JPH0243653Y2 - - Google Patents
Info
- Publication number
- JPH0243653Y2 JPH0243653Y2 JP1984008208U JP820884U JPH0243653Y2 JP H0243653 Y2 JPH0243653 Y2 JP H0243653Y2 JP 1984008208 U JP1984008208 U JP 1984008208U JP 820884 U JP820884 U JP 820884U JP H0243653 Y2 JPH0243653 Y2 JP H0243653Y2
- Authority
- JP
- Japan
- Prior art keywords
- surface plate
- gear
- teeth
- gears
- eccentric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【考案の詳細な説明】
〔考案の目的〕
(産業上の利用分野)
本考案は、上定盤と下定盤とによつてワークを
挟圧して研磨する偏心摺動回転型ラツプ盤に関す
るものである。[Detailed explanation of the invention] [Purpose of the invention] (Field of industrial application) The present invention relates to an eccentric sliding rotary lapping machine that presses and polishes a workpiece between an upper surface plate and a lower surface plate. be.
(従来の技術)
ラツプ加工のための定盤面の運動は、単純な真
円運動を行う下定盤が使用される。(Prior Art) A lower surface plate that performs a simple circular motion is used to move the surface plate surface for lapping.
この下定盤は、常に外周速度と内周速度に差が
あり、外周部に圧接されるワークの研磨量が多
い。 This lower surface plate always has a difference between the outer peripheral speed and the inner peripheral speed, and the amount of polishing of the workpiece that is pressed against the outer peripheral part is large.
従つて、その減耗に対応させ欠点を解消する目
的のために、特開昭55−144958号公報に示される
ように、ワーク保持のキヤリヤを下定盤面上にお
いて回転させる手段により、周速差によつて発生
している欠陥を除去する思想が多年にわたつて実
用され、盤面の平行修正方法も同様な方法に従つ
ている。 Therefore, in order to cope with the wear and tear and eliminate the drawbacks, as shown in Japanese Patent Application Laid-Open No. 55-144958, a means for rotating the carrier for holding the workpiece on the lower surface plate surface is used to reduce the difference in circumferential speed. The idea of eliminating the defects that occur in this way has been put into practice for many years, and the method of correcting the parallelism of the board also follows the same method.
(考案が解決しようとする問題点)
進展する鏡面研磨精度向上の要求は、超硬質材
料若しくは円筒形ワークにまで及んでいるが、在
来のラツプ手段ではこれらのワークにおいて十分
な加工精度が得られない。(Problem that the invention aims to solve) The increasing demand for improved mirror polishing precision extends to ultra-hard materials and cylindrical workpieces, but conventional lapping methods cannot achieve sufficient machining precision for these workpieces. I can't.
即ち、前記公報のラツプ盤に見られるように、
定盤が偏心取付されているものの、その定盤面の
一点の動きを観察すると、単純な真円運動を行つ
ているにすぎないので、超硬質材料や円筒形ワー
クに対しては、盤面精度が比較的短時間で劣悪化
し、且つ定盤修正には特段の熟練技能者の介入が
必須である。したがつて、増大する要求に対応で
きないのが現状である。 That is, as seen in the lap disc of the above publication,
Although the surface plate is eccentrically mounted, if you observe the movement of a single point on the surface plate, it is just a simple perfect circular motion, so the surface accuracy of the surface plate may be poor for ultra-hard materials or cylindrical workpieces. It deteriorates in a relatively short period of time, and repairing the surface plate requires the intervention of a particularly skilled technician. Therefore, the current situation is that it is not possible to meet the increasing demands.
一例として、例えば円筒ラツプ加工を在来のラ
ツプ盤によつて行う場合は、ラツプ盤の欠陥が、
ワークの円筒中央部を大径に、両端が小径に仕上
ることで顕現する。そしてコストを無視しても達
成できる加工精度は満足できるものではない。 For example, when cylindrical lapping is performed using a conventional lapping machine, defects in the lapping machine may
This is manifested by finishing the cylindrical center of the workpiece with a large diameter and both ends with small diameters. Even if cost is ignored, the machining accuracy that can be achieved is still not satisfactory.
