JPH0245453A - アミノ酸水溶液を濃縮する方法 - Google Patents

アミノ酸水溶液を濃縮する方法

Info

Publication number
JPH0245453A
JPH0245453A JP19433988A JP19433988A JPH0245453A JP H0245453 A JPH0245453 A JP H0245453A JP 19433988 A JP19433988 A JP 19433988A JP 19433988 A JP19433988 A JP 19433988A JP H0245453 A JPH0245453 A JP H0245453A
Authority
JP
Japan
Prior art keywords
amino acid
particles
aqueous solution
organic liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19433988A
Other languages
English (en)
Other versions
JPH0466858B2 (ja
Inventor
Takaharu Aketo
明渡 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19433988A priority Critical patent/JPH0245453A/ja
Publication of JPH0245453A publication Critical patent/JPH0245453A/ja
Publication of JPH0466858B2 publication Critical patent/JPH0466858B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アミノ酸水溶液の濃縮方法に関する。
更に詳しくは、アミノ酸水溶液中のアミノ酸を粒子内部
に濃縮し、高分子多孔膜でこの粒子を分離した後、この
粒子からアミノ酸を回収することによりアミノ酸を濃縮
する方法に関するものである。
(従来の技術) アミノ酸は、調味料、食品、医薬、飼料等工業的に広く
利用されている。これらアミノ酸は、発酵法、酵素法、
合成法などによって製造されている。これらの製造は、
主として水溶液状態で行なわれ、得られるアミノ酸の濃
度が所望する濃度より低い場合、特に発酵法ではアミノ
酸濃度の低い水溶液を′a縮するプロセスが多い。
従来、アミノ酸の濃縮方法としては、蒸留法またはイオ
ン交換膜電気透析法(特開昭62−138456号公報
)などが用いられていた。
(発明が解決しようとする問題点) しかしながら、低濃度アミノ酸水溶液から蒸発法により
アミノ酸を濃縮する場合には、アミノ酸が変質するとい
う問題および大量のエネルギーを要すという問題があっ
た。また、イオン交換膜を用いた電気透析においては、
アミノ酸濃度が低い水溶液を濃縮処理する場合には、摺
電圧が栄、激に上昇して透析エネルギーの増大を招き、
大量のエネルギーを要すとともに、安定した運転ができ
ないという問題があった。
本発明は、上記の事情を鑑み、アミノ酸の水溶液から、
容易にかつ高収率にアミノ酸を濃縮できる方法を提供す
ることを目的とする。
(問題を解決するための手段) 本発明はアミノ酸水溶液中において、アミノ酸と可逆的
に錯体を形成する化合物を含み、平均直径が0.1〜5
μmであって、アミノ酸水溶液とは均一な一相溶液を形
成しない有機液体粒子とアミノ酸とを接触させることに
よって、有機液体粒子内部にアミノ酸をその錯化合物と
して取り込み、次に有機液体粒子の平均直径の20倍以
下の平均孔径をもつ高分子多孔膜を用いて有機液体粒子
を分離した後、この有機液体粒子を水中に分散させ、こ
の粒子中のアミノ酸錯化合物を解離させアミノ酸水溶液
として回収することを特徴とするアミノ酸水溶液を濃縮
する方法である。
本発明において濃縮しようとするアミノ酸水溶液とは、
アミノ酸またはアミノ酸誘導体が水溶液中に溶解した液
体を表わし、発酵法によるアミノ酸合成過程に得られる
発酵プロスの様に、Iii類、菌体、塩等アミノ酸また
はアミノ酸誘導体以外の物質を含んでいても良い。かか
