JPH0246544B2 - - Google Patents
Info
- Publication number
- JPH0246544B2 JPH0246544B2 JP59202187A JP20218784A JPH0246544B2 JP H0246544 B2 JPH0246544 B2 JP H0246544B2 JP 59202187 A JP59202187 A JP 59202187A JP 20218784 A JP20218784 A JP 20218784A JP H0246544 B2 JPH0246544 B2 JP H0246544B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- honeycomb structure
- crystals
- plate
- carbide honeycomb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 claims description 37
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 35
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 30
- 238000005192 partition Methods 0.000 claims description 24
- 239000011148 porous material Substances 0.000 claims description 22
- 239000012530 fluid Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910021426 porous silicon Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 241000273930 Brevoortia tyrannus Species 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は炭化ケイ素質ハニカム構造体に関し、
特に本発明はハニカム構造体の隔壁表面で生じる
熱移動、化学反応並びに吸着、拡散、吸収などの
物質移動を圧力損失少く且つ効率よく行うことの
できる板状結晶から主として構成される多孔質の
炭化ケイ素焼結体のハニカム構造体に関する。
特に本発明はハニカム構造体の隔壁表面で生じる
熱移動、化学反応並びに吸着、拡散、吸収などの
物質移動を圧力損失少く且つ効率よく行うことの
できる板状結晶から主として構成される多孔質の
炭化ケイ素焼結体のハニカム構造体に関する。
従来内燃機関等の排気ガス浄化装置に使用され
るセラミツク質のハニカム構造体としては焼結可
能な無機質粒子で、可撓性を有するセラミツク薄
板を作り、これを波付けして別のセラミツク薄板
とともにハニカム状に組み立てて焼成するか、あ
るいはパイプを押し出して結束し、焼結して一体
構造としたものや、有機質バインダーを含んだ可
撓性を有するセラミツク混練物を所望する形状に
なるように設計されたダイスより押出し一体構造
となした後乾燥焼成することによつてハニカム構
造としたものや、有機質担体で、ハニカム原型を
作りセラミツク質の泥媒を塗布含浸し、焼成した
ものなど、いろいろの製法によるハニカム構造体
が用いられている。
るセラミツク質のハニカム構造体としては焼結可
能な無機質粒子で、可撓性を有するセラミツク薄
板を作り、これを波付けして別のセラミツク薄板
とともにハニカム状に組み立てて焼成するか、あ
るいはパイプを押し出して結束し、焼結して一体
構造としたものや、有機質バインダーを含んだ可
撓性を有するセラミツク混練物を所望する形状に
なるように設計されたダイスより押出し一体構造
となした後乾燥焼成することによつてハニカム構
造としたものや、有機質担体で、ハニカム原型を
作りセラミツク質の泥媒を塗布含浸し、焼成した
ものなど、いろいろの製法によるハニカム構造体
が用いられている。
一般にこのようなハニカム構造体では一定形状
の貫通孔が均一に多数配列し、その貫通孔が流れ
に対して平行で直線的であるため、流体の圧力損
失が小さいという利点がある。しかし、流体と隔
壁間で起こる熱伝導あるいは酸化、還元反応等の
化学反応あるいは、流体中に含まれる微粒子、水
分等の吸着あるいは分離等の物質移動現象は有効
には働かないという欠点があつた。このような欠
点を改善するために隔壁の厚さを薄くしさらに貫
通孔の大きさを小さくすることによつて流体との
接触面積を大きくする試みが行なわれている。と
ころがこれまでのところ、1inch2当り300〜400個
の貫通孔(1.5mm×1.5mm〜1.3mm×1.3mm)で隔壁