また、従来のラツプ盤は、ワークの上面を圧接
し研磨する上定盤を単に同心的に回転させている
ので、上定盤の下面が同じ軌跡を描き、従つてこ
の上定盤の精度の保持に関連し、鏡面研磨加工に
難点を生じることが問題となつている。特に超硬
質材を含む円筒形ワークのラツプ加工に問題が多
かつた。 In addition, in conventional lapping machines, the upper surface plate that presses and polishes the upper surface of the workpiece is simply rotated concentrically, so the lower surface of the upper surface plate traces the same trajectory, which reduces the accuracy of the upper surface plate. A problem related to retention is that mirror polishing is difficult. In particular, there were many problems in lapping cylindrical workpieces containing ultra-hard materials.
本考案は、このような現況打破のために、ミク
ロン単位の鏡面仕上に関する生産性の向上を目的
とする問題点の解消実現のための提案で、技術的
にも高い水準を維持する装置問題の解決が必要と
されていることに鑑みなされたものであり、公知
手法による欠陥を排除して、生産性、経済性を向
上する目的をもつて、下定盤を偏心摺動させ、且
つ、回転せしめる新たな手法を導入すること、そ
の機械運動原理を合理化することによつてキヤリ
ヤに保持されているワークに対し、特段に複雑な
ラツプ面軌跡(真円でない回転運動の位相を連続
的にずらしてゆく軌跡)を描かせる水平の摺動作
用を加えて、加工精度の向上と完成時間の短縮と
を策定し、更にこの下定盤の修正も比較的容易に
行い得るラツプ盤を提供することを目的とするも
のである。 In order to overcome the current situation, this invention is a proposal to solve the problems with the aim of improving productivity related to mirror finishing in microns, and to solve the problem of equipment that maintains a technically high level. This was done in view of the need for a solution, and the lower surface plate is made to slide eccentrically and rotate with the purpose of eliminating the defects caused by known methods and improving productivity and economic efficiency. By introducing a new method and rationalizing its mechanical motion principle, we have created a workpiece held in a carrier that is able to handle particularly complex lap surface trajectories (by continuously shifting the phase of rotational motion that is not a perfect circle). The purpose of the present invention is to provide a lapping machine that improves machining accuracy and shortens completion time by adding a horizontal sliding motion that draws a horizontal trajectory (trajectory), and that also allows correction of the lower surface plate relatively easily. That is.
さらに、本考案は、上記下定盤の偏心摺動回転
運動に加えて、上定盤を偏心回転させるようにす
ることにより、この上定盤のほぼ全面がワークと
均等に接触するようにし、その上定盤の精度の保
持と加工精度の向上とを図ることも目的とするも
のである。 Furthermore, in addition to the eccentric sliding rotation movement of the lower surface plate, the upper surface plate is rotated eccentrically, so that almost the entire surface of the upper surface plate is brought into even contact with the workpiece. The purpose is also to maintain the accuracy of the upper surface plate and improve the machining accuracy.
(問題点を解決するための手段)
本考案の偏心摺動回転型ラツプ盤は、キヤリヤ
34によつて保持したワーク35を回転する下定
盤12と上定盤9とによつて挟圧しながら研磨す
るラツプ盤において、下定盤12の駆動機構は、
回転駆動される回転台27に複数のプラニツトギ
ヤ23の同心中心を回転自在に軸支し、この複数
のプラニツトギヤ23の偏心位置に設けられた軸
25を介して下定盤12を回転自在に軸支し、上
記複数のプラニツトギヤ23を回転駆動可能のサ
ンギヤ22のみに噛合し、このサンギヤ22の歯
数と上記プラニツトギヤ23の歯数との間に歯数
差を設けてなり、さらに、この下定盤12の駆動
機構に連動して偏心摺動回転を行う上定盤9を設
けたものである。
(Means for Solving the Problems) The eccentric sliding rotary lapping machine of the present invention polishes a workpiece 35 held by a carrier 34 while being compressed by rotating lower surface plate 12 and upper surface plate 9. In the lapping machine, the drive mechanism of the lower surface plate 12 is as follows:
The concentric centers of a plurality of planit gears 23 are rotatably supported on a rotary table 27 that is rotationally driven, and the lower surface plate 12 is rotatably supported via shafts 25 provided at eccentric positions of the plurality of planit gears 23. , the plurality of planet gears 23 are meshed with only the sun gear 22 which can be rotationally driven, a difference in the number of teeth is provided between the number of teeth of the sun gear 22 and the number of teeth of the planet gear 23, and furthermore, the number of teeth of the lower surface plate 12 is An upper surface plate 9 is provided which performs eccentric sliding rotation in conjunction with a drive mechanism.
