JPS5931560A - Manganese dioxide dry cell and its manufacture - Google Patents

Manganese dioxide dry cell and its manufacture

Info

Publication number
JPS5931560A
JPS5931560A JP57142266A JP14226682A JPS5931560A JP S5931560 A JPS5931560 A JP S5931560A JP 57142266 A JP57142266 A JP 57142266A JP 14226682 A JP14226682 A JP 14226682A JP S5931560 A JPS5931560 A JP S5931560A
Authority
JP
Japan
Prior art keywords
mixture
manganese dioxide
specific gravity
granulation
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57142266A
Other languages
Japanese (ja)
Other versions
JPH0243307B2 (en
Inventor
Hisashi Sudo
須藤 尚志
Isao Miyazawa
宮沢 功
Akira Tomonaga
朝長 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO TAKASAGO KANDENCHI KK
Mitsubishi Electric Corp
Original Assignee
TOYO TAKASAGO KANDENCHI KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO TAKASAGO KANDENCHI KK, Mitsubishi Electric Corp filed Critical TOYO TAKASAGO KANDENCHI KK
Priority to JP57142266A priority Critical patent/JPS5931560A/en
Publication of JPS5931560A publication Critical patent/JPS5931560A/en
Publication of JPH0243307B2 publication Critical patent/JPH0243307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent mixture from adhering to the inner wall of a container during the process of granulation, sufficiently transmit shock and vibration to the mixture to degas it completely, equalize the diameters of granular mixture, and shorten time of granulation by adding a small amount of tetrafluoroethylene resin to make said mixture before it is granulated. CONSTITUTION:A small amount of tetrafluoroethylene resin which causes a very low friction and is excellently non-adhesive, is added to make mixture before it is granulated. As a result, the diameters of granular mixture are more equalized and its density increases, that is to say, the granular mixture is well degassed. Besides, granulation time is shortened. A positive mixture 4 prepared from such granular mixture has a notably high specific gravity, which is not less than 96% of the true spcific gravity, and is remarkably well degassed.

Description

【発明の詳細な説明】 この発明け、電解液を含んだ陽極合剤をセパレータを弁
して隘極缶DIE鉛缶)に封入したペーパーラインド式
の二酸でヒマンカン乾雷、池及びその製造方法に関する
ものである。
[Detailed Description of the Invention] This invention is a paper-line type diacid, in which an anode mixture containing an electrolyte is sealed in a lead can (DIE lead can) with a separator valve. It is about the method.

第1図μ従来のそのような乾電池及びこの発明にか\わ
る乾電池の構造を示す断面図で9図において(Fold
陰極缶である円筒形の亜鉛缶、(2)は亜鉛缶(11の
内側に設けた1例えば和昶、よりなるセパレータ、(3
)は亜鉛缶(1)の底部に設けたカップ状の底紙、(4
)はセパレータ(2)及び底紙(3)を介L7て亜鉛缶
(1)に封入されたl@極合剤で、減極剤としての二酸
化マンガン、導電材としてのアセチレンブラック。
Figure 1 μ is a sectional view showing the structure of such a conventional dry battery and a dry battery according to the present invention.
A cylindrical zinc can that is a cathode can, (2) is a separator made of zinc can (11, for example, Wayo), (3)
) is a cup-shaped bottom paper provided at the bottom of the zinc can (1), (4
) is a l@polar mixture sealed in a zinc can (1) via a separator (2) and a bottom paper (3), with manganese dioxide as a depolarizer and acetylene black as a conductive material.

及び電解液としての塩化亜鉛と塩化アンモニウムとの水
溶液を主成分としている。(5)は陽極合剤(4)中に
挿入された陽極導体と(−での炭素棒、(6)は陽極合
剤(4)を覆った誓紙、(7)は誓紙(6)上に配した
ピンチよりなる封口材、(8)は上He亜鉛缶(1)を
覆った合成樹脂チューブ、(9)は炭素棒(5)の上端
に嵌合した陽極用金鞘キャップ、Qlは亜鉛缶(1)の
底外面に接触した陰極用金属板、(IIi&1合成樹脂
ワッシャー03、ti力を介して金属キャップ(9)及
び金属板Oeを緊締する金属外装缶、θ渇は金族キャッ
プ(9)内方に設けた合成樹脂よj1コ休である。
The main component is an aqueous solution of zinc chloride and ammonium chloride as an electrolyte. (5) is the anode conductor inserted into the anode mixture (4) and the carbon rod (-), (6) is the oath paper covering the anode mixture (4), and (7) is the oath paper (6). (8) is a synthetic resin tube that covered the upper He zinc can (1); (9) is a gold sheath cap for the anode fitted to the upper end of the carbon rod (5); Ql is the metal plate for the cathode that is in contact with the bottom outer surface of the zinc can (1), (IIi & 1 synthetic resin washer 03, the metal outer can that tightens the metal cap (9) and metal plate Oe through force, θ is the metal plate) The synthetic resin provided inside the cap (9) is closed.

