JPH10340719A - Alkaline dry battery and its manufacture - Google Patents

Alkaline dry battery and its manufacture

Info

Publication number
JPH10340719A
JPH10340719A JP16517397A JP16517397A JPH10340719A JP H10340719 A JPH10340719 A JP H10340719A JP 16517397 A JP16517397 A JP 16517397A JP 16517397 A JP16517397 A JP 16517397A JP H10340719 A JPH10340719 A JP H10340719A
Authority
JP
Japan
Prior art keywords
positive electrode
binder
heating
electrode material
dry battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16517397A
Other languages
Japanese (ja)
Inventor
Shoichiro Tateishi
昭一郎 立石
Mitsutoshi Watanabe
光俊 渡辺
Osamu Ishida
修 石田
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP16517397A priority Critical patent/JPH10340719A/en
Publication of JPH10340719A publication Critical patent/JPH10340719A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To increase the strength of a positive electrode, without increasing the content of a binder in a positive electrode material by heating the positive electrode material containing the binder to a temperature near the melting point or the softening point of the binder. SOLUTION: Polyethylene powder is added as a binder to a main positive electrode material, containing electrolytic manganese dioxide, graphite, and an electrolyte comprising a potassium hydroxide aqueous solution. Then they are stirred and mixed. The mixture obtained is pressed, crushed, granulated, and the granulated powder is heated to a temperature near the melting point or the softening point of the binder. The powder is pressed to mold a cylinder, four molded bodies are stacked in a positive can 2, and further heated, so as to bring the molded body into close contact with the positive can 2 to form a positive electrode 1. An AA-size alkaline dry battery is assembled with the positive electrode 1, a separator 3, an electrolyte, and zinc paste. By increasing the binding effect of the binder through heating, the strength of the positive electrode 1 is enhanced, and productivity is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ乾電池お
よびその製造方法に関する。
[0001] The present invention relates to an alkaline dry battery and a method for producing the same.

【0002】[0002]

【従来の技術】アルカリ乾電池の正極材料は、一般に正
極活物質としての二酸化マンガン、導電助剤としての黒
鉛を主成分とし、これに結着性を持たせるためのバイン
ダーを含み、その成形にあたっては、水または電解液を
含ませている。この正極材料中にバインダーを含有させ
るのは、アルカリ乾電池の正極が、成形後に電解液を吸
収したり、微量のガスが発生することによって正極材料
間の結着力が緩んで導電性が低下し、放電持続時間が低
下するため、この放電持続時間の低下を抑制するととも
に、製造工程中での正極の割れや欠けを減少させて生産
性を向上させるという理由によるものである。
2. Description of the Related Art In general, the positive electrode material of an alkaline dry battery mainly comprises manganese dioxide as a positive electrode active material and graphite as a conductive additive, and contains a binder for imparting binding properties. , Water or electrolyte. The reason why the binder is contained in the positive electrode material is that the positive electrode of the alkaline dry battery absorbs the electrolytic solution after molding or generates a small amount of gas, whereby the binding force between the positive electrode materials is loosened and the conductivity is reduced, This is because the reduction in the discharge duration is suppressed because the discharge duration is reduced, and the productivity is improved by reducing cracking and chipping of the positive electrode during the manufacturing process.

【0003】そして、このバインダーの正極材料中にお
ける含有率を高くすると、正極の強度を高めることがで
き、生産性を向上させることができるとともに、保存に
よる放電持続時間の低下を抑制することができるという
効果がある反面、活物質の充填量が減少して、電池容量
が低下する。
[0003] When the content of the binder in the positive electrode material is increased, the strength of the positive electrode can be increased, the productivity can be improved, and the reduction in the discharge duration time due to storage can be suppressed. On the other hand, the amount of the active material to be charged decreases, and the battery capacity decreases.