(作用)
本考案は、回転台27の大きな回転運動に加え
て、複数のプラニツトギヤ23が回転することに
より、プラニツトギヤ23における下定盤取付位
置の偏心量を半径とする小さな回転運動が下定盤
12に与えられる。すなわち、この下定盤12
は、回転台27の大きな回転運動とプラニツトギ
ヤ23の小さな回転運動とが組合された真円でな
い回転運動を行う。さらに、この真円でない回転
運動は、サンギヤ22の歯数とプラニツトギヤ2
3の歯数との間にある歯数差によつて、「位相ず
れ」を徐々に連続的に生じ、同一軌跡を描かな
い。これにより、下定盤12の特定の場所のみが
ワークと接触するおそれがなく、下定盤の偏摩耗
が防止される。さらに、上定盤9は、下定盤12
の駆動力に連動して定盤自身が偏心摺動回転す
る。(Function) In the present invention, in addition to the large rotational movement of the rotary table 27, the rotation of the plurality of planit gears 23 causes a small rotational movement on the lower surface plate 12 with a radius equal to the eccentricity of the lower surface plate mounting position of the planetary gear 23. Given. In other words, this lower surface plate 12
performs a rotational movement that is not a perfect circle, which is a combination of a large rotational movement of the rotary table 27 and a small rotational movement of the planit gear 23. Furthermore, this rotational movement that is not a perfect circle is caused by the number of teeth of the sun gear 22 and the planit gear 2.
Due to the difference in the number of teeth between the number of teeth and the number of teeth of 3, a "phase shift" occurs gradually and continuously, and the same trajectory is not drawn. Thereby, there is no risk that only a specific location of the lower surface plate 12 will come into contact with the workpiece, and uneven wear of the lower surface plate is prevented. Furthermore, the upper surface plate 9 has a lower surface plate 12.
The surface plate itself eccentrically slides and rotates in conjunction with the driving force.
(実施例)
以下、本考案を図に示す実施例を参照して詳細
に説明する。(Example) Hereinafter, the present invention will be described in detail with reference to an example shown in the drawings.
第1図および第2図に示すように、装置本体1
の側面ガイド2に空圧または油圧シリンダ3によ
つて上下動される昇降柱4を設け、この昇降柱4
の上端に旋回腕5を設け、図示しないモータによ
つてこの旋回腕5を水平回動させるようにし、こ
の旋回腕5の基端に上定盤回転速度をたとえば0
〜18r.p.mの範囲で自在に調整できる電動モータ
6を取付けるとともに、旋回腕5の先端にベアリ
ング7を介して回転軸8を垂直に回転自在に設
け、この回転軸8等を介して上定盤9を回転自在
に取付け、この上定盤9の回転軸8をVベルト伝
動装置10を介し上記モータ6で回転駆動する。 As shown in FIGS. 1 and 2, the device main body 1
An elevating column 4 that is moved up and down by a pneumatic or hydraulic cylinder 3 is provided on the side guide 2 of the
A swing arm 5 is provided at the upper end, and the swing arm 5 is horizontally rotated by a motor (not shown).
An electric motor 6 that can be freely adjusted in the range of ~18 rpm is installed, and a rotating shaft 8 is vertically rotatably provided at the tip of the swing arm 5 via a bearing 7. A plate 9 is rotatably mounted, and a rotating shaft 8 of the upper surface plate 9 is rotationally driven by the motor 6 via a V-belt transmission 10.
第3図に示すように、装置本体1の上面におい
ては、上定盤9を装置中心11に対して所望量、
例えば複数階に偏心固定し作業できるように下定
盤12に関連して位置させ得る構造が特徴であ
る。上記下定盤12は3枚の円盤を一体化したも
のである。 As shown in FIG.
For example, it is characterized by a structure that allows it to be positioned in relation to the lower surface plate 12 so that it can be eccentrically fixed and worked on multiple floors. The lower surface plate 12 is formed by integrating three discs.