るアミノ酸水溶液からアミノ酸を粒子内部に取り込む際
、アミノ酸と可逆的に錯体を形成する化合物(以下キャ
リヤーと称す)を含む液体を用いる。ここで、キャリヤ
ーを含む液体とは、キャリヤーを所定濃度に溶解し、か
つ、アミノ酸酸水溶液とは均一な一相溶液を形成しない
様な有機液体であり、イソアミルアルコール、トルエン
、クロロホルム、塩化メチレン等の有機液体が好ましく
用いられる。この有機液体はキャリヤーを0.005モ
ル濃度以上溶解するものが好ましい。キャリヤーとは、
濃縮しようとするアミノ酸と可逆的に錯体を形成する化
合物であって、例えばテトラメチル−p−フェニレンジ
アミン、ジブチルフェロセン等のレドックス化合物、4
.7−ジフェニル−1,10−フェナントロリンの銅錯
体等の金属錯体、メチルトリカプリルアンモニウムクロ
ライド、トリオクチルメチルアンモニウムクロライド等
の第4級アンモニウム塩およびジノニルナフタレンスル
ホン酸等のエレクトロンアクセプター等を用いることが
できるが、アミノ酸との錯体形成速度からキャリヤーと
して第4級アンモニウム塩が好ましい。キャリヤーを含
む液体中のキャリヤー濃度が0.005モル濃度未満の
場合は、アミノ酸の粒子内部への取り込み量が少なく分
離効率が低下する。従って、キャリヤー濃度は0.00
5モル濃度以上が好ましい。また、キャリヤーを含む液
体がアミノ酸水溶液と相互に溶解しないためには、キャ
リヤーを含む液体の30°C11気圧における水への溶
解度がO,I (g/100g)以下であることが好ま
しい。水への溶解度が0.1を越えると、キャリヤーを
含む液体とアミノ酸水溶液とが一部相互に溶解し、粒子
を高分子多孔膜で分離する際の粒子の回収率が低下する
この様なキャリヤーを含む液体を、濃縮しようとするア
ミノ酸水溶液中に加え、粒子状に分散させ、アミノ酸を
キャリヤーとの錯体として粒子内部に取り込んだ後、こ
の有機液体粒子を高分子孔膜により高分子膜両側の圧力
差および粒子/アミノ酸水溶液との界面張力差を利用し
て分離する。
この時、高分子膜表面とアミノ酸水溶液との間に電位勾
配を設けることにより、粒子の高分子膜透過速度を増大
することができる。これは、電位勾配により粒子の表面
電荷のために電気力が生じ、粒子を高分子膜表面に輸送
されるためと考えられる。
アミノ酸水溶液中の有機液体粒子の平均直径は、0.1
〜5μ用の範囲にあることが必要である。平均粒子径が
0.1 μ彌未満であると粒子のブラウン運動により粒
子の高分子膜表面への輸送が効率よく実現されず、平均
粒子径が5μ鋼を越えると粒子の表面積がちいさくなる
り、粒子界面の物質移動量が小さくなって分離効率が低
下する。
本発明における高分子多孔膜としては、平膜、チューブ
状、中空糸条等の任意の形態のものを用いることができ
る。これらの高分子多孔膜の膜厚は、lOμLl〜1閣
、好ましくは10〜200 amである。
高分子多孔膜の性状としては、親水性、疎水性膜を用い
ることができる。膜が親水性であれは、分離しようとす
るアミノ酸水溶液からアミノ酸が除去された水溶液が液
膜を透過し、逆に疎水性であれば、粒子が膜を透過する
。いずれの膜を用いても、粒子と水溶液との分離は実現
でき、これら両者を用いることもできる。親水性高分子
多孔膜は、一般に25°C11気圧下において、直径2
mm以下の水滴を膜表面に滴下した時に、膜と水滴との
接触角が0〜5度である一方疎水性高分子多孔膜は、一
般に水との接触角が10度を越える。
高分子多孔膜による粒子相の分離を効率的に実現するた
めには、液膜の平均孔径は平均粒子直径の20倍以下で
なくてはならない。20倍を越える平均孔径の膜では、
粒子相とマトリックス相の分離が充分でない。また、膜
の孔径分布は鋭ければ鋭い程好ましい。
この様にして高分子多孔膜により分離された有機液体粒
子からアミノ酸が回収される。回収は、公知の手段が採
用されるが、例えばアミノ酸錯体として粒子内部にアミ
ノ酸を濃縮した時の水溶液のpH以下のpHを示す水溶
液またはアミノ酸錯体を形成するアミノ酸と置き変わる
カチオンを含んだ水溶液と粒子とを接触させ、アミノ酸
錯体を解離させることはより実現できる。
本発明のアミノ酸の濃縮方法によれば、薫発法やイオン
交換膜電気透析法では多大のエネルギーを消費するよう
なアミノ酸の濃縮を容易に実現できるとともに、アミノ