【0004】このバインダーとしては、耐アルカリ性を
備えた有機物、たとえば、ポリエチレン、ポリテトラフ
ルオロエチレン(PTFE)、ポリアクリル酸ソーダ
(SPA)、ポリビニルアルコール(PVA)、スチレ
ンブタジエンゴム(SBR)など、種々の有機物が用い
られているが、決定的な物質はなく、バインダーの選択
だけでは保存による放電持続時間の低下と電池容量の低
下を一挙に解決することはできない。
Examples of the binder include organic substances having alkali resistance, such as polyethylene, polytetrafluoroethylene (PTFE), sodium polyacrylate (SPA), polyvinyl alcohol (PVA), and styrene butadiene rubber (SBR). However, there is no definitive substance, and the selection of a binder alone cannot solve the reduction of the discharge duration and the reduction of the battery capacity at once.

【0005】[0005]

【発明が解決しようとする課題】上記のように、正極材
料中におけるバインダーの含有率を高くすると、バイン
ダーの結着効果を増加させることができ、正極の強度を
高くして、生産性を向上させることができるとともに、
保存による放電持続時間の低下を防止することができる
が、正極材料中におけるバインダーの含有率を高くする
と、活物質の充填量が減少して、電池容量が低下する。
As described above, when the content of the binder in the positive electrode material is increased, the binding effect of the binder can be increased, the strength of the positive electrode is increased, and the productivity is improved. As well as
Although it is possible to prevent a decrease in the duration of discharge due to storage, when the content of the binder in the positive electrode material is increased, the amount of the active material to be filled is reduced, and the battery capacity is reduced.

【0006】従って、本発明は、上記のような従来技術
における問題点を解決し、正極材料中におけるバインダ
ーの含有率を増加させることなく、バインダーの結着効
果を増加させ、生産性を向上させるとともに、保存によ
る放電持続時間の低下を抑制し、かつ電池容量の低下を
防止したアルカリ乾電池を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned problems in the prior art, and increases the binding effect of the binder without increasing the content of the binder in the positive electrode material, thereby improving the productivity. In addition, an object of the present invention is to provide an alkaline dry battery that suppresses a decrease in the duration of discharge due to storage and prevents a decrease in battery capacity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、バインダーを含
む正極材料をバインダーの融点または軟化点近くに加熱
するときは、バインダーと正極活物質の二酸化マンガン
などとの結着性が向上して、正極材料におけるバインダ
ーの含有率を増加させることなく、正極の強度を高める
ことができ、上記課題を解決できることを見出し、本発
明を完成するにいたった。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, when heating a binder-containing positive electrode material near the melting point or softening point of the binder, the binder and the positive electrode were heated. It has been found that the binding property of the active material with manganese dioxide and the like is improved, and the strength of the positive electrode can be increased without increasing the content of the binder in the positive electrode material. I have to do it.

【0008】すなわち、上記のように加熱することによ
り、バインダーの結着効果が増加して、正極の強度を高
めることができ、それによって製造工程中での正極の割
れや欠けが減少して生産性が向上するとともに、電池を
保存した時に電解液による正極の膨潤が少なくなり、保
存中の導電性の低下が抑制されて、保存による放電持続
時間の低下が抑制されるようになる。また、バインダー
の含有量を増加させる必要がないので、電池容量の低下
を招くことがなく、電池容量の低下を防止することがで
きる。
[0008] That is, by heating as described above, the binding effect of the binder is increased, and the strength of the positive electrode can be increased. In addition to improving the battery performance, the swelling of the positive electrode due to the electrolyte during storage of the battery is reduced, and the decrease in conductivity during storage is suppressed, and the decrease in the discharge duration time due to storage is suppressed. In addition, since it is not necessary to increase the content of the binder, a decrease in battery capacity does not occur, and a decrease in battery capacity can be prevented.