の厚さは0.2mmが限度であり、これ以上接触面積
を大きくすることは技術的に非常に困難であつ
た。一方、さらに有効に前述した熱移動、化学反
応あるいは物質移動現象を起こさせるために、隔
壁を多孔質化することが行なわれている。
の貫通孔が均一に多数配列し、その貫通孔が流れ
に対して平行で直線的であるため、流体の圧力損
失が小さいという利点がある。しかし、流体と隔
壁間で起こる熱伝導あるいは酸化、還元反応等の
化学反応あるいは、流体中に含まれる微粒子、水
分等の吸着あるいは分離等の物質移動現象は有効
には働かないという欠点があつた。このような欠
点を改善するために隔壁の厚さを薄くしさらに貫
通孔の大きさを小さくすることによつて流体との
接触面積を大きくする試みが行なわれている。と
ころがこれまでのところ、1inch2当り300〜400個
の貫通孔(1.5mm×1.5mm〜1.3mm×1.3mm)で隔壁
の厚さは0.2mmが限度であり、これ以上接触面積
を大きくすることは技術的に非常に困難であつ
た。一方、さらに有効に前述した熱移動、化学反
応あるいは物質移動現象を起こさせるために、隔
壁を多孔質化することが行なわれている。
このような多孔質セラミツクハニカム構造体と
しては、例えば特開昭56−129020号公報によれ
ば、「多数の貫通孔を有するハニカム構造の多孔
質セラミツク材料によりなり、所定の貫通孔の一
端を封ずるとともに残りの貫通孔の他端面を封じ
たことを特徴とするセラミツクフイルター。」が
開示されている。
しては、例えば特開昭56−129020号公報によれ
ば、「多数の貫通孔を有するハニカム構造の多孔
質セラミツク材料によりなり、所定の貫通孔の一
端を封ずるとともに残りの貫通孔の他端面を封じ
たことを特徴とするセラミツクフイルター。」が
開示されている。
この方法は、ハニカム隔壁を多孔質化し、そこ
に積極的に流体を通過せしめることを目的として
いるが、この方法によると以下のような問題点が
ある。すなわち、一般に多孔質隔壁は第1図に示
す如く骨材粒子をガラス質フラツクスあるいは粘
土質などの結合材を加えて高温焼成することによ
つて固めたような構造を持ち、結合材ウで均一に
被覆された骨材イが密に圧縮され、焼成によつて
これらが強固に結合すると同時に、これらの間隙
が気孔アとなる。骨材形状は多角形であり不規則
なものが多く、骨材の占める容量に対し気孔の占
める割合は30〜40%と比較的少ない。そのため、
通気抵抗は大きく気体や液体の流体物との接触面
積は少なく、気体過には適さない場合があり、
特に触媒担体などの用途には適さないものが多
い。そして、微小気孔を有するものは、粒度配合
を粗粒と微細粒子を適度に混合せしめる要上、成
形体の嵩密度は著しく高くなる。したがつて気孔
率は小さくなりまた一部閉気孔化が生じる。一
方、この方法によれば比較的大きい気孔を有する
多孔質体は当然骨材粒子も大きくなるため、粒子
間の接触点が少く機械的強度は嵩密度が高い場合
の2分の1以下に低下する。このため、前述した
如き結合剤が使用されるが、この時多孔質体の強
度は結合剤に左右される。すなわち、この結合剤
は1000〜1400℃の高温焼成により、溶融し、骨材
の表面で反応しコーテイング層を形成すると共に
結合剤相互の融着によつて骨材を結合する機能を
持つが当然の如く、高温度で使用する際、特にガ
ラス転位温度付近では変形を生じ著しく強度が低
下する欠点がある。
に積極的に流体を通過せしめることを目的として
いるが、この方法によると以下のような問題点が
ある。すなわち、一般に多孔質隔壁は第1図に示
す如く骨材粒子をガラス質フラツクスあるいは粘
土質などの結合材を加えて高温焼成することによ
つて固めたような構造を持ち、結合材ウで均一に
被覆された骨材イが密に圧縮され、焼成によつて
これらが強固に結合すると同時に、これらの間隙
が気孔アとなる。骨材形状は多角形であり不規則
なものが多く、骨材の占める容量に対し気孔の占
める割合は30〜40%と比較的少ない。そのため、
通気抵抗は大きく気体や液体の流体物との接触面
積は少なく、気体過には適さない場合があり、
特に触媒担体などの用途には適さないものが多
い。そして、微小気孔を有するものは、粒度配合
を粗粒と微細粒子を適度に混合せしめる要上、成
形体の嵩密度は著しく高くなる。したがつて気孔
率は小さくなりまた一部閉気孔化が生じる。一
方、この方法によれば比較的大きい気孔を有する
多孔質体は当然骨材粒子も大きくなるため、粒子
間の接触点が少く機械的強度は嵩密度が高い場合
の2分の1以下に低下する。このため、前述した
如き結合剤が使用されるが、この時多孔質体の強
度は結合剤に左右される。すなわち、この結合剤
は1000〜1400℃の高温焼成により、溶融し、骨材
の表面で反応しコーテイング層を形成すると共に
結合剤相互の融着によつて骨材を結合する機能を