酸以外の低分子化合物を含んだ水溶液からアミノ酸を精
製することも可能である。
なお、本発明で言及する粒子径および高分子多孔膜の平
均孔径の測定は次の方法によるものである。
(粒子径の測定) 光重弾性散乱法を用いた。すなわち、ブラウン運動を行
なう粒子を含む溶液に光を照射すると、粒子からの散乱
光周波数はドツプラー効果を示す。
従って、この光散乱電場の時間的強度変化を解析するこ
とによって、粒子の拡散係数(D)が求められる(例え
ば、D、E、Koppel、 J、Chem、Phys
、+ 57゜4814 (1972) )。そして、こ
の拡散係数からアインシュタインーストークスの式: 
D=kT/3πηrを用い、平均粒子径を算出した。
ここで、k、’1”、  η、rはそれぞれボルツマン
定数、溶液の絶対温度、粘性係数および粒子直径を表わ
す。
(高分子多孔膜の平均孔径) 多孔膜14当たりの孔半径がr −r 十d rに存在
する孔の数をN(r)drと表示すると(N (r)は
孔径分布関数)、i次の平均孔半径ri は(1)弐で
与えられる。
go  r’  N(r)  d  rSo r’−’
 N(r) d  r 高分子多孔膜の表面の電子顕微鏡写真を走査型電子顕微
鏡を用いて逼影する。該写真から公知の方法で孔径分布
関数N (r)を算出し、これを(1)式に代入する。
すなわち、走査型電子顕微鏡写真を適当な大きさ(例え
ば20cmX 20cm)に拡大して焼付けし、得られ
た写真上に等間隔にテストライン(直線)を20本描く
。各々のテストラインは多数の孔を横切る。孔を横切っ
た際の孔内に存在するテストラインの長さを測定し、こ
の頻度分布関数を求める。この頻度分布関数を用いて、
例えばステレオロジ(例えば、諏訪紀夫著”定量形態学
°゛岩波書店)の方法でN (r)を定める。尚、平均
孔径は2 (r ffr 4) l / ”である。
以下、実施例により本発明を更に詳細に説明するが、本
発明は下記の実施例により何ら制限されるものではない
実施例1 フェニルアラニンを0.5wt%含む水酸化ナトリウム
水溶液(pH=10)200Idに、トリメチルオクチ
ルアンモニウムクロライドの40vo1%クロロホルム
溶液50adl加え、クロロホルム溶液をアミノ酸水溶
液中で粒子状に分散させた。
この粒子分散溶液を、平均孔径0.18μ請のテフロン
多孔膜(住友電気工業■製、フロロポアFP−200)
で、200 anHgの差圧でろ過し、粒子相のみ分離
した。
分離した粒子相に、アミノ酸の回収液として、5ミリモ
ル濃度の塩化カリウム水溶液50dを加え、公称平均孔
径3μmの硝酸セルロース膜(東洋ろ祇■製、TM−3
00)で、差圧100tlIIHg下でろ遇し、濃縮ア
ミノ酸水溶液を得た。この時、アミノ酸(フェニルアラ
ニン)の分離係数は2.1であった。また、濃縮アミノ
酸水溶液の硝酸セルロース膜透過速度は、110 kg
/mthであった。但し、分離係数(α)は、次式で定
義される。
比較例1 粒子形成にクロロホルムを用い、トリメチルオクチルア
ンモニウムクロライドを用いなかった以外は実施例1と
同様に行なった。
アミノ酸の回収液中のフェニルアラニンの濃度は0.1
%以下であり、濃縮できなかった。
実施例2 トリプトファンを0.5wt%を含む0゜1規定水酸化
ナトリウム水溶液に、トリメチルオクチルアンモニウム
クロライドの40vo1%クロロホルム溶液を加え、粒
子状に分散させた。
この粒子分散溶液を平均孔径0.26μmのテフロン多
孔膜(住友電気工業■製、フロロポアFP−500)で
、150 auallgの差圧でろ過し、粒子相のみ分
離した。
分離した粒子相に、アミノ酸の回収液として、塩酸水溶
液(pH=0.5に調整)を加え、公称平均孔径3μl
の硝酸セルロース膜(東洋ろ紙■製、TM−300)で
、差圧100 mmHg下でろ過し、濃縮アミノ酸水溶
液を得た。
この時、アミノ酸(トリプトファン)の分離係数は18
であった。また、濃縮アミノ酸の硝酸セルロース膜透過
速度は、130 kg/m”hであった。
(発明の効果) この様に、本発明によれば、低濃度のアミノ酸水溶液か
ら効率良く濃縮アミノ酸水溶液を得ることができ、単に
、アミノ酸を濃縮することができるぽかりでなく、さら
にアミノ酸水溶液からの脱糖等の精製も可能である。