すなわち、第4図に示すように、回転軸21に
よつて回転駆動可能のサンギヤ22のみに2個の
プラニツトギヤ23を噛合させ、この2個のプラ
ニツトギヤ23上の偏心フランジ24により偏心
位置に立設した軸25でベアリング26を介して
下定盤12を回転自在に軸支する。上記2個のプ
ラニツトギヤ23は、それぞれの同心中心を共通
の回転台27の上面の180゜位置に立設した軸28
でベアリング29を介して回転自在に軸支する。
回転台27は回転軸30に一体的に取付け、下定
盤12をたとえば0〜45r.p.mの範囲で回転駆動
させる。下定盤12の垂直荷重は、第5図に示す
ようにころベアリング31を介し回転台27で支
持する。なお下定盤12と偏心フランジ上のベア
リングとの間の寸法加工偏差値を解消するために
は、4〜6箇所に上記ベアリング31を配設し、
立設軸25,28に設けたスラストベアリングを
省略することが組立費低減に寄与する。 That is, as shown in FIG. 4, two planit gears 23 are meshed with only the sun gear 22 which can be driven to rotate by a rotating shaft 21, and the eccentric flanges 24 on these two planid gears 23 are used to set the gears in an eccentric position. The lower surface plate 12 is rotatably supported by the shaft 25 via a bearing 26. The two planetary gears 23 are connected to a shaft 28 whose concentric centers are erected at 180° on the upper surface of a common rotary table 27.
It is rotatably supported via a bearing 29.
The rotating table 27 is integrally attached to the rotating shaft 30 and drives the lower surface plate 12 to rotate within a range of, for example, 0 to 45 rpm. The vertical load of the lower surface plate 12 is supported by the rotary table 27 via roller bearings 31, as shown in FIG. In addition, in order to eliminate the dimensional machining deviation between the lower surface plate 12 and the bearing on the eccentric flange, the bearings 31 are arranged at 4 to 6 locations,
Omitting the thrust bearings provided on the vertical shafts 25 and 28 contributes to reducing assembly costs.
また、上記下定盤12の外周部上側に回転駆動
可能の回転筒体32で支持されたインターナルギ
ヤ33を配設し、上記下定盤12と上定盤9との
間にキヤリヤとしての4〜6個のキヤリヤギヤ3
4をサンギヤ22を中心に放射状に介設し、この
複数のキヤリヤギヤ34を上記インターナルギヤ
33と上記サンギヤ22の上部との間に等間隔で
噛合させるようにする。キヤリヤギヤ34は同心
穴内に下定盤12上の超硬質円筒形等のワーク3
5を嵌合若しくは固定して保持する。 Further, an internal gear 33 supported by a rotating cylinder 32 that can be rotationally driven is disposed above the outer circumference of the lower surface plate 12, and between the lower surface plate 12 and the upper surface plate 9, four to four carriers are provided. 6 carrier gears 3
4 are interposed radially around the sun gear 22, and the plurality of carrier gears 34 are meshed at equal intervals between the internal gear 33 and the upper part of the sun gear 22. The carrier gear 34 holds a workpiece 3 such as a super hard cylinder on the lower surface plate 12 in a concentric hole.
5 is fitted or fixed and held.
また、センターシヤフト36に偏心円盤37を
一体的に取付け、この偏心円盤37にベアリング
38を介して回転リング39を回転自在に設け、
この回転リング39のたとえば4個所の縦溝40
に前記上定盤9上に回転自在に軸支した係合駒4
1を係合する。上記上定盤9には、フランジ部材
42を一体に螺着し、回転上部の回転軸8に支持
部材43,44,45を介して一体的に設けた支
持部材46の係合リング47を上記フランジ部材
42の軸部48に遊嵌する。 Further, an eccentric disk 37 is integrally attached to the center shaft 36, and a rotary ring 39 is rotatably provided on the eccentric disk 37 via a bearing 38.
For example, there are four vertical grooves 40 in this rotating ring 39.
an engagement piece 4 rotatably supported on the upper surface plate 9;
1. A flange member 42 is integrally screwed onto the upper surface plate 9, and an engagement ring 47 of a support member 46 is integrally provided on the rotating shaft 8 of the upper part of the rotation via support members 43, 44, 45. It loosely fits into the shaft portion 48 of the flange member 42.