持つが当然の如く、高温度で使用する際、特にガ
ラス転位温度付近では変形を生じ著しく強度が低
下する欠点がある。
また、生形体をハニカム一体構造で押出成形
し、乾燥焼成したものは、その材質が例えばコー
ジエライトを主成分とするものであれば、第2図
の拡大模式図に示すように板状又は針状形状のセ
ラミツク粒子キはハニカム構造体の生成形体が押
出成形される際に、押出し方向Aに配向し易い。
そのため、このような配向を示すハニカム構造体
を側壁とするフイルターにおいては、気体や液体
の流体物が移動しようとするB方向に対してほぼ
垂直な面となり、流体物は側壁の間隙中を通過し
難く、通過時の抵抗は大きいばかりでなく圧力損
失が大きくなる欠点がある。また、セラミツク粒
子キは板状で表面が比較的平滑な面で構成されて
いるため、流体物の接触面積は比較的少なく前記
熱移動、化学反応、物質移動などを効率よく行う
ことはできない。
し、乾燥焼成したものは、その材質が例えばコー
ジエライトを主成分とするものであれば、第2図
の拡大模式図に示すように板状又は針状形状のセ
ラミツク粒子キはハニカム構造体の生成形体が押
出成形される際に、押出し方向Aに配向し易い。
そのため、このような配向を示すハニカム構造体
を側壁とするフイルターにおいては、気体や液体
の流体物が移動しようとするB方向に対してほぼ
垂直な面となり、流体物は側壁の間隙中を通過し
難く、通過時の抵抗は大きいばかりでなく圧力損
失が大きくなる欠点がある。また、セラミツク粒
子キは板状で表面が比較的平滑な面で構成されて
いるため、流体物の接触面積は比較的少なく前記
熱移動、化学反応、物質移動などを効率よく行う
ことはできない。
一方、その材質が炭化ケイ素を主成分とするも
のであると第1図の拡大模式図に示すように粒状
又は塊状形状のセラミツク粒子イは結合材ウを介
してそれぞれ密着しており、これらの粒子間には
気孔アが存在しているが、この気孔の占める割合
は前述のように30〜40%と比較的少なく、そのた
め通気抵抗は大きく気体や液体の流体物との接触
有効面積は少ないので触媒担体やフイルターなど
の用途には適さないものが多い。
のであると第1図の拡大模式図に示すように粒状
又は塊状形状のセラミツク粒子イは結合材ウを介
してそれぞれ密着しており、これらの粒子間には
気孔アが存在しているが、この気孔の占める割合
は前述のように30〜40%と比較的少なく、そのた
め通気抵抗は大きく気体や液体の流体物との接触
有効面積は少ないので触媒担体やフイルターなど
の用途には適さないものが多い。
本発明は、上記従来技術の欠点を除去・改善
し、触媒担体やフイルターとして最適の構造を有
する炭化ケイ素質ハニカム構造体を提供すること
を目的とし、前記特許請求の範囲各項記載のもの
で、上記本発明の目的を達成するものである。
し、触媒担体やフイルターとして最適の構造を有
する炭化ケイ素質ハニカム構造体を提供すること
を目的とし、前記特許請求の範囲各項記載のもの
で、上記本発明の目的を達成するものである。
以下、本発明の炭化ケイ素質ハニカム構造体を
図面などにより具体的に説明する。
図面などにより具体的に説明する。
第3図の顕微鏡写真は本発明の炭化ケイ素質ハ
ニカム構造体の隔壁の結晶構造の一部拡大写真で
ある。
ニカム構造体の隔壁の結晶構造の一部拡大写真で
ある。
この写真からも明らかなように、本発明の炭化
ケイ素質ハニカム構造体の隔壁は板状結晶が多方
向に複雑な状態で絡み合い三次元の網目構造が形
成されており、気孔部の占める割合は50〜80容量
%と比較的多く、しかも通気性に富んだ状態の気
孔部である。
ケイ素質ハニカム構造体の隔壁は板状結晶が多方
向に複雑な状態で絡み合い三次元の網目構造が形
成されており、気孔部の占める割合は50〜80容量
%と比較的多く、しかも通気性に富んだ状態の気
孔部である。
このような構造を持つたハニカム構造体では、
同サイズの気孔径を持つ第1図あるいは第2図に
示されているような多孔質壁に比べて比表面積が
大きくなる。一方、隔壁の表面に板状結晶が突き
出る形となり、ハニカムの軸方向の流れから流体
を積極的に、多孔質体内に取り込み易くなる。ま
た、板状結晶から成る隔壁の表面の形状が複雑に
なるため、貫通孔を通る流体の流れが不規則とな
り、流れに乱流が生じ易くなる。このため、系内
の均一化が促進するという効果も見い出された。
同サイズの気孔径を持つ第1図あるいは第2図に
示されているような多孔質壁に比べて比表面積が
大きくなる。一方、隔壁の表面に板状結晶が突き
出る形となり、ハニカムの軸方向の流れから流体
を積極的に、多孔質体内に取り込み易くなる。ま
た、板状結晶から成る隔壁の表面の形状が複雑に
なるため、貫通孔を通る流体の流れが不規則とな
り、流れに乱流が生じ易くなる。このため、系内
の均一化が促進するという効果も見い出された。
このように網目状構造の隔壁を有する炭化ケイ