このような構成のペーパーラインド式二酸化マンガン乾
電池の従来の製造方法は、亜鉛缶(1)の内周面をセパ
レータ(2)で採った後、亜鉛缶(1)の底面に底紙(
3)を装填する。一方陽極合剤(4)としては。
The conventional manufacturing method for paper-lined manganese dioxide dry batteries with such a configuration is to cover the inner circumferential surface of the zinc can (1) with a separator (2), and then place a bottom paper (
3) Load. On the other hand, as anode mixture (4).

先ず電解二酸化マンガンとアセチレンブラックと微好の
酸化亜鉛との混合体に、所要量の約2/3什 のWj電解液加えて混瞭すると、湿りを帯びた粉状の合
剤ができる。この合剤’i1.−3日熟成貯蔵してIt
 P+’+j * k均一化せしめるとともに空気を逸
出させて高密度を高め7を後、その合剤を加圧成形して
柱状の合剤を造る。この柱状合剤を」二記亜鉛缶(1)
内VC4?lI人した後残余の約1/3の1iYがf液
を注入浸透せしめ1次に柱状合剤の中央バ13に炭素棒
(5)を圧入してセパレータ(2)を介して亜鉛缶(1
)と陽極合剤(4)との接ハリ;を良好にして乾電池を
p4造していたー上記のようにして製造した乾電池のB
r< 1の欠点は熟成後においても合剤中に相当長t(
の空気が残留し、71R’7液及びイオンの移動全阻ん
で放πt′、性能全低下させるとともに加圧成形後に膨
張、ひび割れ1重用のばらつき等が発生し°〔放電性能
の安定が14かれないという点にあっ1cc、を通に用
いられる合剤の組成は電カフc二酸化マンガン(比重4
.4)が50重量%、アセチレンブラック(比重2)が
9重量%、酸化亜鉛(比重5.5)が0.3重量%。
First, about 2/3 of the required amount of Wj electrolyte is added to a mixture of electrolytic manganese dioxide, acetylene black, and finely divided zinc oxide, and the mixture is mixed to form a moist powdery mixture. This mixture 'i1. - It is aged and stored for 3 days.
P+'+j*k is made uniform and the air is allowed to escape to increase the density. After step 7, the mixture is pressure-molded to form a columnar mixture. This columnar mixture” 2 Zinc can (1)
Inner VC4? After removing the liquid, about 1/3 of the remaining 1iY is injected with the f liquid and permeated. First, a carbon rod (5) is press-fitted into the central bar 13 of the columnar mixture, and a zinc can (1) is inserted through the separator (2).
) and the anode mixture (4); a dry battery was manufactured by improving the contact strength between the battery and the anode mixture (4).
The disadvantage of r < 1 is that even after ripening, there is a considerable length t(
The remaining air completely blocks the movement of the 71R'7 liquid and ions, leading to a complete decline in performance, and expansion, cracking, and unevenness after pressure molding. The composition of the mixture used for 1cc is electric cuff c manganese dioxide (specific gravity 4
.. 4) is 50% by weight, acetylene black (specific gravity 2) is 9% by weight, and zinc oxide (specific gravity 5.5) is 0.3% by weight.

1け−T液(比ル1.25;塩化亜鉛25重針チ、塩化
アンモニウム4重賛チの水溶液)が4o、yffijj
t%であり、その真比重t−j−2,063g□!とな
る3、しかし実際の完成品の陽極合剤(4)の比jij
fユ従米の方法では1、989/crItすなわち真比
重の86係にまで高めることは不可能で従来品の最高の
ものでも’−96g/cnr程度であった。これは陽極
合剤(4)の脱気が不完全であるためで、放電性能を悪
化させる一つの原因となっていた。
1-T solution (ratio 1.25; aqueous solution of 25 times zinc chloride and 4 times ammonium chloride) is 40, yffijj
t%, and its true specific gravity t-j-2,063g□! 3, but the ratio of the anode mixture (4) of the actual finished product is
With the method of fyujubei, it is impossible to increase the specific gravity to 1,989/crIt, that is, 86 times the true specific gravity, and even the best conventional product was about -96 g/cnr. This was due to incomplete degassing of the anode mixture (4), which was one of the causes of deterioration in discharge performance.

従来品の第2の欠点は陽極合剤(4)中の電解液の分布
が不均一で二酸化マンガンの利用率が悪いため放電性能
が低く且つばらつきが太きいという点にあった○すなわ
ち従来の方法では柱状合剤全亜鉛缶(1)に挿入した後
残余の電解液を注入するため。
The second drawback of the conventional product is that the distribution of the electrolyte in the anode mixture (4) is uneven and the utilization rate of manganese dioxide is poor, resulting in low discharge performance and large variations. The method involves inserting the columnar mixture into an all-zinc can (1) and then injecting the remaining electrolyte.