そうして、本装置2ウエイ駆動または4ウエイ
駆動することになるのである。 In this way, the device can be driven in 2-way or 4-way.
2ウエイ駆動では、サンギヤ22とインターナ
ルギヤ33とを回転駆動し、上定盤9および回転
台27は回転駆動しない。すなわち2個のプラニ
ツトギヤ23は定位置で軸28を中心に回転し、
この2個のプラニツトギヤ23の偏心位置の軸2
5で軸支された下定盤12は、自転することなく
軸25,28間距離を半径とする円運動を行う。
キヤリヤギヤ34は、ワーク35を保持しながら
サンギヤ22およびインターナルギヤ33の回転
速度の相対的関係に応じた自転および公転を行
う。ワーク35は、上定盤9と下定盤12との間
で研磨される。こように上下定盤9,12が自転
しない2エイ駆動では、加工精度を出しやすい
が、ラツプ代が多いと時間がかかる。 In the two-way drive, the sun gear 22 and internal gear 33 are rotationally driven, but the upper surface plate 9 and the rotary table 27 are not rotationally driven. That is, the two planetary gears 23 rotate around the shaft 28 in fixed positions,
The eccentric position of the shaft 2 of these two planit gears 23
The lower surface plate 12, which is supported by the shaft 5, performs a circular motion with a radius equal to the distance between the shafts 25 and 28, without rotating.
The carrier gear 34 rotates and revolves while holding the workpiece 35 in accordance with the relative rotational speeds of the sun gear 22 and the internal gear 33. The workpiece 35 is polished between the upper surface plate 9 and the lower surface plate 12. In this two-ray drive in which the upper and lower surface plates 9 and 12 do not rotate, it is easy to achieve machining accuracy, but it takes time if there is a large amount of lap.
4ウエイ駆動では、サンギヤ22およびインタ
ーナルギヤ33とともに、回転台27および回転
軸8を反対方向に回転駆動し、下定盤12および
上定盤9を自転させる。 In the four-way drive, the rotating table 27 and rotating shaft 8 are rotated in opposite directions together with the sun gear 22 and the internal gear 33, and the lower surface plate 12 and the upper surface plate 9 are rotated.
このときの下定盤12の運動軌跡を求めると、
回転台27の大きな回転運動に加えて、2個のプ
ラニツトギヤ23が回転することにより、プラニ
ツトギヤ23における定盤取付位置の偏心量(軸
25,28間距離)を半径とする小さな回転運動
が下定盤12に与えられるので、この下定盤12
は、回転台27の大きな回転運動とプラニツトギ
ヤ23の小さな回転運動とが組合された真円でな
い回転運動を行う。さらに、この真円でない回転
運動は、サンギヤ22の歯数とプラニツトギヤ2
3の歯数との差に応じた「位相ずれ」を徐々に連
続的に生じ、同一軌跡を描かない。 The motion trajectory of the lower surface plate 12 at this time is found as follows:
In addition to the large rotational movement of the rotary table 27, the rotation of the two planetary gears 23 causes a small rotational movement with a radius equal to the eccentricity of the surface plate mounting position of the planetary gear 23 (distance between the shafts 25 and 28) to the lower surface plate. 12, so this lower surface plate 12
performs a rotational movement that is not a perfect circle, which is a combination of a large rotational movement of the rotary table 27 and a small rotational movement of the planit gear 23. Furthermore, this rotational movement that is not a perfect circle is caused by the number of teeth of the sun gear 22 and the planit gear 2.
A "phase shift" occurs gradually and continuously according to the difference between the number of teeth and the number of teeth, and the same trajectory is not drawn.
このような下定盤12の運動軌跡の初期のもの
を第6図および第7図に示す。このときのサンギ
ヤ22の歯数は46である。プラニツトギヤ23の
歯数は44である。第6図は、装置本体1に固定さ
れた一点において測定した下定盤12の絶対運動
軌跡であり、真円でなり回転運動(だ円運動)が
徐々に連続的に「位相ずれ」している状態が明ら
かである。第7図は、キヤリヤギヤ34において
測定した下定盤12の運動軌跡であり、この運動
がワーク35に作用されることになる。 The initial motion trajectory of the lower surface plate 12 is shown in FIGS. 6 and 7. The number of teeth of the sun gear 22 at this time is 46. The number of teeth of the planet gear 23 is 44. Figure 6 shows the absolute motion locus of the lower surface plate 12 measured at one point fixed on the device main body 1, and it is a perfect circle, with the rotational motion (elliptic motion) gradually and continuously being "out of phase." The condition is clear. FIG. 7 shows the locus of movement of the lower surface plate 12 measured in the carrier gear 34, and this movement acts on the workpiece 35.