素質ハニカム構造体は、隔壁と流体間で生じる熱
伝導、化学反応あるいは吸着、分離、吸収等の物
質移動を効率よく生ぜしめ、しかも、それらの現
象を均一に行うことのできる特徴を有するハニカ
ム構造体である。
素質ハニカム構造体は、隔壁と流体間で生じる熱
伝導、化学反応あるいは吸着、分離、吸収等の物
質移動を効率よく生ぜしめ、しかも、それらの現
象を均一に行うことのできる特徴を有するハニカ
ム構造体である。
ところで、本発明者は炭化ケイ素の粉末を主成
分とする原料組成物を成形し、焼結体を製造して
いたところ、通常緻密化した後に焼結体に形成さ
れる結晶が緻密化することなく、極度に板状結晶
が発達することを新規に知見した。そこで、本発
明者は前記現象について種々検討し研究した結
果、板状結晶が複雑な状態で絡み合い三次元の網
目構造が形成された全く新しいタイプの多孔質炭
化ケイ素焼結体が得られ驚くべき性能を有するこ
とを新規に発見し、本発明を完成するに至つた。
分とする原料組成物を成形し、焼結体を製造して
いたところ、通常緻密化した後に焼結体に形成さ
れる結晶が緻密化することなく、極度に板状結晶
が発達することを新規に知見した。そこで、本発
明者は前記現象について種々検討し研究した結
果、板状結晶が複雑な状態で絡み合い三次元の網
目構造が形成された全く新しいタイプの多孔質炭
化ケイ素焼結体が得られ驚くべき性能を有するこ
とを新規に発見し、本発明を完成するに至つた。
本発明は気孔が連続し、かつ直線的でない構造
を有し、かつ高い気孔率と比表面積を有した炭化
ケイ素質多孔質隔壁を有するハニカム構造体を提
供するものである。
を有し、かつ高い気孔率と比表面積を有した炭化
ケイ素質多孔質隔壁を有するハニカム構造体を提
供するものである。
本発明によれば、前記目的に対して、本多孔質
炭化ケイ素焼結体は平均アスベクト比が2〜50の
炭化ケイ素板状結晶を主体として構成する三次元
の網目構造を有する焼結体であり、該焼結体は少
くとも60重量%のβ型炭化ケイ素からなる炭化ケ
イ素粉末を出発原料とし必要により結晶成長助剤
を添加する工程と前記混合物に成形用結合剤を添
加混合し、所望する形状に成形する工程と次いで
前記成形体を焼成する工程とにより得られるもの
である。
炭化ケイ素焼結体は平均アスベクト比が2〜50の
炭化ケイ素板状結晶を主体として構成する三次元
の網目構造を有する焼結体であり、該焼結体は少
くとも60重量%のβ型炭化ケイ素からなる炭化ケ
イ素粉末を出発原料とし必要により結晶成長助剤
を添加する工程と前記混合物に成形用結合剤を添
加混合し、所望する形状に成形する工程と次いで
前記成形体を焼成する工程とにより得られるもの
である。
次に本発明を詳細に説明する。
本発明によれば、前記多孔質体は平均アスペク
ト比が2〜50の炭化ケイ素板状結晶で構成されて
いることが必要であり、その結果生成する該結晶
は三次元の網目構造となつていることが特徴であ
る。このようにアスペクト比の下限を設ける理由
は、前記板状結晶の平均アスペクト比が2より少
いと、炭化ケイ素結晶によつて構成される気孔
が、結晶の占める容積に比べて小さくなるため、
高い気孔率と大きな気孔径を有することが困難と
なるためである。一方、前記板状結晶の平均アス
ペクト比が50以上になると、板状結晶の接合部の
強度が低くなるため、多孔質体自体の強度が著し
く低いものとなるからで前記多孔質ハニカム構造
体の保形が困難となるためであり、なかでも前記
板状結晶の平均アスペクト比は3〜30であること
がより好適である。
ト比が2〜50の炭化ケイ素板状結晶で構成されて
いることが必要であり、その結果生成する該結晶
は三次元の網目構造となつていることが特徴であ
る。このようにアスペクト比の下限を設ける理由
は、前記板状結晶の平均アスペクト比が2より少
いと、炭化ケイ素結晶によつて構成される気孔
が、結晶の占める容積に比べて小さくなるため、
高い気孔率と大きな気孔径を有することが困難と
なるためである。一方、前記板状結晶の平均アス
ペクト比が50以上になると、板状結晶の接合部の
強度が低くなるため、多孔質体自体の強度が著し
く低いものとなるからで前記多孔質ハニカム構造
体の保形が困難となるためであり、なかでも前記
板状結晶の平均アスペクト比は3〜30であること
がより好適である。
また、前記板状結晶の平均短軸方向厚みは0.1
〜300μmであることが好ましく、なかでも0.5〜
200μmであることが最適の条件である。
〜300μmであることが好ましく、なかでも0.5〜
200μmであることが最適の条件である。
そして、前記板状結晶は前記多孔質体100重量
部に対し、少くとも20重量部を占めることが重要
である。その理由は、20重量%よりも少いと、結
果によつて形成される気孔が、結晶の占める容量
に対して少なくなり、前記熱移動、化学反応ある