どうしても亜鉛缶(1)側のtM液が過剰とな−り、そ
の結果炭素棒(511111の電解液が不足して上記の
ようなことが起こる。
Inevitably, the tM solution on the zinc can (1) side becomes excessive, and as a result, the electrolyte in the carbon rod (511111) becomes insufficient, and the above-mentioned situation occurs.

筐たi3の欠点は上記のように残余の′fi解液層液入
するため陽極合剤7F1部の′亀がf液が過剰であるの
で、*池組立完成後特に高温条件下等において漏液事故
が起こりやすいという点にある。
The disadvantage of the i3 case is that as mentioned above, the remaining 'fi' solution enters the anode mix 7F1 part because there is an excess of 'f' liquid in the anode mix 7F1 part, so there is no possibility of leakage after the completion of the pond assembly, especially under high temperature conditions. The problem is that liquid accidents are more likely to occur.

第4の欠点は、電解液の注入の際電解液の飛びはね等が
発生することがあり、亜鉛缶(1)の内面や外面を腐食
させて封口材(7)のシールを不完全にしたり、製造機
械を汚したりして好ましくないという点にある・・ 第5の欠点は生産性がよくないという点にあり。
The fourth drawback is that when the electrolyte is injected, splashing of the electrolyte may occur, which corrodes the inner and outer surfaces of the zinc can (1) and makes the seal of the sealant (7) incomplete. The fifth disadvantage is that productivity is not good.

その第1は電解液の注入時に製造ラインの汚れを招き作
業能率の低下をきたすということである0その第2は合
剤の熟成のために貯蔵場所が必要となり、また貯蔵量や
貯蔵期間の問題で製造工程が複雑となるということであ
る。
The first is that the production line gets dirty when the electrolyte is injected, reducing work efficiency.The second is that a storage space is required to mature the mixture, and the storage amount and storage period are limited. This problem complicates the manufacturing process.

これらの欠点を改善するため本発明者ら1次のような製
造方法を提案している。すなわち最初に二酸化マンガン
及び導電材と所要の全電解液とを混合して途中での雷、
M液の注入工程を廃正し、また電ffF液を含んだ合剤
を衝撃を加えながら造粒することによって上記合剤中の
空気を放出するとともに電解液の均一化を計9.その後
に粒体合剤全潰粒して陰極缶(1)に封入することによ
り上記諸欠点を改善するものである。
In order to improve these drawbacks, the present inventors have proposed the following manufacturing method. That is, first, manganese dioxide, a conductive material, and all the required electrolytes are mixed, and then lightning is applied in the middle.
By eliminating the M solution injection step and granulating the mixture containing the electrolytic FFF solution while applying impact, the air in the mixture was released and the electrolyte was homogenized.9. Thereafter, the granule mixture is completely crushed and sealed in the cathode can (1), thereby improving the above-mentioned drawbacks.

次にその詳細を説明する。Next, the details will be explained.

先ず電解−二酸化マンガン84.5重幇チ、導電材であ
るアセチレンブラッグ15,0重i%、酸化亜鉛0.5
重置−の固体材料100容量に、水71重量%。
First, electrolysis - 84.5% manganese dioxide, 15.0% acetylene Bragg as a conductive material, and 0.5% zinc oxide.
Overlay 100 volumes of solid material with 71% water by weight.

塩化亜鉛25重景チ、塩化アンモニウム4重量%の電解
液55容量を加えて混合1)”を拌すると水分25f−
′30チ、嵩密度0.8−0.99/CCの混合物がで
きる。この場合加える電解液は従来法と異な9所要の全
量である。またこの合剤の組成は前記従来品と全く同様
である。
Add 55 volumes of electrolyte containing 25% zinc chloride and 4% by weight of ammonium chloride and mix 1).
A mixture with a bulk density of 0.8-0.99/CC is produced. In this case, the total amount of electrolyte added is 9, which is different from the conventional method. The composition of this mixture is exactly the same as that of the conventional product.

第2図はこの合剤を衝撃を加えながら造粒する装置の−
「1]全示す破断斜視図で9図において(財)は中央に
センタチューブ05に有する絹状のコンテナ。
Figure 2 shows the equipment for granulating this mixture while applying impact.
``1'' In Figure 9, which is a fully illustrated cutaway perspective view, the (goods) is a silk-like container with a center tube 05 in the center.

(L12はコンテカモ41ヲ支持する高張カスプリング
、07)は振動用モータである。
(L12 is a high-tension spring that supports the conte duck 41, and 07 is a vibration motor.

上記のようにしてできた合剤を熟成することなしに直ち
にコンテナα4)GC入れてモータ(Iηを動作させる
とコンテナ041には三次元の高振動が加えられ。
When the mixture prepared as described above is immediately put into the container α4) GC without being aged and the motor (Iη is operated), three-dimensional high vibration is applied to the container 041.