また、上定盤9は偏心円盤37によつて偏心し
た状態で下定盤12とは反対方向に自転すること
になる。このときフランジ部材42の軸部48は
係合リング47の内部で摺動する。このように上
下定盤9,12が自転すると、2ウエイ駆動時に
比べてラツプ時間が短かくなる。 Further, the upper surface plate 9 rotates in the opposite direction to the lower surface plate 12 while being eccentric due to the eccentric disk 37 . At this time, the shaft portion 48 of the flange member 42 slides inside the engagement ring 47. When the upper and lower surface plates 9 and 12 rotate in this way, the lap time becomes shorter than when the two-way drive is performed.
また、センターシヤフト36を回転して偏心円
盤37を回転することにより、上定盤9はこの円
盤37の偏心量を半径とする円運動を行うので、
この駆動を前記2ウエイ駆動と組合せることによ
り、下定盤12を自転させることなく小円運動さ
せることができ、また4ウエイ駆動と組合せるこ
とも可能である。 Furthermore, by rotating the center shaft 36 and rotating the eccentric disk 37, the upper surface plate 9 performs a circular motion with the radius of the eccentricity of the disk 37.
By combining this drive with the two-way drive, the lower surface plate 12 can be moved in a small circle without rotating, and it is also possible to combine it with the four-way drive.
なお、上記実施例のキヤリヤ34はギヤである
が、キヤリヤはこのギヤに限定されるものではな
く、たとえば、インターナルギヤ33またはこの
ギヤ33に対応する他のリング部材に円板状のキ
ヤリヤを同心または偏心で取付け、このキヤリヤ
内にワークを保持して回転させ、または回転させ
ず、あるいは揺動させ、または揺動させない等の
種々のキヤリヤ動作を行わせるようにしてもよ
い。 Although the carrier 34 in the above embodiment is a gear, the carrier is not limited to this gear. For example, a disc-shaped carrier may be attached to the internal gear 33 or another ring member corresponding to this gear 33. It may be mounted concentrically or eccentrically, and the workpiece may be held within the carrier to perform various carrier movements, such as rotation or non-rotation, or oscillation or non-oscillation.
本考案によれば、回転台により複数のプラニツ
トギヤを軸支し、この複数のプラニツトギヤの偏
心位置に設けられた軸を介して下定盤を軸支し、
上記複数のプラニツトギヤをサンギヤのみに噛合
し、このサンギヤの歯数と上記プラニツトギヤの
歯数との間に歯数差を設けたから、回転台の大き
な回転運動に加えて、複数のプラニツトギヤの回
転により、プラニツトギヤにおける下定盤取付位
置の偏心量を半径とする小さな回転運動が下定盤
に与えられ、これにより下定盤は、回転台の大き
な回転運動とプラニツトギヤの小さな回転運動と
が、組合された真円でない回転運動を行うととも
に、この真円でない回転運動は、サンギヤの歯数
とプラニツトギヤの歯数との間にある歯数差によ
つて、「位相ずれ」を徐々に連続的に生じ、同一
軌跡を描かないので、下定盤の特定の場所のみが
ワークと接触するおそれがなく、下定盤の偏摩耗
が防止される。したがつて、ラツプ加工の高精度
仕上化を長期にわたつて保持でき、ラツプ効率を
向上でき、生産性を向上でき、また下定盤の平行
面精度を高精度に保持することができるととも
に、定盤修正に際しては、偏心摺動回転する下定
盤と上定盤との間に等肉の修正用板体を固定挾持
させ回転を続けた後、この修正用板体の上下を反
転させる工程を数回繰返すだけの作業で、定盤平
行面の補正が完成し、鏡面研磨に適した精度を比
較的簡単に回復できる。
According to the present invention, a plurality of planet gears are pivotally supported by a rotary table, a lower surface plate is pivotally supported via a shaft provided at an eccentric position of the plurality of planet gears,
Since the plurality of planet gears are meshed only with the sun gear and a difference in the number of teeth is provided between the number of teeth of this sun gear and the number of teeth of the above-mentioned planet gear, in addition to the large rotational movement of the rotary table, the rotation of the plurality of planet gears causes A small rotational movement with a radius equal to the eccentricity of the mounting position of the lower surface plate on the planet gear is given to the lower surface plate, and as a result, the lower surface plate becomes a non-perfect circle due to the combination of the large rotational movement of the rotary table and the small rotational movement of the planet gear. In addition to rotating motion, this rotational motion that is not a perfect circle gradually and continuously causes a "phase shift" due to the difference in the number of teeth between the sun