いは物質移動の行なわれる有効面積が少くなる。
また、板状結晶の接合面積が少くなるため、多孔
質体の機械的強度が著しく低下するからである。
なかでも、少くとも40重量部であることが最も好
適に使用できる条件である。
部に対し、少くとも20重量部を占めることが重要
である。その理由は、20重量%よりも少いと、結
果によつて形成される気孔が、結晶の占める容量
に対して少なくなり、前記熱移動、化学反応ある
いは物質移動の行なわれる有効面積が少くなる。
また、板状結晶の接合面積が少くなるため、多孔
質体の機械的強度が著しく低下するからである。
なかでも、少くとも40重量部であることが最も好
適に使用できる条件である。
また、前記網目構造の平均開放気孔径は0.1〜
500μmであることが好ましく、なかでも、0.5〜
300μmであることが最適の条件である。
500μmであることが好ましく、なかでも、0.5〜
300μmであることが最適の条件である。
そして、前記網目構造の開放気孔率は20〜95容
量%であることが好ましい。その理由は開放気孔
率が20容量%よりも小さいと、気孔の一部が独立
気孔化し、前記有効表面積が小さくなるためであ
り、95容量%よりも大きいと、有効表面積は大き
くなるが、ハニカム構造体の保形性が保てなくな
るためであり、なかでも30〜90容量%であること
が最適な条件である。
量%であることが好ましい。その理由は開放気孔
率が20容量%よりも小さいと、気孔の一部が独立
気孔化し、前記有効表面積が小さくなるためであ
り、95容量%よりも大きいと、有効表面積は大き
くなるが、ハニカム構造体の保形性が保てなくな
るためであり、なかでも30〜90容量%であること
が最適な条件である。
そして、前記炭化ケイ素質隔壁の比表面積が少
くとも0.05m2/gであることが好ましい。ここで
比表面積は窒素吸収によるBET法によつて求め
られる値である。そしてなかでも、少くとも0.2
m2/gであることが最も好適に使用できる条件で
ある。
くとも0.05m2/gであることが好ましい。ここで
比表面積は窒素吸収によるBET法によつて求め
られる値である。そしてなかでも、少くとも0.2
m2/gであることが最も好適に使用できる条件で
ある。
次に本発明を実施例について説明する。
実施例 1
この実施例の原料バツチに対して、80重量%が
β型結晶および5重量%の2H型、10重量%の4H
型α型結晶からなる出発原料を用いた。この出発
原料には不純物としてBが0.01、Cが0.5、Alが
2.10、Nが0.2、Feが0.08原子量部、その他の元素
は痕跡量含まれており、これら不純物総量は2.91
原子量部であつた。また、この出発原料の平均粒
径は0.3μm、比表面積は18.7m2/gであつた。こ
れに成形用結合剤としてメチルセルロースを10重
量部、水分を20重量部添加し、直径130mm、長さ
120mm、貫通孔の隔壁の厚さ0.3mm、一平方インチ
当りの貫通孔数約200の炭化ケイ素質ハニカムの
押出成形体を得た。この成形体をアルゴンガス
0.5気圧中で、室温〜500℃まで3℃/分の昇温速
度で前記結合剤を熱分解した後、500〜2100℃ま
で5℃/minで昇温し、最高温度で4時間保持し
た。この焼結体は第3図に示す多孔質炭化ケイ素
隔壁を有しており、板状結晶の平均アスペクト比
は10、平均短軸方向厚みが5μmであり、板状結
晶の占める割合が、炭化ケイ素質100重量部に対
して98重量部である、気孔率78%の網目構造とな
り、その平均開放気孔径は30μmであつた。この
ハニカム構造体の有効表面積は180m2であり、こ
の試料について常温空気を用いて圧力損失を測定
した結果、3m3/分の場合、20mm水柱であり、そ
の軸方向の圧縮強度は250Kg/cm2であつた。
β型結晶および5重量%の2H型、10重量%の4H
型α型結晶からなる出発原料を用いた。この出発
原料には不純物としてBが0.01、Cが0.5、Alが
2.10、Nが0.2、Feが0.08原子量部、その他の元素
は痕跡量含まれており、これら不純物総量は2.91
原子量部であつた。また、この出発原料の平均粒
径は0.3μm、比表面積は18.7m2/gであつた。こ
れに成形用結合剤としてメチルセルロースを10重
量部、水分を20重量部添加し、直径130mm、長さ
120mm、貫通孔の隔壁の厚さ0.3mm、一平方インチ
当りの貫通孔数約200の炭化ケイ素質ハニカムの
押出成形体を得た。この成形体をアルゴンガス
0.5気圧中で、室温〜500℃まで3℃/分の昇温速
度で前記結合剤を熱分解した後、500〜2100℃ま
で5℃/minで昇温し、最高温度で4時間保持し
た。この焼結体は第3図に示す多孔質炭化ケイ素
隔壁を有しており、板状結晶の平均アスペクト比
は10、平均短軸方向厚みが5μmであり、板状結
晶の占める割合が、炭化ケイ素質100重量部に対