合剤μ図の矢印で示したようにゆっくりと旋回運動を開
始し、488分間で直径−0,5、−5開の粒体に造粒
される。この間合剤はコンテナα荀の壁部への衝突と、
その際与えられる振動と合剤同志の衝突とによる衝撃で
脱気されるとともに電解液が均一化される。
As shown by the arrow in the mixture μ diagram, the mixture starts to slowly rotate and is granulated into granules with diameters of −0, 5, and −5 in 488 minutes. During this time, the mixture collided with the wall of the container α,
At this time, the shock caused by the vibrations and the collisions between the mixtures causes deaeration and homogenization of the electrolyte.

第3図は上記のようにしてできた粒体合剤を陰極缶(1
)に充填する工程を示す断面図であり1図においてa穆
は充填治具で、計量部(18a) 、造粒部(18b)
及びガイド部(18c)により形成されているOQ9は
計量部(18a)内を上下に移動するピストン。
Figure 3 shows the cathode can (1
) is a cross-sectional view showing the process of filling a container (1).
OQ9 formed by the guide portion (18c) is a piston that moves up and down within the measuring portion (18a).

翰μ粒体合剤である。It is a mixture of granules.

この工程ではピストンa9を引上けた後、計量部(18
a)に所定量の粒体合剤(2Gを補填し、ピストン(1
!Iを計量部(18a)に圧入することにより、セパレ
ータ(2)及び底紙(3)を装填した亜鉛缶(1)K陽
極合剤(4)を充填する。この際亜鉛缶(1)はピスト
ン01の移動に伴って下方に移動するようになっている
が。
In this process, after pulling up the piston a9, the measuring section (18
Add a predetermined amount of granular mixture (2G) to a), and add the piston (1
! By press-fitting I into the measuring part (18a), the zinc can (1) loaded with the separator (2) and the bottom paper (3) is filled with the K anode mixture (4). At this time, the zinc can (1) is designed to move downward as the piston 01 moves.

その移動は充填された陽極合剤(4)に適宜な圧力がか
\るように調整されている。従って陽極合剤(4)とセ
パレータ(2)との接触及びセパレータ(2)へのN1
解液の浸透が均一におこなわれる。また粒体合剤−は主
として造粒部(18b)で造粒され、ガイド部(18c
)を困るときは全く粒形を留めないようになっている。
The movement is adjusted so that an appropriate pressure is applied to the filled anode mixture (4). Therefore, contact between anode mixture (4) and separator (2) and N1 to separator (2)
Penetration of solution is uniform. In addition, the granule mixture is mainly granulated in the granulation part (18b), and the guide part (18c
), the grain shape is not maintained at all.

上記のようにして陽極合剤(4)の充填が完了すると誓
紙(6)を亜鉛缶(1)に挿入し、誓紙(6)の中央に
設けた孔から炭素棒(5)を陽極合剤(4)中に圧入す
る。
When the filling of the anode mixture (4) is completed as described above, the oath paper (6) is inserted into the zinc can (1), and the carbon rod (5) is inserted into the anode through the hole made in the center of the oath paper (6). Press into mixture (4).

この炭素棒(5)の圧入により陽極合剤(4)は更に脱
気されて比重が高まるとともに、セパレータ(21’k
 介しての亜鉛缶(1)との接触が更に良好となり、ま
たセパレータ(2)へのtπ電解液浸透もより完全なも
のとなる。
By press-fitting the carbon rod (5), the anode mixture (4) is further degassed and its specific gravity increases, and the separator (21'k
The contact with the zinc can (1) through the zinc can becomes even better, and the tπ electrolyte permeates into the separator (2) more completely.

このようにし、て製造した陽極合剤(4)の比重は約2
−00 g/CI4であり、従来品の最高比重1.9 
f+ 97cmに比し極めて高い値のものが代られた。
The specific gravity of the anode mixture (4) produced in this way is approximately 2.
-00 g/CI4, the highest specific gravity of conventional products 1.9
It has been replaced with an extremely high value compared to f+ 97cm.

これらの値は前記の組成から求めた真比重2.0637
/c肩に対し夫々97チ及び95%である。
These values are the true specific gravity of 2.0637 determined from the above composition.
/c shoulder is 97ch and 95%, respectively.

しがし上記方法では造粒工程において1合剤がコンテナ
θ荀の内壁に付着し、衝撃や振動が合剤に十分伝わらな
いため脱気がまだ不十分で且つ粒体合剤Q1の直径のば
らつきが大きく、また造粒にも長時間を要するという欠
点があった。
However, in the above method, mixture 1 adheres to the inner wall of container θ in the granulation process, and shock and vibration are not sufficiently transmitted to the mixture, so degassing is still insufficient and the diameter of granular mixture Q1 There were drawbacks such as large variations and a long time required for granulation.