【0009】[0009]

【発明の実施の形態】本発明を詳細に説明するにあたっ
て、先に従来のアルカリ乾電池の正極の一般的な製造工
程を示すと、図3に示すように、まず、活物質と導電助
剤とバインダーと水または電解液とを混合し、ついで、
つぎの成形工程での生産性を向上させるために10〜1
00メッシュ程度に造粒する。ただし、この造粒工程は
必須の工程ではなく、省略することができる。つぎに正
極材料を筒形に成形し、その成形体を正極缶に挿入す
る。そして、成形体を正極缶に挿入するとき、または成
形体を正極缶に挿入した後、加圧して上記正極材料の成
形体と正極缶との密着性を高めるための圧着工程を行
い、正極にされる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the present invention in detail, the general manufacturing process of a positive electrode of a conventional alkaline dry battery will be described. First, as shown in FIG. Mix the binder and water or electrolyte, then
In order to improve the productivity in the next molding step, 10-1
Granulate to about 00 mesh. However, this granulation step is not an essential step and can be omitted. Next, the positive electrode material is formed into a cylindrical shape, and the formed body is inserted into a positive electrode can. Then, when the molded body is inserted into the positive electrode can, or after the molded body is inserted into the positive electrode can, a pressing step is performed to increase the adhesion between the molded body of the positive electrode material and the positive electrode can by applying pressure, and the positive electrode is formed. Is done.

【0010】これに対して、本発明では、図1に示すよ
うに、上記混合後または造粒後に加熱するか(加熱
)、または成形後、正極缶への挿入前または挿入後、
さらには圧着後に加熱する(加熱、加熱、加熱
)。この加熱は、図1に「加熱」、「加熱」、
「加熱」、「加熱」と記入した工程中のいずれで行
ってもよいし、また、2以上の工程で行ってもよい。そ
して、この加熱を行う以外は、図3に示した従来の正極
の製造方法と同様の方法で正極を製造することができ
る。
On the other hand, in the present invention, as shown in FIG. 1, after the mixing or granulation, heating is performed (heating), or after molding, before or after insertion into the positive electrode can,
Furthermore, it heats after pressure bonding (heating, heating, heating). This heating is shown in FIG. 1 as “heating”, “heating”,
It may be performed in any of the steps described as “heating” and “heating”, or may be performed in two or more steps. Then, except that this heating is performed, a positive electrode can be manufactured by the same method as the conventional method for manufacturing a positive electrode shown in FIG.

【0011】本発明において、正極活物質としては二酸
化マンガンなどが用いられ、導電助剤としてはたとえば
黒鉛などが用いられ、バインダーとしてはたとえばポリ
エチレン、ポリテトラフルオロエチレン、ポリアクリル
酸ソーダ、ポリビニルアルコール、スチレンブタジエン
ゴムなどが用いられ、特にポリエチレンが所定の結着性
を得るための価格が安価であることから適している。
In the present invention, manganese dioxide or the like is used as the positive electrode active material, graphite or the like is used as the conductive aid, and polyethylene, polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol, or the like is used as the binder. Styrene butadiene rubber or the like is used, and polyethylene is particularly suitable because it is inexpensive for obtaining a predetermined binding property.

【0012】加熱はバインダーの融点または軟化点近く
の温度で行うので、加熱温度は使用するバインダーによ
って異なるが、一般的には90〜150℃程度が好まし
い。加熱温度が低下すぎるとバインダーの結着効果が増
加せず、加熱温度が高すぎると二酸化マンガンに含まれ
る結晶水が蒸発し、二酸化マンガンの性質が変化して電
池性能が損なわれるおそれがあるので、たとえば、バイ
ンダーとしてポリエチレンを用いる場合、加熱温度は1
00〜140℃が好ましい。また、加熱時間は、加熱温
度やバインダーの種類によっても異なるが、3〜15分
程度が好ましい。
Since heating is performed at a temperature near the melting point or softening point of the binder, the heating temperature varies depending on the binder used, but is generally preferably about 90 to 150 ° C. If the heating temperature is too low, the binding effect of the binder does not increase, and if the heating temperature is too high, the water of crystallization contained in manganese dioxide evaporates, and the properties of manganese dioxide may change and battery performance may be impaired. For example, when polyethylene is used as the binder, the heating temperature is 1
00-140 ° C is preferred. The heating time varies depending on the heating temperature and the type of binder, but is preferably about 3 to 15 minutes.