して98重量部である、気孔率78%の網目構造とな
り、その平均開放気孔径は30μmであつた。この
ハニカム構造体の有効表面積は180m2であり、こ
の試料について常温空気を用いて圧力損失を測定
した結果、3m3/分の場合、20mm水柱であり、そ
の軸方向の圧縮強度は250Kg/cm2であつた。
次に、比較用として前記ハニカム構造体と同一
構造を持つハニカム構造体をコージエライト質で
作成したところ、隔壁の平均開放気孔径は32μ
m、気孔率は40%となり、その有効表面積は3.1
m2となり、有効表面積は前述のハニカム構造体に
比べ約1/60であつた。一方、同一条件での圧力損
失は30mm水柱で、軸方向の圧縮強度は280Kg/cm2
であり、前記ハニカム構造体とほとんど変わりが
なかつた。
構造を持つハニカム構造体をコージエライト質で
作成したところ、隔壁の平均開放気孔径は32μ
m、気孔率は40%となり、その有効表面積は3.1
m2となり、有効表面積は前述のハニカム構造体に
比べ約1/60であつた。一方、同一条件での圧力損
失は30mm水柱で、軸方向の圧縮強度は280Kg/cm2
であり、前記ハニカム構造体とほとんど変わりが
なかつた。
実施例 2
平均粒径0.2μm、比表面積25m2/gである、98
重量%がβ型結晶、2%が2H型結晶である炭化
ケイ素を出発原料に用いた。この原料粉末に、
Alを0.05重量部、Cを0.1重量部加え、ボールミ
ルにより混合した後、乾燥した。この混合物にメ
ンヘーデン原油2重量部、ポリビニールブチラー
ル4部、ポリエチレングリコール4.5部、オクチ
ルフタレート3.5部を加えた混合物にトリクロル
エチレン40重量部、エチレンアルコール15部を加
え3本ロールミルで混練し、シート状に成形した
後、さらに短形波状に成形し、これを巻き取つて
直径150mm、長さ150mm、貫通孔の隔壁の厚さ0.2
mm、一平方インチ当りの貫通孔数約300の炭化ケ
イ素多孔質ハニカム構造体を得た。この成形体を
N2ガス1気圧中で室温から500℃まで0.5℃/分
の昇温速度で前記有機結合剤を熱分解した後、
500℃〜2200℃まで10℃/分で昇温し、最高温度
で2時間保持した。この炭化ケイ素質ハニカム構
造体の隔壁は第4図に示した構造を有しており、
平均アスペクト比15、短軸方向平均厚みが4μm
の板状結晶が炭化ケイ素結晶の95%からなる気孔
率58%の網目構造となり、その平均開放気孔径は
4μmであつた。このハニカム構造体の有効表面
積は780m2であり、この試料について常温空気を
用いて圧力損失を測定した結果、2m3/分の場
合、50mm水頭でありその軸方向の圧縮強度は1850
Kg/cm2であつた。
重量%がβ型結晶、2%が2H型結晶である炭化
ケイ素を出発原料に用いた。この原料粉末に、
Alを0.05重量部、Cを0.1重量部加え、ボールミ
ルにより混合した後、乾燥した。この混合物にメ
ンヘーデン原油2重量部、ポリビニールブチラー
ル4部、ポリエチレングリコール4.5部、オクチ
ルフタレート3.5部を加えた混合物にトリクロル
エチレン40重量部、エチレンアルコール15部を加
え3本ロールミルで混練し、シート状に成形した
後、さらに短形波状に成形し、これを巻き取つて
直径150mm、長さ150mm、貫通孔の隔壁の厚さ0.2
mm、一平方インチ当りの貫通孔数約300の炭化ケ
イ素多孔質ハニカム構造体を得た。この成形体を
N2ガス1気圧中で室温から500℃まで0.5℃/分
の昇温速度で前記有機結合剤を熱分解した後、
500℃〜2200℃まで10℃/分で昇温し、最高温度
で2時間保持した。この炭化ケイ素質ハニカム構
造体の隔壁は第4図に示した構造を有しており、
平均アスペクト比15、短軸方向平均厚みが4μm
の板状結晶が炭化ケイ素結晶の95%からなる気孔
率58%の網目構造となり、その平均開放気孔径は
4μmであつた。このハニカム構造体の有効表面
積は780m2であり、この試料について常温空気を
用いて圧力損失を測定した結果、2m3/分の場
合、50mm水頭でありその軸方向の圧縮強度は1850
Kg/cm2であつた。
以上述べた如く、本発明によれば、平均アスペ
クト比が2〜50の板状結晶より構成される炭化ケ
イ素質ハニカム構造体は、良好な気孔径および気
孔率と高い強度を兼備した多孔質体であり、各種
過フイルター、集塵装置あるいは分散装置、化
学反応工業における触媒あるいは触媒担体、熱交
換器、液体保持用骨材等広範囲な用途に対し、良
好な特性を与うることが可能である。
クト比が2〜50の板状結晶より構成される炭化ケ
イ素質ハニカム構造体は、良好な気孔径および気
孔率と高い強度を兼備した多孔質体であり、各種
過フイルター、集塵装置あるいは分散装置、化
学反応工業における触媒あるいは触媒担体、熱交
換器、液体保持用骨材等広範囲な用途に対し、良
好な特性を与うることが可能である。