この発明は造粒前の合剤に少量の四フッ化エチレン樹脂
を混入することにより上記欠点を改善することを目的と
するものである。
The purpose of this invention is to improve the above-mentioned drawbacks by mixing a small amount of tetrafluoroethylene resin into the mixture before granulation.

本発明者らは合剤がコンテナI内壁に付着しにく\、大
きさの41(1つた粒体合剤(至)の得られる種々の造
粒促進剤について検討した結果、低摩擦性及び非粘着性
に優れた四フッ化エチレン樹脂を造粒前の合剤に少量添
加することが有効であること全見出した。
The present inventors have investigated various granulation accelerators that are difficult for the mixture to adhere to the inner wall of the container I, and have a size of 41 (up to 1). We have found that it is effective to add a small amount of tetrafluoroethylene resin, which has excellent non-adhesive properties, to the mixture before granulation.

すなわちそのような合剤に第2図の装置で385 分高
振La17JrLtJc結果−直径o、 5 ”i5上
、 4. On以下、嵩密度0.95.@100以上、
 1.10 i/CC以下9以下9匿 下の粒子4−合剤Q【りか行られた。それに対し四ンツ
化エチレンを添加しないものは4−′8分の造粒時間で
直径6. 5 F7:以上,5.gflF以下1 i?
6密度O.SO&/CC以上, 1.20,9/Co以
下9粒体比重1.92,9/ぺ以上e 2− 02 5
’ /crit以下であった。すなわち四フッ化エチレ
ンを添加したものは添加しないものに比し.よく脱気さ
れており,上記Kmのほらつきも少なく,また造粒時間
も少なくてよい。史に上記のような粒体合剤−を用い,
第3図に関して説明した工程で製造した乾電池の陽極合
剤(4)の比重は無添加のものが1.991!/傭(真
比重の96.5饅)以上, 2[31/cr/l (X
比重の88.4’i−)以下であるのに比し、四フッ化
エチレンを添加したものは2.02 g lCI&(真
比重の97.9チ)以上*22.04 jj/cr!(
p、比重の98.9%)以下であった。
That is, such a mixture was subjected to high vibration La17JrLtJc results for 385 minutes using the apparatus shown in Fig. 2 - diameter o, 5" i5 above, 4. On or less, bulk density 0.95.@100 or more,
1.10 i/CC or less 9 or less Particles 4-Mixture Q On the other hand, the one without the addition of tetraethylene has a granulation time of 4-8 minutes and a diameter of 6. 5 F7: That's all, 5. gflF or less 1 i?
6 density O. SO&/CC or more, 1.20,9/Co or less 9 grain specific gravity 1.92,9/Pe or moree 2-02 5
'/crit or less. In other words, those with tetrafluoroethylene added are compared to those without. It is well degassed, there is little flutter in the above Km, and the granulation time can be shortened. Using the above-mentioned granular mixture in history,
The specific gravity of the anode mixture (4) of the dry cell battery manufactured by the process explained with reference to FIG. 3 is 1.991 without additives! / mer (true specific gravity of 96.5 rice cakes) or more, 2[31/cr/l (X
The specific gravity is 88.4'i-) or less, while the one with tetrafluoroethylene added has a specific gravity of 2.02 g lCI & (97.9 g of true specific gravity) or more*22.04 jj/cr! (
p, 98.9% of specific gravity) or less.

次に実施例につき説明する。Next, an example will be explained.

従来のSUM−1型乾電池Aと、それと同一仕様で、四
フッ化エチレンを添加せず6分間造粒して製造した乾電
池Bと、やはり同一仕様で、四フッ化エチレン’2o、
oos重量%添加して4分間造粒して製造した乾電池C
とについて放電性能及び耐漏液性能の試験をおこなった
結果tii表及び第2表に示す。
The conventional SUM-1 type dry battery A, and the dry battery B, which has the same specifications but was produced by granulation for 6 minutes without adding tetrafluoroethylene, and the same specifications, but also made with tetrafluoroethylene '2o,
Dry battery C manufactured by adding oos weight% and granulating for 4 minutes
The results of tests on discharge performance and leakage resistance performance are shown in Table tII and Table 2.

第1表 第 2 表 第1表μ製造直後の各試料夫々50個の20°Cにおり
る放電持続時間の平均値及び標準偏差を示したもので、
乾電池Bは従来の乾電?1I12Aに比して格段と優れ
ているが、乾電池Cは更に放電性能が良好で、四ンフ化
エチレンの効果が明らかに認められる。
Table 1 Table 2 Table 1 shows the average value and standard deviation of the discharge duration at 20°C for each of the 50 samples immediately after production.
Is dry cell B a conventional dry cell? Although it is significantly superior to 1I12A, dry cell C has even better discharge performance, and the effect of tetrafluoroethylene is clearly recognized.