Claims (2)

    【特許請求の範囲】
  1. (1)アミノ酸水溶液中において、アミノ酸と可逆的に
    錯体を形成する化合物を含み、平均直径が0.1〜5μ
    mであつて、アミノ酸水溶液とは均一な一相溶液を形成
    しない有機液体粒子とアミノ酸とを接触させることによ
    つて、有機液体粒子内部にアミノ酸をその錯化合物とし
    て取り込み、次に有機液体粒子の平均直径の20倍以下
    の平均孔径をもつ高分子多孔膜を用いて有機液体粒子を
    分離した後、この有機液体粒子を水中に分散させ、この
    粒子中のアミノ酸錯化合物を解離させアミノ酸水溶液と
    して回収することを特徴とするアミノ酸水溶液を濃縮す
    る方法
  2. (2)アミノ酸と可逆的に錯体を形成する化合物が第4
    級アンモニウム塩であることを特徴とする特許請求の範
    囲第1項記載のアミノ酸の濃縮方法
JP19433988A 1988-08-05 1988-08-05 アミノ酸水溶液を濃縮する方法 Granted JPH0245453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19433988A JPH0245453A (ja) 1988-08-05 1988-08-05 アミノ酸水溶液を濃縮する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19433988A JPH0245453A (ja) 1988-08-05 1988-08-05 アミノ酸水溶液を濃縮する方法

Publications (2)

Publication Number Publication Date
JPH0245453A true JPH0245453A (ja) 1990-02-15
JPH0466858B2 JPH0466858B2 (ja) 1992-10-26

Family

ID=16322945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19433988A Granted JPH0245453A (ja) 1988-08-05 1988-08-05 アミノ酸水溶液を濃縮する方法

Country Status (1)

Country Link
JP (1) JPH0245453A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031442B1 (en) 1997-02-10 2006-04-18 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for personal routing in computer-simulated telephony
US6104802A (en) 1997-02-10 2000-08-15 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
US6985943B2 (en) 1998-09-11 2006-01-10 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level
US7907598B2 (en) 1998-02-17 2011-03-15 Genesys Telecommunication Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
US6332154B2 (en) 1998-09-11 2001-12-18 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing media-independent self-help modules within a multimedia communication-center customer interface
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
US7929978B2 (en) 1999-12-01 2011-04-19 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194340A (ja) * 1987-02-09 1988-08-11 Fujitsu Ltd 化合物半導体結晶の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194340A (ja) * 1987-02-09 1988-08-11 Fujitsu Ltd 化合物半導体結晶の製造方法

Also Published As

Publication number Publication date
JPH0466858B2 (ja) 1992-10-26

Similar Documents

Publication Publication Date Title
Wang et al. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin
CA2409569C (en) Polysulfonamide matrices
Barboiu et al. From natural to bioassisted and biomimetic artificial water channel systems
Tian et al. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis
CN104174299B (zh) 基于超薄支撑层的高通量正渗透膜及其制备方法
US9550728B2 (en) Thermo-responsive draw solute for forward osmosis and method for water desalination and purification using the same
CN110479119B (zh) 一种聚酰胺复合反渗透膜的制备方法
JPH0245453A (ja) アミノ酸水溶液を濃縮する方法
KR930016433A (ko) α-글리코실-L-아스코르브산 고함유물의 제조방법 및 그 제조를 위한 분리 시스템
EP0194546B1 (de) Porenmembranen
JPS62274075A (ja) 金属化された膜系
Ren et al. Antibiotics separation from saline wastewater by nanofiltration membrane based on tannic acid-ferric ions coordination complexes
Mondal et al. Selective and rapid water transportation across a self-assembled peptide-diol channel via the formation of a dual water array
US3562152A (en) Osmosis,reverse osmosis process
Mao et al. Laminar MoS2 membrane for high-efficient rejection of methyl orange from aqueous solution
WO1993022040A1 (en) Separating membrane made from polyion complex
JPWO2017150705A1 (ja) 選択性透過膜及びその製造方法、該選択性透過膜を用いる水処理方法
US4268662A (en) Process for improving semipermeable membranes by treating with protic acids or inorganic salts
CN111514856A (zh) 氧化石墨烯吸附膜、其制备方法及水处理方法
JPH09141260A (ja) 海水の淡水化方法
JPH0245454A (ja) アミノ酸水溶液の濃縮方法
ITRM20120179A1 (it) Cristallizzazione diretta di enantiomeri mediante nucleazione stereoselettiva eterogenea su membrana
Strathmann Economic assessment of membrane processes
JP2002020367A (ja) ホモシスチンの精製方法
JP2011157237A (ja) 廃液からのヨウ化水素酸の回収方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term