gear and the planar gear, causing the same trajectory to occur. Since it is not drawn, there is no risk that only a specific part of the lower surface plate will come into contact with the workpiece, and uneven wear of the lower surface plate is prevented. Therefore, it is possible to maintain a high-precision finish during lapping over a long period of time, improve lapping efficiency, and improve productivity.Also, the parallel surface accuracy of the lower surface plate can be maintained at a high level of accuracy, and the When correcting a plate, a correction plate of equal thickness is fixed between a lower surface plate and an upper surface plate that rotate eccentrically and rotate, and after continuing rotation, the correction plate is turned upside down. By repeating the process several times, the parallel surface of the surface plate can be corrected, and the accuracy suitable for mirror polishing can be restored relatively easily.
このように本考案は、回転台上に配設した複数
個のプラニツトギヤの偏心位置で軸支された下定
盤に、真円でない偏心摺動回転運動を与え、かつ
その運動の位相が徐々にずれることによつて、頗
る安定した生産性の高い、特に超硬質材を主体と
する円筒形製品に適する精密鏡面研磨を行う機械
として各種のラツプ加工手段を提供することがで
きる。 In this way, the present invention provides eccentric sliding rotational motion that is not a perfect circle to the lower surface plate, which is pivotally supported at eccentric positions of a plurality of planar gears arranged on a rotary table, and the phase of the motion gradually shifts. As a result, various lapping means can be provided as a precision mirror polishing machine which is extremely stable and highly productive, and which is especially suitable for cylindrical products mainly made of ultra-hard materials.
さらに、本考案によれば、上定盤が下定盤の駆
動機構に連動して偏心摺動回転するようにしたか
ら、キヤリヤで保持したワークは、偏心回転する
上定盤の低速内周縁と高速外周縁との間を相対的
に変動し、上定盤のほぼ全面が均等にワークと接
触するため、上定盤の精度と共に加工精度を保ち
やすく、またラツプ効率の向上を図ることができ
る。 Furthermore, according to the present invention, since the upper surface plate rotates eccentrically in conjunction with the drive mechanism of the lower surface plate, the workpiece held by the carrier can be moved between the low-speed inner peripheral edge of the upper surface plate that rotates eccentrically and the high-speed inner edge of the upper surface plate. Since almost the entire surface of the upper surface plate is in uniform contact with the workpiece due to relative fluctuations between the outer circumference and the outer periphery, it is easy to maintain the precision of the upper surface plate as well as the machining accuracy, and it is possible to improve the lapping efficiency.
第1図は本考案の偏心摺動回転型ラツプ盤の一
実施例を示す正面図、第2図はその側面図、第3
図はその平面図、第4図はその要部の断面図、第
5図はその一部の断面図、第6図および第7図は
本考案に係る下定盤の運動軌跡を示し、第6図が
固定点において測定した絶対運動軌跡であり、第
7図はキヤリヤギヤにおいて測定した運動軌跡で
ある。
9……上定盤、12……下定盤、22……サン
ギヤ、23……プラニツトギヤ、25……軸、2
7……回転台、34……キヤリヤとしてのギヤ、
35……ワーク。
Fig. 1 is a front view showing an embodiment of the eccentric sliding rotary lap board of the present invention, Fig. 2 is a side view thereof, and Fig. 3
4 is a sectional view of the main part thereof, FIG. 5 is a sectional view of a part thereof, FIGS. 6 and 7 show the locus of motion of the lower surface plate according to the present invention, and The figure shows the absolute motion trajectory measured at a fixed point, and FIG. 7 shows the motion trajectory measured at the carrier gear. 9... Upper surface plate, 12... Lower surface plate, 22... Sun gear, 23... Planit gear, 25... Shaft, 2
7...Rotary table, 34...Gear as a carrier,
35...Work.
Claims (1)
定盤と上定盤とによつて挟圧しながら研磨するラ
ツプ盤において、下定盤の駆動機構は、回転駆動
される回転台に複数のプラニツトギヤの同心中心
を回転自在に軸支し、この複数のプラニツトギヤ
の偏心位置に設けられた軸を介して下定盤を回転
自在に軸支し、上記複数のプラニツトギヤを回転
駆動可能のサンギヤのみに噛合し、このサンギヤ
の歯数と上記プラニツトギヤの歯数との間に歯数
差を設けてなり、この下定盤の駆動機構に連動し
て偏心摺動回転を行う上定盤を設けたことを特徴
とする偏心摺動回転型ラツプ盤。 In a lapping machine that polishes a workpiece held by a carrier while being compressed by a rotating lower surface plate and an upper surface plate, the drive mechanism of the lower surface plate rotates the concentric centers of a plurality of planar gears on a rotary table that is driven to rotate. The lower surface plate is rotatably supported via a shaft provided at an eccentric position of the plurality of planet gears, and the plurality of planet gears are meshed only with a sun gear that can be rotationally driven. An eccentric sliding device characterized in that an upper surface plate is provided, which has a difference in the number of teeth between the number of teeth and the number of teeth of the planar gear, and performs eccentric sliding rotation in conjunction with the drive mechanism of the lower surface plate. Rotating lap board.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1984008208U JPS60120758U (en) | 1984-01-24 | 1984-01-24 | Eccentric sliding rotary lapping machine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1984008208U JPS60120758U (en) | 1984-01-24 | 1984-01-24 | Eccentric sliding rotary lapping machine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS60120758U JPS60120758U (en) | 1985-08-15 |
| JPH0243653Y2 true JPH0243653Y2 (en) | 1990-11-20 |
Family
ID=30487282
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1984008208U Granted JPS60120758U (en) | 1984-01-24 | 1984-01-24 | Eccentric sliding rotary lapping machine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS60120758U (en) |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55144958A (en) * | 1979-04-18 | 1980-11-12 | Tsutomu Kimura | Lapping machine |
-
1984
- 1984-01-24 JP JP1984008208U patent/JPS60120758U/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS60120758U (en) | 1985-08-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2984263B1 (en) | Polishing method and polishing apparatus | |
| JP2564214B2 (en) | Uniform speed double-side polishing machine and method of using the same | |
| CN208614487U (en) | A kind of linear R RL type three-axis numerical control rubbing down machining tool | |
| JPH0243653Y2 (en) | ||
| JPH0243654Y2 (en) | ||
| JP4425240B2 (en) | Moving device and plane polishing machine using planetary gear mechanism | |
| JPH0253193B2 (en) | ||
| CN208614546U (en) | A grinding disc mechanism of a nonlinear RRL type three-axis CNC polishing machine tool | |
| CN208977571U (en) | A wafer double-sided grinding machine with flatness dressing and correction wheel | |
| JPH0413076Y2 (en) | ||
| KR100657598B1 (en) | Lapping Machine | |
| JPH0373261A (en) | Plane processor | |
| JPH0222213Y2 (en) | ||
| JP4041225B2 (en) | Polishing equipment | |
| JPS6154544B2 (en) | ||
| JPS60155357A (en) | Surface machining device | |
| CN213795628U (en) | Plane grinding device for metal product processing | |
| JPH0650126Y2 (en) | Medium surface plate for surface plate correction in lapping machine | |
| JP4250594B2 (en) | Moving device and plane polishing machine using planetary gear mechanism | |
| CN222958180U (en) | Surface treatment device for glass parts | |
| JP3172313B2 (en) | Method and apparatus for repairing surface plate in flat surface polishing machine | |
| CN218081808U (en) | Inner ring processing equipment of deep groove ball bearing | |
| RU2254976C2 (en) | Grinding planetary head | |
| JPH0663861A (en) | Wrapping device | |
| JP4023765B2 (en) | Polishing apparatus and polishing method |