第2表はやはり製造直後の各試料夫々50個の20℃に
おける2Ω負荷での3チ月彼の漏液発生数、及び、夫々
100個の60℃3チ月保存後の漏液発生数を示したも
ので、耐漏液性能においても乾電池B、Oが明らかに優
れており、更に四フッ化エチレンの効果も認められる。
Table 2 also shows the number of leaks of 50 of each sample immediately after manufacture under a 2Ω load at 20°C for 3 months, and the number of leaks of 100 of each sample after storage at 60°C for 3 months. As shown, dry batteries B and O are clearly superior in leakage resistance, and the effect of tetrafluoroethylene is also recognized.

以上のように乾電池B、Oが従来の乾fi 油A K比
し格段と優れているのは陽極合剤(4)の脱気が完全に
なり、また電解液分布が均一になることの効果によるも
のであるが、更に途中の工程での電解液の注入及び合剤
の熟成をおこなわないので、前記した従来の第4及び第
5の欠点が除去されることは自明である。
As mentioned above, dry batteries B and O are significantly superior to conventional dry fuel oil A and K because of the complete degassing of the anode mixture (4) and the uniform electrolyte distribution. However, it is obvious that the fourth and fifth drawbacks of the conventional method described above are eliminated because the injection of electrolyte and the aging of the mixture are not performed during the intermediate steps.

また乾電池Cが乾電池Bより更に優れているのは、四フ
ッ化エチレンを添加した合剤は造粒時にコンテナQ4の
内壁に付着しにくいため脱気がより完全におこなわれる
こと\0粒体合剤いの大きさが揃って陽極合剤(4)の
カYのばらつきが減じたこととによるものである。
Furthermore, dry cell C is even better than dry cell B because the mixture containing tetrafluoroethylene is less likely to adhere to the inner wall of container Q4 during granulation, so deaeration is more complete. This is due to the fact that the sizes of the tubes are uniform and the variation in the strength of the anode mixture (4) is reduced.

その後回に種々実験を重ねて検討した結果、陽極合剤(
4)中の四フッ化エチレンの量が0.QOO17i景チ
以下でロチ以下の場合と同様で、上記のような効果が得
られない3、一方Q、(12i1j量チ以−ヒの場合セ
乾電池の放電時、イオンの移動の妨げと六って二酸化マ
ンガンの利用率が下り、放電性能の低下をきたして実用
上好寸しくない。
After that, as a result of various experiments and studies, we found that the anode mixture (
4) The amount of tetrafluoroethylene in it is 0. If QOO is less than 17i, it is the same as the case where it is less than or equal to Roti, and the above effect cannot be obtained3.On the other hand, if Q, (12i1j or more) is less than Therefore, the utilization rate of manganese dioxide decreases, resulting in a decrease in discharge performance, which is not suitable for practical use.

また粒体合剤01Nは、直径が0,5邦以上、5゜Or
詭以下、嵩密度が0.90g/QC以上、 1.20g
/QC以下9粒体比重が1.929 /c++を以上の
範囲が好適範囲であることが明らかになった。
In addition, the granular mixture 01N has a diameter of 0.5 mm or more, 5° Or
Bulk density is 0.90g/QC or more, 1.20g
It has become clear that the preferred range is a range in which the specific gravity of the 9 grains is 1.929 /c++ or less.

迅・ その理由は次のとクリである0、直径が0.5前より小
さい場合は脱気が不十分で、製造後のNwf液の陰1i
ji、111Iへの移動や動作中のイオンの移動が空気
により阻害されて放電性能が低く、且つばらつきも大き
くなって好ましくない。一方 5.611m以上の場合
には充填治具α・の計量部(18a)に補填される粒体
合剤(至)の量がばらつき、その結果亜鉛缶(11に充
填される陽極合剤(41の量がばらついて好ましくない
The reason for this is as follows: 0. If the diameter is smaller than 0.5, the deaeration is insufficient, and the Nwf liquid after production is 1i
ji, 111I and movement of ions during operation is obstructed by air, resulting in low discharge performance and large variations, which is undesirable. On the other hand, in the case of 5.611 m or more, the amount of the granular mixture (total) replenished into the measuring part (18a) of the filling jig α varies, and as a result, the anode mixture (total) filled into the zinc can (11) The amount of 41 varies, which is not preferable.