すなわち、次に示すような特徴を有するもので
ある。
ある。
(1) 同サイズの気孔径を持つ多孔質壁ハニカム構
造体に比べて、有効比表面積が多い。
造体に比べて、有効比表面積が多い。
(2) 隔壁の表面に炭化ケイ素板状結晶がせり出す
構造となり、本流から流体を積極的に取り込む
構造を有する。
構造となり、本流から流体を積極的に取り込む
構造を有する。
(3) 板状結晶から成る隔壁の表面で生じる流体の
流れが乱流となるため、流れ内における拡散、
撹拌等による均一化が促進される。
流れが乱流となるため、流れ内における拡散、
撹拌等による均一化が促進される。
このようにして、本発明における炭化ケイ素質
の板状結晶の網目構造から構成されるハニカム構
造体は熱移動、化学反応および物質移動等を高効
率でしかも有効に生ぜしめるハニカム構造体であ
る。
の板状結晶の網目構造から構成されるハニカム構
造体は熱移動、化学反応および物質移動等を高効
率でしかも有効に生ぜしめるハニカム構造体であ
る。
第1図及び第2図は、従来のセラミツク質ハニ
カム構造体の模式図、第3図及び第4図は本発明
の炭化ケイ素質ハニカム構造体の結晶構造の顕微
鏡写真である。
カム構造体の模式図、第3図及び第4図は本発明
の炭化ケイ素質ハニカム構造体の結晶構造の顕微
鏡写真である。
Claims (1)
- 【特許請求の範囲】 1 薄い隔壁を隔てて軸方向に多数の貫通孔が隣
接している炭化ケイ素質ハニカム構造体におい
て、該隔壁が平均アスペクト比2〜50の板状結晶
を主体として構成される三次元の網目構造を有す
る多孔体からなることを特徴とする炭化ケイ素質
ハニカム構造体。 2 前記板状結晶の平均短軸方向厚みが0.1〜
300μmである特許請求の範囲第1項記載の炭化
ケイ素質ハニカム構造体。 3 前記板状結晶は前記多孔質体100重量部に対
し、少くとも20重量部含まれる特許請求の範囲第
1あるいは2項いずれかに記載の炭化ケイ素質ハ
ニカム構造体。 4 前記三次元の網目構造の平均開放気孔径が
0.1〜500μmである特許請求の範囲第1〜3項い
ずれかに記載の炭化ケイ素質ハニカム構造体。 5 前記三次元の網目構造の開放気孔率が20〜95
容量%である特許請求の範囲第1〜4項いずれか
に記載の炭化ケイ素質ハニカム構造体。 6 前記炭化ケイ素質多孔体の比表面積が少くと
も0.05m2/gである特許請求の範囲第1〜5項い
ずれかに記載の炭化ケイ素質ハニカム構造体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20218784A JPS6183689A (ja) | 1984-09-27 | 1984-09-27 | 炭化ケイ素質ハニカム構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20218784A JPS6183689A (ja) | 1984-09-27 | 1984-09-27 | 炭化ケイ素質ハニカム構造体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6183689A JPS6183689A (ja) | 1986-04-28 |
JPH0246544B2 true JPH0246544B2 (ja) | 1990-10-16 |
Family
ID=16453403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20218784A Granted JPS6183689A (ja) | 1984-09-27 | 1984-09-27 | 炭化ケイ素質ハニカム構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183689A (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2668145B1 (fr) * | 1990-10-17 | 1993-01-22 | Ceramiques Composites | Corps fritte en carbure de silicium notamment pour garniture mecanique et garniture comportant un tel corps fritte. |
DE69624884T2 (de) * | 1995-08-22 | 2003-09-11 | Denki Kagaku Kogyo K.K., Tokio/Tokyo | Wabenkörper |
ATE465140T1 (de) * | 1997-12-02 | 2010-05-15 | Corning Inc | Verfahren zum brennen von keramischen honigwabenstrukturen |
