶を初めに構
築させているため、焼成時にパイロクロアの生成が非常
に少なく、従って、比較的低い温度で焼成することがで
きろ、など優れた効果が得られる。
(Effects of the Invention) As is clear from the above description, according to the present invention, since only the solvent is removed using a low evaporator or a spray dryer without washing or dehydrating the wet-synthesized coprecipitate, raw material powder production is possible. At times, there is no loss of porcelain components due to elution. Moreover, since the A-site component and the B-site component of the composite perovskite compound are generated separately in the form of oxides, and then both components are mixed to produce the composite perovskite compound, it is especially Even in the case of a perovskite compound, since lead is added in the form of PB3O and fired, the lead does not evaporate unlike in the past, and therefore it is possible to obtain porcelain with no deviation in molar ratio. Furthermore, in the method of the present invention, since composite oxide crystals are first constructed from the components of the A site and the B site, very little pyrochlore is produced during firing, and therefore, firing can be performed at a relatively low temperature. Excellent effects can be obtained, such as:

Claims (1)

【特許請求の範囲】[Claims] (1)一般式:(A_xA’_1_−_x)(B_yB
’_1_−_y)O_3(式中、AサイトのAおよびA
’は同じ又は異なる1価または2価の金属、Bサイトの
BおよびB’は同じ又は異なる2〜6価の金属を表す。 )で示される複合ペロブスカイト型化合物からなる複合
酸化物磁器の製造方法において、 前記複合ペロブスカイト型化合物のAサイトまたはBサ
イトの金属元素の硝酸塩および水酸化物からなる群から
選ばれた少なくとも二つの水溶性金属化合物を含む水溶
液に、アンモニア水を加えて共沈体を生成させ、該共沈
体をロータリエバポレイータもしくはスプレイドライヤ
ーで溶媒を除去したのち、得られた乾燥粉末を仮焼して
AサイトまたはBサイトの金属元素の複合酸化物を生成
させ、該AサイトまたはBサイトの金属元素の複合酸化
物を、それとは別に調製されたBサイトまたはAサイト
の金属酸化物と精秤、混合して焼成することを特徴とす
る複合酸化物磁器の製造方法。
(1) General formula: (A_xA'_1_-_x) (B_yB
'_1_-_y)O_3 (where A and A at A site
' represents the same or different monovalent or divalent metal, and B and B' at the B site represent the same or different divalent to hexavalent metal. ), in which at least two water-soluble porcelains selected from the group consisting of nitrates and hydroxides of metal elements at the A site or B site of the composite perovskite compound are provided. Aqueous ammonia is added to an aqueous solution containing a metal compound to form a coprecipitate, the solvent is removed from the coprecipitate using a rotary evaporator or a spray dryer, and the resulting dry powder is calcined to produce A. A composite oxide of a metal element at the A site or B site is generated, and the composite oxide of the metal element at the A site or B site is accurately weighed and mixed with a separately prepared metal oxide at the B site or A site. A method for manufacturing composite oxide porcelain, which comprises firing the composite oxide porcelain.
JP63202892A 1988-08-15 1988-08-15 Preparation of multiple oxide ceramic Pending JPH0251463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202892A JPH0251463A (en) 1988-08-15 1988-08-15 Preparation of multiple oxide ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202892A JPH0251463A (en) 1988-08-15 1988-08-15 Preparation of multiple oxide ceramic

Publications (1)

Publication Number Publication Date
JPH0251463A true JPH0251463A (en) 1990-02-21

Family

ID=16464929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202892A Pending JPH0251463A (en) 1988-08-15 1988-08-15 Preparation of multiple oxide ceramic

Country Status (1)

Country Link
JP (1) JPH0251463A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution

Similar Documents

Publication Publication Date Title
JPH0639330B2 (en) Method for producing barium / strontium titanate fine particles
JPS61275108A (en) Preparation of powder of dielectric substance
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH0251463A (en) Preparation of multiple oxide ceramic
JPH0210089B2 (en)
JPH02184524A (en) Production of piezoelectric perovskite-type compound
JPS6363511B2 (en)
JP2841347B2 (en) Manufacturing method of piezoelectric ceramics
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2001199765A (en) Raw material powder for dielectric porcelain composition, and dielectric porcelain composition
JPH04114906A (en) Production of multicomponent perovskite type oxide powder
JPH0331647B2 (en)
JPH0556287B2 (en)
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JP3250874B2 (en) Method for producing composite oxide
JP3243692B2 (en) Manufacturing method of piezoelectric ceramics
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPS6325223A (en) Production of ceramic raw material powder
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium
JPS6221760A (en) Manufacture of ferromagnetic ceramics by powder dispersion multi-stage wet process
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPH01122907A (en) Production of perovskite oxide powder
JPH0256287B2 (en)
JPS62235251A (en) Manufacture of dielectric ceramic
JPH0580404B2 (en)