また嵩密度がo、eog7ccより小さい場合は造粒が
不完全で脱気が不十分となり、放電性能が低く、且つば
らつきが大きくなるとともに亜鉛缶(1)に充填される
陽極合剤(4)の量のばらつきが太きくなり、放電性能
及び耐泡液性能が劣る。一方、嵩密度が1.20g/c
c  より大きい場合は造粒が過剰状態となり2粒体表
面に遊離の電解液がRみ出してくると同時に粒体径も相
当大きくなる。このため9粒体合剤(イ)の流れが悪く
なり、計量部(18a)に補填される粒体合剤翰のばら
つきが大きくなる。
If the bulk density is smaller than o, eog7cc, granulation will be incomplete and deaeration will be insufficient, resulting in low discharge performance and large variations in anode mixture (4) filled into the zinc can (1). The dispersion in the amount becomes large, and the discharge performance and anti-foaming performance are inferior. On the other hand, the bulk density is 1.20g/c
If it is larger than c, the granulation becomes excessive and free electrolyte oozes out onto the surface of the two particles, and at the same time the particle diameter also becomes considerably large. For this reason, the flow of the 9-granule mixture (a) becomes poor, and the variation in the amount of the granule mixture supplemented to the measuring section (18a) becomes large.

その結果、亜鉛缶(1)中に充填された陽極合剤(4)
のばらつきが大きくなり、乾電池の製造上支障が生じ好
1しくない。
As a result, the anode mixture (4) filled in the zinc can (1)
This is undesirable because the variation in the values becomes large, which poses a problem in the production of dry batteries.

首た粒体比重が1.92g/iより小さい場合は脱気が
不十分で、放電性能が低く、且つばらつきが大きくなる
When the specific gravity of the necked particles is less than 1.92 g/i, degassing is insufficient, resulting in low discharge performance and large variations.

上記実施例では第2図のような三次元の高振動による装
置により合剤を造粒したが、衝撃を加えながら造粒する
ような装置であれば、他の装置例えば二次元の高振動に
よる装置のようなものでも同様の効果が得られる。
In the above example, the mixture was granulated using a three-dimensional high-vibration device as shown in Fig. 2, but if the device is capable of granulating while applying impact, other devices such as two-dimensional high-vibration device can be used. Similar effects can be obtained with devices such as devices.

玉・ この発明は以上説明したと+9.全電解液と四フッ化エ
チレン樹脂を含む固体材料とを混合した合剤を衝!’l
加えなから造粒し、その粒体合剤を渋粒して陰極缶に充
填することにより、短時間で造粒でき、また陽極合剤の
比重が真比重の86%以上で、脱気及び電解液分布の均
一化が良好な乾電池が得られ、放電性能及び耐漏液性能
が大巾に向上するという効果が得られる。
Ball: This invention has been explained above +9. A mixture of all electrolytes and a solid material containing tetrafluoroethylene resin is used! 'l
By granulating the granular mixture and filling it into a cathode can, it can be granulated in a short time, and the specific gravity of the anode mixture is 86% or more of the true specific gravity, making it easy to degas and A dry battery with good uniformity of electrolyte distribution can be obtained, and the effects of greatly improving discharge performance and leakage resistance can be obtained.

またこの発明の製造方法では工程途中での電jW液の注
入及び合剤の熟成をおこなわないので、それらに伴う諸
欠点を解消できるという効果もイ’+られる。
In addition, in the manufacturing method of the present invention, injection of the electric jw solution and aging of the mixture during the process are not performed, so that the various drawbacks associated with these can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来品及びこの発明の一実施例を示す乾電池の
断面図、第2図及び第3図はこの発明の↓遣方法の一実
施例を示す破断斜視図及び断面図である。 図において(+)Id陰極缶、(4)は陽極合剤、(至
)は粒体合剤である。 なお各図中同一符号は同一または相当IJ)’<示す。 代理人 葛 男f 信 − 第3図 11 昭和  年  月   11 特許庁長官殿 1、事件の表示    特願昭 57−3.42266
号2、発明の名称 二酸化マンガン乾電池及びその製造方法3、補正をする
者 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄。 6、補正の内容 明細書の第2頁第15行目の「和紙」とあるCを「クラ
フト紙など」と訂正する。 以上
FIG. 1 is a sectional view of a dry cell battery showing a conventional product and an embodiment of the present invention, and FIGS. 2 and 3 are a broken perspective view and a sectional view showing an embodiment of the downlink method of the present invention. In the figure, (+) is the Id cathode can, (4) is the anode mixture, and (to) is the granular mixture. Note that the same reference numerals in each figure indicate the same or equivalent IJ)'<. Agent: Shin Kuzuo F. Figure 3 11 Showa 11 Month 11 Mr. Commissioner of the Japan Patent Office 1, Indication of the case Patent application No. 57-3.42266
No. 2, Title of the invention: Manganese dioxide dry battery and its manufacturing method 3, Person making the amendment 4, Agent 5, Detailed description of the invention in the specification to be amended. 6. In the 15th line of page 2 of the statement of contents of the amendment, the C that says "Japanese paper" is corrected to "kraft paper, etc."that's all

Claims (4)