JPH11333293A (ja) * | 1998-03-27 | 1999-12-07 | Denso Corp | ハニカム構造体及びその製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60255671A (ja) * | 1984-05-29 | 1985-12-17 | イビデン株式会社 | 高強度多孔質炭化ケイ素焼結体とその製造方法 |
JPS60264365A (ja) * | 1984-06-13 | 1985-12-27 | イビデン株式会社 | 多孔質炭化ケイ素焼結体とその製造方法 |
-
1984
- 1984-09-27 JP JP20218784A patent/JPS6183689A/ja active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60255671A (ja) * | 1984-05-29 | 1985-12-17 | イビデン株式会社 | 高強度多孔質炭化ケイ素焼結体とその製造方法 |
JPS60264365A (ja) * | 1984-06-13 | 1985-12-27 | イビデン株式会社 | 多孔質炭化ケイ素焼結体とその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPS6183689A (ja) | 1986-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1493724B1 (en) | Porous material and method for production thereof | |
JP4136319B2 (ja) | ハニカム構造体及びその製造方法 | |
US11033885B2 (en) | Ceramic honeycomb structure and its production method | |
EP1452512B1 (en) | Method for producing porous ceramic article | |
US4295892A (en) | Cordierite ceramic honeycomb and a method for producing the same | |
EP1787968B1 (en) | Method for manufacturing porous article, porous article and honeycomb structure | |
JP2578176B2 (ja) | 多孔質セラミックハニカムフィルターおよびその製法 | |
US6582796B1 (en) | Monolithic honeycomb structure made of porous ceramic and use as a particle filter | |
JP4851760B2 (ja) | 多孔質体の製造方法 | |
EP2368619A1 (en) | Ceramic honeycomb structures | |
WO2006035822A1 (ja) | ハニカム構造体 | |
WO2003078672A1 (en) | Reaction bonded alumina filter and membrane support | |
JPH0577442B2 (ja) | ||
WO2003062611A1 (fr) | Structure en nid d'abeilles contenant si et son procede de fabrication | |
EP2046696B1 (en) | Imroved diesel particulate filter | |
JP3712785B2 (ja) | 排ガスフィルタ及び排ガス浄化装置 | |
JP3612943B2 (ja) | 排ガスフィルタの製造方法 | |
JPH01145378A (ja) | 炭化ケイ素質ハニカム構造体及びその製造方法 | |
JPH0246544B2 (ja) | ||
JP3603568B2 (ja) | 排ガスフィルタおよびその製造方法 | |
EP1482016B1 (en) | Sealing material, method for sealing honeycomb structure and sealed honeycomb structure | |
JP4511103B2 (ja) | 複合材料の製造方法 | |
EP2684590B1 (en) | Honeycomb structure | |
JPH0470053B2 (ja) | ||
JPS60264365A (ja) | 多孔質炭化ケイ素焼結体とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |