JPH0243307B2 - - Google Patents

Info

Publication number
JPH0243307B2
JPH0243307B2 JP57142266A JP14226682A JPH0243307B2 JP H0243307 B2 JPH0243307 B2 JP H0243307B2 JP 57142266 A JP57142266 A JP 57142266A JP 14226682 A JP14226682 A JP 14226682A JP H0243307 B2 JPH0243307 B2 JP H0243307B2
Authority
JP
Japan
Prior art keywords
mixture
electrolyte
zinc
weight
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57142266A
Other languages
Japanese (ja)
Other versions
JPS5931560A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57142266A priority Critical patent/JPS5931560A/en
Publication of JPS5931560A publication Critical patent/JPS5931560A/en
Publication of JPH0243307B2 publication Critical patent/JPH0243307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電解液を含んだ陽極合剤をセパレー
タを介して陽極缶(亜鉛缶)に封入したペーパー
ラインド式の二酸化マンガン乾電池の製造方法に
関するものである。 第1図は従来のそのような乾電池及びこの発明
にかゝわる乾電池の構造を示す断面図で、図にお
いて1は陰極缶である円筒形の亜鉛缶、2は亜鉛
缶1の内側に設けた、例えばクラフト紙などより
なるセパレータ、3は亜鉛缶1の底部に設けたカ
ツプ状の底紙、4はセパレータ2及び底紙3を介
して亜鉛缶1に封入された陽極合剤で、減極剤と
しての二酸化マンガン、導電材としてのアセチレ
ンブラツク、及び電解液としての塩化亜鉛と塩化
アンモニウムとの水溶液を主成分としている。5
は陽極合剤4中に挿入された陽極導体としての炭
素棒、6は陽極合剤4を覆つた蓋紙、7は蓋紙6
上に配したピツチよりなる封口材、8は上記亜鉛
缶1を覆つた合成樹脂チユーブ、9は炭素棒5の
上端に嵌合した陽極用金属キヤツプ、10は亜鉛
缶1の底外面に接触した陰極用金属板、11は合
成樹脂ワツシヤー12,12を介して金属キヤツ
プ9及び金属板10を緊締する金属外装缶、13
は金属キヤツプ9内方に設けた合成樹脂封口体で
ある。 このような構成のペーパーラインド式二酸化マ
ンガン乾電池の従来の製造方法は、亜鉛缶1の内
周面をセパレータ2で覆つた後、亜鉛缶1の底面
に底紙3を装填する。一方陽極合剤4としては、
先ず電解二酸化マンガンとアセチレンブラツクと
微量の酸化亜鉛との混合体に、所要量の約2/3の
電解液を加えて混練すると、湿りを帯びた粉状の
合剤ができる。この合剤を1〜3日熟成貯蔵して
電解液を均一化せしめるとともに空気を逸出させ
て嵩密度を高めた後、その合剤を加圧成形して柱
状の合剤を造る。この柱状合剤を上記亜鉛缶1内
に挿入した後残余の約1/3の電解液を注入浸透せ
しめ、次に柱状合剤の中央部に炭素棒5を圧入し
てセパレータ2を介して亜鉛缶1と陽極合剤4と
の接触を良好にして乾電池を製造していた。 上記のようにして製造した乾電池の第1の欠点
は熟成後においても合剤中に相当多量の空気が残
留し、電解液及びイオンの移動を阻んで放電性能
を低下させるとともに加圧成形後に膨張、ひび割
れ、重量のばらつき等が発生して放電性能の安定
がはかれないという点にあつた。普通に用いられ
る合剤の組成は電解二酸化マンガン(比重4.4)
が50重量%、アセチレンブラツク(比重2)が9
重量%、酸化亜鉛(比重5.5)が0.3重量%、電解
液(比重1.25;塩化亜鉛25重量%、塩化アンモニ
ウム4重量%の水溶液)が40.7重量%であり、そ
の真密度、すなわち空気が全く入つていない状態
とした場合の合剤の密度は2.063g/cm3となる。
しかし実際の完成品の陽極合剤4の真密度は従来
の方法では1.98g/cm3すなわち真密度の96%にま
で高めることは不可能で従来品の最高のものでも
1.96g/cm3程度であつた。これは陽極合剤4の脱
気が不完全であるためで、放電性能を悪化させる
一つの原因となつていた。 従来品の第2の欠点は陽極合剤4中の電解液の
分布が不均一で二酸化マンガンの利用率が悪いた
め放電性能が低く且つばらつきが大きいという点
にあつた。すなわち従来の方法では柱状合剤を亜
鉛缶1に挿入した後残余の電解液を注入するた
め、どうしても亜鉛缶1側の電解液が過剰とな
り、その結果炭素棒5側の電解液が不足して上記
のようなことが起こる。 また第3の欠点は上記のように残余の電解液を
注入するため陽極合剤肩部の電解液が過剰である
ので、電池組立完成後特に高温条件下等において
漏液事故が起こりやすいという点にある。 第4の欠点は、電解液の注入の際電解液の飛び
はね等が発生することがあり、亜鉛缶1の内面や
外面を腐食させて封口材7のシールを不完全にし
たり、製造機械を汚したりして好ましくないとい
う点にある。 第5の欠点は生産性がよくないという点にあ
り、その第1は電解液の注入時に製造ラインの汚
れを招き作業能率の低下をきたすということであ
る。その第2は合剤の熟成のために貯蔵場所が必
要となり、また貯蔵量や貯蔵期間の問題で製造工
程が複雑となるということである。 これらの欠点を改善するため本発明者らは次の
ような製造方法を提案している。すなわち最初に
二酸化マンガン及び導電材と所要の全電解液とを
混合して途中での電解液の注入工程を廃止し、ま
た電解液を含んだ合剤を衝撃を加えながら造粒す
ることによつて上記合剤中の空気を放出するとと
もに電解液の均一化を計り、その後に粒体合剤を
潰粒して陰極缶1に封入することにより上記諸欠
点を改善するものである。 次にその詳細を説明する。 先ず電解二酸化マンガン84.5重量%、導電材で
あるアセチレンブラツク15.0重量%、酸化亜鉛
0.5重量%の固体材料100容量に、水71重量%、塩
化亜鉛25重量%、塩化アンモニウム4重量%の電
解液55容量を加えて混合撹拌すると水分25〜30
%、嵩密度0.8〜0.9g/c.c.の混合物ができる。こ
の場合加える電解液は従来法と異なり所要の全量
である。またこの合剤の組成は前記従来品と全く
同様である。 第2図はこの合剤を衝撃を加えながら造粒する
装置の一例を示す破断斜視図で、図において14
は中央にセンタチユーブ15を有する鍋状のコン
テナ、16はコンテナ14を支持する高張力スプ
リング、17は振動用モータである。 上記のようにしてできた合剤を熟成することな
しに直ちにコンテナ14に入れてモータ17を動
作させるとコンテナ14には三次元の高振動が加
えられ、合剤は図の矢印で示したようにゆつくり
と旋回運動を開始し、4〜8分間で直径05〜5mm
の粒体に造粒される。この間合剤はコンテナ14
の壁部への衝突と、その際与えられる振動と合剤
同志の衝突とによる衝撃で脱気されるとともに電
解液が均一化される。 第3図は上記のようにしてできた粒体合剤を陰
極缶1に充填する工程を示す断面図であり、図に
おいて18は充填治具で、計量部18a、潰粒部1
8b及びガイド部18cにより形成されており、
先端のガイド8cへ向かうにつれ細くなつていく
先端縮小形状になつている。19は計量部18a
内を上下に移動するピストンであり、計量部18
aとの間に隙間を有する寸法になつている。20
は粒体合剤である。 この工程ではピストン19を引上げた後、計量
部18aに所定量の粒体合剤20を補填し、ピス
トン19を計量部18aに圧入することにより、
充填治具18内の粒体合剤20に圧力が加えられ
る。充填治具18は先端に向かつて細くなつてい
るため、圧力が加えられた粒体合剤20は先端に
押し出されつつ潰粒される。この潰粒時には合剤
に圧力が加えられ不要な空気が計量部18aとピ
ストン19との間の隙間から排出され、合剤に対
する十分な脱気が行われる。さらに潰粒された合
剤は圧力により押し出されて陽極合剤4として、
セパレータ2及び底紙3を装填した亜鉛缶1に充
填される。この際亜鉛缶1はピストン19の移動
に伴つて下方に移動するようになつているが、そ
の移動は充填された陽極合剤4に適宜な圧力が
かゝるように調整されている。従つて陽極合剤4
とセパレータ2との接触及びセパレータ2への電
解液の浸透が均一におこなわれる。上記の如く粒
体合剤20は主として潰粒部18bで潰粒され、
ガイド部18cを出るときは全く粒形を留めない
ようになつている。 上記のようにして陽極合剤4の充填が完了する
と蓋紙6を亜鉛缶1に挿入し、蓋紙6の中央に設
けた孔から炭素棒5を陽極合剤4中に圧入する。
この炭素棒5の圧入により陽極合剤4は更に脱気
されて密度が高まるとともに、セパレータ2を介
しての亜鉛缶1との接触が更に良好となり、また
セパレータ2への電解液の浸透もより完全なもの
となる。このような製造方法によれば、先細りの
充填治具18を用いることにより粒体合剤を潰粒
しながら脱気し、かつ亜鉛缶1に直接充填するの
で、潰粒したのち成形して充填する場合よりも少
ない工程で製造できる。 このようにして製造した陽極合剤4の密度は約
2.00g/cm3であり、従来品の最高密度1.96g/cm3
に比し極めて高い値のものが得られた。これらの
値は前記の組成から求めた真密度2.063g/cm3
対し夫々97%及び95%である。 しかし上記方法では造粒工程において、合剤が
コンテナ14の内壁に付着し、衝撃や振動が合剤
に十分伝わらないため脱気がまだ不十分で且つ粒
体合剤20の直径のばらつきが大きく、また造粒
にも長時間を要するという欠点があつた。 この発明は造粒前の合剤に少量の四フツ化エチ
レン樹脂を混入することにより上記欠点を改善す
ることを目的とするものである。 本発明者らは合剤がコンテナ14内壁に付着し
にくゝ、大きさの揃つた粒体合剤20の得られる
種々の造粒促進剤について検討した結果、低摩擦
性及び非粘着性に優れた四フツ化エチレン樹脂を
造粒前の合剤に少量添加することが有効であるこ
とを見出した。 すなわちそのような合剤に第2図の装置で3〜
5分高振動を加えた結果、直径0.5mm以上、4.0mm
以下、嵩密度0.95g/c.c.以上、1.10g/c.c.以下、
粒体密度1.95g/cm3以上、2.04g/cm3以下の粒体
合剤20が得られた。それに対し四フツ化エチレ
ンを添加しないものは4〜8分の造粒時間で直径
0.5mm以上、5.0mm以下、嵩密度0.90g/c.c.以上、
1.20g/c.c.以下、粒体密度1.92g/cm3以上、2.02
g/cm3以下であつた。すなわち四フツ化エチレン
を添加したものは添加しないものに比し、よく脱
気されており、上記諸量のばらつきも少なく、ま
た造粒時間も少なくてよい。更に上記のような粒
体合剤20を用い、第3図に関して説明した工程
で製造した乾電池の陽極合剤4の密度は無添加の
ものが1.99g/cm3(真密度の96.5%)以上、2.03
g/cm3(真密度の98.4%)以下であるのに比し、
四フツ化エチレンを添加したものは2.02g/cm3
(真密度の97.9%)以上、2.04g/cm3(真密度の
98.9%)以下であつた。 次に実施例につき説明する。 従来のSUM−1型乾電池Aと、それと同一仕
様で、四フツ化エチレンを添加せず6分間造粒し
て製造した乾電池Bと、やはり同一仕様で、四フ
ツ化エチレンを0.005重量%添加して4分間造粒
して製造した乾電池Cとについて放電性能及び耐
漏液性能の試験をおこなつた結果を第1表及び第
2表に示す。
The present invention relates to a method for manufacturing a paper-lined manganese dioxide dry battery in which an anode mixture containing an electrolyte is sealed in an anode can (zinc can) via a separator. Fig. 1 is a cross-sectional view showing the structure of a conventional dry battery and a dry battery according to the present invention. , a separator made of, for example, kraft paper, 3 a cup-shaped bottom paper provided at the bottom of the zinc can 1, 4 an anode mixture sealed in the zinc can 1 via the separator 2 and the bottom paper 3, and depolarized. The main components are manganese dioxide as an agent, acetylene black as a conductive material, and an aqueous solution of zinc chloride and ammonium chloride as an electrolyte. 5
is a carbon rod as an anode conductor inserted into the anode mixture 4, 6 is a cover paper that covers the anode mixture 4, and 7 is a cover paper 6
8 is a synthetic resin tube that covers the zinc can 1; 9 is a metal cap for the anode fitted to the upper end of the carbon rod 5; 10 is in contact with the bottom outer surface of the zinc can 1. A metal plate for a cathode, 11 is a metal outer can that tightens the metal cap 9 and the metal plate 10 via synthetic resin washers 12, 12, 13
is a synthetic resin sealing body provided inside the metal cap 9. In the conventional manufacturing method of a paper-lined manganese dioxide dry battery having such a structure, the inner peripheral surface of the zinc can 1 is covered with a separator 2, and then a bottom paper 3 is loaded on the bottom surface of the zinc can 1. On the other hand, as the anode mixture 4,
First, about two-thirds of the required amount of electrolyte is added to a mixture of electrolytic manganese dioxide, acetylene black, and a small amount of zinc oxide, and the mixture is kneaded to form a wet powder mixture. This mixture is aged and stored for 1 to 3 days to homogenize the electrolyte and to allow air to escape to increase the bulk density, and then the mixture is pressure-molded to produce a columnar mixture. After inserting this columnar mixture into the zinc can 1, about 1/3 of the remaining electrolyte was injected and permeated, and then a carbon rod 5 was press-fitted into the center of the columnar mixture and the zinc was passed through the separator 2. A dry battery was manufactured by making good contact between the can 1 and the anode mixture 4. The first drawback of the dry cell battery manufactured as described above is that a considerable amount of air remains in the mixture even after aging, which obstructs the movement of electrolyte and ions, reducing discharge performance, and expands after pressure molding. , cracks, weight variations, etc. occurred, and the discharge performance was unstable. The composition of the commonly used mixture is electrolytic manganese dioxide (specific gravity 4.4)
is 50% by weight, and acetylene black (specific gravity 2) is 9
% by weight, zinc oxide (specific gravity 5.5) is 0.3% by weight, electrolyte (specific gravity 1.25; aqueous solution of 25% by weight zinc chloride, 4% by weight ammonium chloride) is 40.7% by weight, and its true density, that is, no air is included. The density of the mixture in the unattached state is 2.063 g/cm 3 .
However, it is impossible to increase the true density of the anode mixture 4 in the actual finished product to 1.98 g/ cm3 , or 96% of the true density, using conventional methods, and even with the best conventional product.
It was about 1.96 g/cm 3 . This was due to incomplete degassing of the anode mixture 4, which was one of the causes of deterioration in discharge performance. The second drawback of the conventional product is that the distribution of the electrolyte in the anode mixture 4 is uneven and the utilization rate of manganese dioxide is poor, resulting in low discharge performance and large variations. In other words, in the conventional method, after inserting the columnar mixture into the zinc can 1, the remaining electrolyte is injected, so the electrolyte on the zinc can 1 side inevitably becomes excessive, and as a result, the electrolyte on the carbon rod 5 side becomes insufficient. Something like the above happens. The third drawback is that, as mentioned above, because the remaining electrolyte is injected, there is an excess of electrolyte at the shoulder of the anode mixture, so leakage accidents are likely to occur after the battery is assembled, especially under high temperature conditions. It is in. The fourth drawback is that when the electrolyte is injected, splashing of the electrolyte may occur, which may corrode the inner and outer surfaces of the zinc can 1, resulting in incomplete sealing of the sealant 7, and damage to the manufacturing machine. The reason is that it is not desirable because it contaminates the water. The fifth drawback is that productivity is poor, and the first is that the production line gets dirty when the electrolyte is injected, resulting in a decrease in work efficiency. The second problem is that storage space is required for the aging of the mixture, and the manufacturing process becomes complicated due to the storage amount and storage period. In order to improve these drawbacks, the present inventors have proposed the following manufacturing method. That is, by first mixing manganese dioxide and the conductive material with all the required electrolyte solution, eliminating the step of injecting the electrolyte solution in the middle, and by granulating the mixture containing the electrolyte solution while applying impact. The above-mentioned drawbacks are improved by releasing the air in the mixture and making the electrolyte uniform, and then crushing the granular mixture and sealing it in the cathode can 1. Next, the details will be explained. First, 84.5% by weight of electrolytic manganese dioxide, 15.0% by weight of acetylene black as a conductive material, and zinc oxide.
When 55 volumes of an electrolytic solution containing 71% water, 25% zinc chloride, and 4% ammonium chloride are added by weight to 100 volumes of 0.5% solid material and mixed and stirred, the water content becomes 25-30%.
% and a bulk density of 0.8 to 0.9 g/cc. In this case, the total amount of electrolyte added is different from the conventional method. The composition of this mixture is exactly the same as that of the conventional product. Figure 2 is a cutaway perspective view showing an example of a device for granulating this mixture while applying an impact.
1 is a pot-shaped container having a center tube 15 in the center, 16 is a high tension spring that supports the container 14, and 17 is a vibration motor. When the mixture prepared as described above is immediately put into the container 14 without aging and the motor 17 is operated, a high three-dimensional vibration is applied to the container 14, and the mixture is moved as shown by the arrow in the figure. Start rotating slowly and increase the diameter to 05-5mm in 4-8 minutes.
It is granulated into granules. This mixture is in container 14
The electrolyte is degassed and the electrolyte is homogenized by the impact caused by the collision of the electrolyte with the wall, the vibration given at that time, and the collision of the mixture. FIG. 3 is a cross-sectional view showing the process of filling the cathode can 1 with the granular mixture prepared as described above.
8b and a guide portion 18c,
The tip has a reduced shape that becomes thinner toward the guide 8c at the tip. 19 is a measuring section 18a
It is a piston that moves up and down inside the measuring section 18.
It is dimensioned to have a gap between it and a. 20
is a granular mixture. In this step, after pulling up the piston 19, a predetermined amount of the granular mixture 20 is added to the measuring part 18a, and the piston 19 is press-fitted into the measuring part 18a.
Pressure is applied to the granular mixture 20 in the filling jig 18. Since the filling jig 18 becomes thinner toward the tip, the granular mixture 20 under pressure is crushed while being pushed out to the tip. At the time of crushing, pressure is applied to the mixture and unnecessary air is discharged from the gap between the measuring part 18a and the piston 19, so that the mixture is sufficiently deaerated. The crushed mixture is further extruded by pressure to form the anode mixture 4.
A zinc can 1 loaded with a separator 2 and a bottom paper 3 is filled. At this time, the zinc can 1 is adapted to move downward as the piston 19 moves, and this movement is adjusted so that an appropriate pressure is applied to the filled anode mixture 4. Therefore, anode mixture 4
Contact with the separator 2 and penetration of the electrolyte into the separator 2 are uniformly performed. As mentioned above, the granule mixture 20 is mainly crushed in the crushing part 18b,
When exiting the guide portion 18c, the grain shape is not retained at all. When the filling of the anode mixture 4 is completed as described above, the lid paper 6 is inserted into the zinc can 1, and the carbon rod 5 is press-fitted into the anode mixture 4 through the hole provided in the center of the lid paper 6.
By press-fitting the carbon rod 5, the anode mixture 4 is further deaerated and its density increases, and the contact with the zinc can 1 through the separator 2 is improved, and the electrolyte permeates into the separator 2. It becomes complete. According to this manufacturing method, the granular mixture is crushed and deaerated by using the tapered filling jig 18, and is directly filled into the zinc can 1. It can be manufactured in fewer steps than when The density of the anode mixture 4 produced in this way is approximately
2.00g/cm 3 , the highest density of conventional products 1.96g/cm 3
An extremely high value was obtained compared to . These values are 97% and 95%, respectively, of the true density of 2.063 g/cm 3 determined from the above composition. However, in the above method, the mixture adheres to the inner wall of the container 14 during the granulation process, and shocks and vibrations are not sufficiently transmitted to the mixture, resulting in insufficient deaeration and large variations in the diameter of the granular mixture 20. Another disadvantage was that granulation took a long time. The purpose of this invention is to improve the above-mentioned drawbacks by mixing a small amount of tetrafluoroethylene resin into the mixture before granulation. The present inventors have studied various granulation accelerators that make it difficult for the mixture to adhere to the inner wall of the container 14 and that can produce a granular mixture 20 of uniform size. It has been found that it is effective to add a small amount of a superior tetrafluoroethylene resin to the mixture before granulation. That is, such a mixture is treated with the device shown in Figure 2 for 3 to 3 minutes.
As a result of applying high vibration for 5 minutes, the diameter is 0.5mm or more, 4.0mm
Bulk density: 0.95g/cc or more, 1.10g/cc or less,
A granule mixture 20 having a granule density of 1.95 g/cm 3 or more and 2.04 g/cm 3 or less was obtained. On the other hand, those without the addition of tetrafluoroethylene have a diameter of 4 to 8 minutes in granulation time.
0.5mm or more, 5.0mm or less, bulk density 0.90g/cc or more,
1.20g/cc or less, particle density 1.92g/ cm3 or more, 2.02
g/cm 3 or less. That is, compared to those without tetrafluoroethylene, those to which tetrafluoroethylene is added are better degassed, have less variation in the above-mentioned amounts, and require less granulation time. Furthermore, the density of the anode mixture 4 of a dry battery produced using the granular mixture 20 as described above in the process explained with reference to FIG. 3 is 1.99 g/cm 3 (96.5% of true density) or more without additives. , 2.03
g/cm 3 (98.4% of true density) or less,
2.02g/cm 3 for those containing tetrafluoroethylene
(97.9% of true density) or more, 2.04g/cm 3 (of true density
98.9%) or less. Next, an example will be explained. The conventional SUM-1 type dry battery A and the dry battery B, which had the same specifications but were manufactured by granulating for 6 minutes without adding tetrafluoroethylene, and the dry battery B, which also had the same specifications but with the addition of 0.005% by weight of tetrafluoroethylene. Tables 1 and 2 show the results of tests for discharge performance and leakage resistance of dry battery C manufactured by granulating the battery for 4 minutes.

【表】【table】

【表】 第1表は製造直後の各試料夫々10個の20℃にお
ける放電持続時間の平均値及び標準偏差を示した
もので、乾電池Bは従来の乾電池Aに比して格段
と優れているが、乾電池Cは更に放電性能が良好
で、四フツ化エチレンの効果が明らかに認められ
る。 第2表はやはり製造直後の各試料夫々50個の20
℃における2Ω負荷での3ケ月後の漏液発生数、
及び、夫々100個の60℃3ケ月保存後の漏液発生
数を示したもので、耐漏液性能においても乾電池
B,Cが明らかに優れており、更に四フツ化エチ
レンの効果も認められる。 以上のように乾電池B,Cが従来の乾電池Aに
比し格段と優れているのは陽極合剤4の脱気が完
全になり、また電解液分布が均一になることの効
果によるものであるが、更に途中の工程での電解
液の注入及び合剤の熟成をおこなわないので、前
記した従来の第4及び第5の欠点が除去されるこ
とは自明である。 また乾電池Cが乾電池Bより更に優れているの
は、四フツ化エチレンを添加した合剤は造粒時に
コンテナ14の内壁に付着しにくいため脱気がよ
り完全におこなわれることゝ、粒体合剤20の大
きさが揃つて陽極合剤4の量のばらつきが減じた
こととによるものである。そして合剤がコンテナ
14に付着しにくいため作業能率も向上する。 種々実験を重ねて検討した結果、陽極合剤4中
の四フツ化エチレンの量が0.0001重量%以下では
無添加の場合と同様で、上記のような効果が得ら
れない。一方0.02重量%以上の場合は乾電池の放
電時、イオンの移動の妨げとなつて二酸化マンガ
ンの利用率が下り、放電性能の低下をきたして実
用上好ましくない。すなわち四フツ化エチレン樹
脂は陽極合剤中の0.0001重量%以上、0.02重量%
以下の量を混入したときが最も効果がある。 また粒体合剤20は、直径が0.5mm以上、5.0mm
以下、嵩密度が0.90g/c.c.以上、1.20g/c.c.以
下、粒体密度が1.92g/cm3以上の範囲が好適範囲
であることが明らかになつた。 その理由は次のとおりである。直径が0.5mmよ
り小さい場合は脱気が不十分で、製造後の電解液
の陰極側への移動や動作中のイオンの移動が空気
により阻害されて放電性能が低く、且つばらつき
も大きくなつて好ましくない。一方、5.0mm以上
の場合には充填治具18の計量部18aに補填さ
れる粒体合剤20の量がばらつき、その結果亜鉛
缶1に充填される陽極合剤4の量がばらついて好
ましくない。 また嵩密度が0.90g/c.c.より小さい場合は造粒
が不完全で脱気が不十分となり、放電性能が低
く、且つばらつきが大きくなるとともに亜鉛缶1
に充填される陽極合剤4の量のばらつきが大きく
なり、放電性能及び耐漏液性能が劣る。一方、嵩
密度が1.20g/c.c.より大きい場合は造粒が過剰状
態となり、粒体表面に遊離の電解液が浸み出して
くると同時に粒体径も相当大きくなる。このた
め、粒体合剤20の流れが悪くなり、計量部18
aに補填される粒体合剤20のばらつきが大きく
なる。その結果、亜鉛缶1中に充填された陽極合
剤4のばらつきが大きくなり、乾電池の製造上支
障が生じ好ましくない。 また粒体密度が1.92g/cm3より小さい場合は脱
気が不十分で、放電性能が低く、且つばらつきが
大きくなる。このように充填治具18に補填する
粒体合剤20は上述のような条件のものが最適で
ある。 上記実施例では第2図のような三次元の高振動
による装置により合剤を造粒したが、衝撃を加え
ながら造粒するような装置であれば、他の装置例
えば二次元の高振動による装置のようなものでも
同様の効果が得られる。 この発明は以上説明したとおり、全電解液と適
量のと四フツ化エチレン樹脂を含む固体材料とを
混合した合剤を衝撃を加えながら造粒し、その粒
体合剤を先端縮小形状の次填治具に所定量ずつ補
填し、加圧することにより潰粒して陰極缶に直接
充填することにより、十分脱気しながら短時間で
造粒でき、また陽極合剤の密度が真密度の96%以
上で、脱気及び電解液分布の均一化が良好で放電
性能及び耐漏液性能が大巾に向上した乾電池が製
造でき、かつ工程途中での電解液の注入及び合剤
の熟成をおこなわないので、それらに伴う諸欠点
を解消できるとともに、粒体合剤の潰粒と合剤の
充填がひとつの工程でできるという効果も得られ
る。
[Table] Table 1 shows the average value and standard deviation of the discharge duration at 20°C for 10 samples of each sample immediately after manufacture. Dry battery B is significantly superior to conventional dry battery A. However, dry battery C had even better discharge performance, and the effect of tetrafluoroethylene was clearly recognized. Table 2 also shows 20 samples of 50 pieces for each sample immediately after production.
Number of leaks after 3 months with 2Ω load at °C,
The figures also show the number of leakages after 100 batteries were stored at 60°C for 3 months. Dry batteries B and C are clearly superior in leakage resistance, and the effect of ethylene tetrafluoride is also recognized. As mentioned above, the reason why dry batteries B and C are significantly superior to conventional dry battery A is due to the effects of complete degassing of the anode mixture 4 and uniform electrolyte distribution. However, it is obvious that the fourth and fifth drawbacks of the conventional method described above are eliminated since the injection of electrolyte and the aging of the mixture are not performed in the intermediate steps. Furthermore, dry cell C is even better than dry cell B because the mixture containing tetrafluoroethylene is less likely to adhere to the inner wall of the container 14 during granulation, so that deaeration is more complete. This is because the sizes of the agents 20 are uniform, and variations in the amount of the anode mixture 4 are reduced. Further, since the mixture is less likely to adhere to the container 14, work efficiency is also improved. As a result of various experiments and studies, it has been found that if the amount of tetrafluoroethylene in the anode mixture 4 is less than 0.0001% by weight, it is the same as when no additive is added, and the above-mentioned effects cannot be obtained. On the other hand, if the content is 0.02% by weight or more, it will impede the movement of ions during discharge of the dry cell, lowering the utilization rate of manganese dioxide and lowering the discharge performance, which is not preferred in practice. In other words, the amount of tetrafluoroethylene resin is 0.0001% by weight or more, 0.02% by weight in the anode mixture.
It is most effective when mixed in the following amounts. In addition, the granular mixture 20 has a diameter of 0.5 mm or more and 5.0 mm.
Hereinafter, it has become clear that the preferred ranges are a bulk density of 0.90 g/cc or more and 1.20 g/cc or less, and a granule density of 1.92 g/cm 3 or more. The reason is as follows. If the diameter is smaller than 0.5 mm, the degassing is insufficient, and the movement of the electrolyte to the cathode after manufacture and the movement of ions during operation are obstructed by air, resulting in poor discharge performance and large variations. Undesirable. On the other hand, if the diameter is 5.0 mm or more, the amount of the granular mixture 20 filled into the measuring part 18a of the filling jig 18 will vary, and as a result, the amount of the anode mixture 4 filled into the zinc can 1 will vary, which is preferable. do not have. If the bulk density is less than 0.90g/cc, granulation will be incomplete and degassing will be insufficient, resulting in poor discharge performance and large variations, as well as
The variation in the amount of anode mixture 4 filled into the battery becomes large, resulting in poor discharge performance and leakage resistance. On the other hand, when the bulk density is greater than 1.20 g/cc, the granulation becomes excessive, and at the same time, the free electrolyte oozes out onto the surface of the granules, and the diameter of the granules also increases considerably. For this reason, the flow of the granular mixture 20 becomes poor, and the measuring part 18
The variation in the granular mixture 20 supplemented to a becomes large. As a result, the variation in the anode mixture 4 filled in the zinc can 1 becomes large, which is undesirable and causes problems in the production of dry batteries. Furthermore, if the particle density is less than 1.92 g/cm 3 , deaeration is insufficient, resulting in low discharge performance and large variations. The granular mixture 20 to be filled into the filling jig 18 in this way is optimally one that meets the conditions described above. In the above example, the mixture was granulated using a three-dimensional high-vibration device as shown in Fig. 2, but if the device is capable of granulating while applying impact, other devices such as two-dimensional high-vibration device can be used. Similar effects can be obtained with devices such as devices. As explained above, this invention involves granulating a mixture of all the electrolyte and an appropriate amount of a solid material containing tetrafluoroethylene resin while applying an impact, and then turning the granular mixture into a shape with a reduced tip. By filling the filling jig with a predetermined amount, crushing it under pressure, and filling it directly into the cathode can, it can be granulated in a short time while being sufficiently degassed, and the density of the anode mixture can be reduced to 96% of the true density. % or more, it is possible to produce dry batteries with good degassing and uniform electrolyte distribution, greatly improved discharge performance and leakage resistance, and without injecting electrolyte or aging the mixture during the process. Therefore, the various drawbacks associated with these can be eliminated, and the effect of crushing the granular mixture and filling the mixture in one process can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾電池の断面図、第2図及び第3図は
この発明の製造方法の一実施例を示す破断斜視図
及び断面図である。 図において1は陰極缶、4は陽極合剤、20は
粒体合剤である。なお各図中同一符号は同一また
は相当部分を示す。
FIG. 1 is a sectional view of a dry battery, and FIGS. 2 and 3 are a broken perspective view and a sectional view showing an embodiment of the manufacturing method of the present invention. In the figure, 1 is a cathode can, 4 is an anode mixture, and 20 is a granular mixture. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 (イ) 二酸化マンガンと、導電材と、所要の全
電解液と、これらを含んでなる陽極合剤全体に
対して0.0001重量%以上、0.02重量%以下とな
る含有量の四フツ化エチレン樹脂とを混合する
工程 (ロ) (イ)の工程でできた混合物に衝撃を加えながら
粒体合剤を造粒する工程 (ハ) (ロ)の工程でできた粒体合剤を先端縮小形状の
充填治具に補填し、先端方向に加圧して潰粒し
ながらその先端から陰極缶に充填する工程を含
む二酸化マンガン乾電池の製造方法。 2 上記(ハ)の工程で補填する粒体合剤が直径0.5
以上5.0mm以下、嵩密度0.90以上1.20g/c.c.以下、
粒体密度1.92g/cm3以上であることを特徴とする
特許請求の範囲第1項記載の二酸化マンガン乾電
池の製造方法。
[Scope of Claims] 1 (a) Manganese dioxide, a conductive material, all required electrolytes, and a content of 0.0001% by weight or more and 0.02% by weight or less based on the entire anode mixture containing these. Step of mixing with tetrafluoroethylene resin (b) Step of granulating the granular mixture while applying impact to the mixture made in step (b) (c) Granules made in step (b) A method for producing a manganese dioxide dry battery, which includes a step of filling a filling jig with a reduced tip shape with a mixture, applying pressure in the direction of the tip to crush it, and filling the cathode can from the tip. 2 The granular mixture supplemented in the step (c) above has a diameter of 0.5
5.0 mm or more, bulk density 0.90 or more and 1.20 g/cc or less,
The method for producing a manganese dioxide dry battery according to claim 1, wherein the particle density is 1.92 g/cm 3 or more.
JP57142266A 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture Granted JPS5931560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142266A JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142266A JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Publications (2)

Publication Number Publication Date
JPS5931560A JPS5931560A (en) 1984-02-20
JPH0243307B2 true JPH0243307B2 (en) 1990-09-27

Family

ID=15311344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142266A Granted JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS5931560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222098A (en) * 1975-08-12 1977-02-19 Hodogaya Chem Co Ltd Process for preparing polyoxy tetramethylene glycol
JPS5732981A (en) * 1980-08-07 1982-02-22 Mitsubishi Electric Corp Heating element for printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222098A (en) * 1975-08-12 1977-02-19 Hodogaya Chem Co Ltd Process for preparing polyoxy tetramethylene glycol
JPS5732981A (en) * 1980-08-07 1982-02-22 Mitsubishi Electric Corp Heating element for printing

Also Published As

Publication number Publication date
JPS5931560A (en) 1984-02-20

Similar Documents

Publication Publication Date Title
US3776779A (en) Gelled battery electrolyte containing a polyglycol polymer and a process for locating same within a lead-acid cell
JP2005056714A (en) Positive electrode mixture and alkaline dry cell using the same
JPH0243307B2 (en)
US8182941B2 (en) Alkaline dry battery and method for producing the same
JP2000164220A (en) Electrode material for silver oxide battery
JPS5931559A (en) Manganese dioxide dry cell and its manufacture
JPH06251759A (en) Separator for lead-acid battery
JP7146545B2 (en) Cathode mixture for alkaline batteries
JP5262046B2 (en) Dry cell, method for manufacturing the same, and apparatus for manufacturing the same
JP3406782B2 (en) Zinc alkaline battery, positive electrode mixture thereof and method for producing positive electrode mixture
US4027078A (en) Leak-resistant dry cells
JPS5928025B2 (en) Alkaline battery manufacturing method
JP7408578B2 (en) alkaline battery
JPS63232266A (en) Alkaline dry battery
JPH07142060A (en) Alkaline-manganese battery
JP2000149955A (en) Alkaline dry battery
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
JPH01151158A (en) Manufacture of positive electrode for nonaqueous solvent cell
JPH0443387B2 (en)
JP2002231249A (en) Alkaline battery
JPH02210757A (en) Lithium battery
JPH10340719A (en) Alkaline dry battery and its manufacture
JPH0594820A (en) Organic electrolyte battery
JPS5894755A (en) Manufacture of silver oxide cell
JPH0119230B2 (en)