【特許請求の範囲】[Claims] (1)陽極合剤の比重が、その組成から求めた真比重の
96%以上であるとともに、上記陽極合剤中に四フッ化
エチレン樹脂を含有した二酸化マンガン乾電池。
(1) A manganese dioxide dry battery in which the specific gravity of the anode mixture is 96% or more of the true specific gravity determined from its composition, and the anode mixture contains tetrafluoroethylene resin.
(2)陽極合剤中の四7ツ化エチレン樹脂の含有量が0
.0001重量%以上、0.02  重量−以下である
ことを特徴とする特許請求の範囲第(1)項記載の二酸
化マンガン乾電池。
(2) The content of tetra7tethylene resin in the anode mixture is 0.
.. 0001% by weight or more and 0.02% by weight or less, the manganese dioxide dry battery according to claim (1).
(3)(イ)二酸化マンガン及び導電材と所要の全電解
液とを混合する工程 (ロ)(イ)の工程でできた混合物を衝9Aを加えなが
ら造粒する工程 (ハ)(ロ)の工程でできた粒体合剤を潰れする]二程 に)(ハ)の工程で潰れされた合剤を陰極缶に充填する
工程 を含む二酸化マンガン乾電池のαシ造方法。
(3) (A) Step of mixing manganese dioxide, conductive material, and all required electrolyte solution (B) Step of granulating the mixture made in step (B) while adding 9A of carbon dioxide (C) (B) A method for manufacturing a manganese dioxide dry battery, comprising the step of crushing the granular mixture produced in step 2) and filling a cathode can with the mixture crushed in step iii).
(4)粒体合剤の、直径75K 0.5 ””15、」
;s 5.0”’以下、窩密度がo、eog7cc 以
上、 1.20,9/Coす、下0粒体比重が1.92
g10!以上であることを特徴とする管Fc蛸求の範囲
第(3)項RC載の二酸化マンガン乾電池の製造方法。
(4) Diameter of granular mixture 75K 0.5""15"
;s 5.0"' or less, cavity density is o, eog7cc or more, 1.20.9/Co, lower grain specific gravity is 1.92
g10! A method for manufacturing a manganese dioxide dry battery equipped with an RC tube Fc requirement, item (3), characterized by the above.
JP57142266A 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture Granted JPS5931560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142266A JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142266A JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Publications (2)

Publication Number Publication Date
JPS5931560A true JPS5931560A (en) 1984-02-20
JPH0243307B2 JPH0243307B2 (en) 1990-09-27

Family

ID=15311344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142266A Granted JPS5931560A (en) 1982-08-17 1982-08-17 Manganese dioxide dry cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS5931560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222098A (en) * 1975-08-12 1977-02-19 Hodogaya Chem Co Ltd Process for preparing polyoxy tetramethylene glycol
JPS5732981A (en) * 1980-08-07 1982-02-22 Mitsubishi Electric Corp Heating element for printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222098A (en) * 1975-08-12 1977-02-19 Hodogaya Chem Co Ltd Process for preparing polyoxy tetramethylene glycol
JPS5732981A (en) * 1980-08-07 1982-02-22 Mitsubishi Electric Corp Heating element for printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
WO1997049106A1 (en) * 1994-11-17 1997-12-24 Lithium Technology Corporation Lightweight composite polymeric electrolytes for electrochemical devices

Also Published As

Publication number Publication date
JPH0243307B2 (en) 1990-09-27

Similar Documents

Publication Publication Date Title
JPS5931560A (en) Manganese dioxide dry cell and its manufacture
EP0374894B1 (en) Sealed tubular lead-acid battery
JPS63236258A (en) Manufacture of positive electrode of nonaqueous electrolyte battery
EP1194964B1 (en) Mixture consisting of metal particles and/or alloy particles and of a liquid electrolytic medium and method for producing the same
US2727080A (en) Active material for alkaline storage cells and methods of preparing same
DE2847775A1 (en) HIGH VOLTAGE CAPACITOR
JPS5931559A (en) Manganese dioxide dry cell and its manufacture
JP2000164220A (en) Electrode material for silver oxide battery
US4160747A (en) Electrode and manufacturing method therefor
JPH06251759A (en) Separator for lead-acid battery
US3124486A (en) Method of manufacturing storage
US2920128A (en) Method for the manufacture of battery electrodes
JPH03182529A (en) Expandable resin composition and expanded molding thereof
JPH07142060A (en) Alkaline-manganese battery
JP7011936B2 (en) Manufacturing method of positive electrode mixture for alkaline batteries
US11453047B2 (en) Method for producing salt core
JPH1027618A (en) Flat battery
JP2878294B2 (en) Lithium battery
US2684992A (en) Method of processing battery depolarizers
JPH0374055A (en) Alkaline manganese battery
JPH0594820A (en) Organic electrolyte battery
JP2000149955A (en) Alkaline dry battery
JPH06119936A (en) Sealed type lead-acid battery
JP2009087636A (en) Dry cell and its manufacturing method and its manufacturing device
JPH02139854A (en) Manufacture of organic electrolyte cell