【0013】バインダーの使用量は従来と同程度でよ
く、たとえば、正極材料中にバインダーを0.3〜1.
5重量%程度含有させればよく、特に0.3〜0.7重
量%程度の比較的少ない含有量でも良好な結着効果を発
現させることができる。
The amount of the binder used may be the same as that of the conventional one.
It may be contained in an amount of about 5% by weight, and in particular, a relatively small amount of about 0.3 to 0.7% by weight can exert a good binding effect.

【0014】上記のようなバインダーの融点または軟化
点近くでの加熱により、バインダーの結着効果が増加し
て、バインダーと正極活物質の二酸化マンガンなどとの
結着性が向上し、正極の強度が高くなり、製造工程中で
の正極の割れや欠けが減少して生産性が向上するととも
に、電池を保存した時に電解液による正極の膨潤が少な
くなり、保存中の導電性の低下が抑制され、保存による
放電持続時間の低下が抑制されるようになる。
By heating the binder near the melting point or softening point of the binder as described above, the binding effect of the binder is increased, the binding between the binder and the positive electrode active material such as manganese dioxide is improved, and the strength of the positive electrode is improved. Of the positive electrode during the manufacturing process is reduced, and the productivity is improved, and the swelling of the positive electrode due to the electrolyte during storage of the battery is reduced, and the decrease in conductivity during storage is suppressed. In addition, a decrease in the discharge duration time due to storage is suppressed.

【0015】[0015]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0016】実施例1 電解二酸化マンガン89重量部と黒鉛と濃度35重量%
の水酸化カリウム水溶液からなる電解液とを含む主正極
材料99重量部に、バインダーとして軟化点が96℃で
平均粒径が18μmのポリエチレン粉末を1重量部添加
し、攪拌・混合した。得られた混合物をプレス・粉砕し
た後、50メッシュパスの大きさに造粒し、得られた造
粒粉末を140℃で5分間加熱した。つぎにプレス機で
筒形に成形した後、該成形体を4個積み重ねるようにし
て正極缶に挿入し、さらに加圧して上記成形体を正極缶
に圧着させて正極とした。この正極と公知のセパレー
タ、電解液、亜鉛ペーストなどを用いて図2に示す構造
の単3形アルカリ乾電池を作製した。
EXAMPLE 1 89 parts by weight of electrolytic manganese dioxide, graphite and a concentration of 35% by weight
1 part by weight of a polyethylene powder having a softening point of 96 ° C. and an average particle size of 18 μm as a binder was added to 99 parts by weight of a main positive electrode material containing an electrolytic solution composed of an aqueous solution of potassium hydroxide and stirred and mixed. After the obtained mixture was pressed and pulverized, the mixture was granulated to a size of 50 mesh pass, and the obtained granulated powder was heated at 140 ° C. for 5 minutes. Next, after being formed into a cylindrical shape by a press machine, four of the formed bodies were inserted into a positive electrode can so as to be stacked, and the above-mentioned formed body was pressed on the positive electrode can by further pressurization to form a positive electrode. Using this positive electrode, a known separator, an electrolytic solution, a zinc paste and the like, an AA alkaline battery having the structure shown in FIG. 2 was produced.

【0017】ここで、図2に示すアルカリ乾電池につい
て説明すると、正極1は上記のようにポリエチレンをバ
インダーとして用い、造粒後、加熱した正極材料を筒形
に成形し、その筒形成形体を4個積み重ねて端子付きの
正極缶2内に挿入し、上方から加圧して上記正極材料の
成形体を正極缶2の内面に圧着したものである。
Here, the alkaline dry battery shown in FIG. 2 will be described. As for the positive electrode 1, polyethylene is used as a binder as described above, and after granulation, a heated positive electrode material is formed into a cylindrical shape. The positive electrode can 2 is stacked, inserted into the positive electrode can 2 with terminals, and pressurized from above to press the molded body of the positive electrode material onto the inner surface of the positive electrode can 2.

【0018】セパレータ3は上記正極1と亜鉛ペースト
からなる負極4との間に配置し、上記亜鉛ペーストは亜
鉛粉末と水酸化カリウム水溶液にゲル化剤を添加してゲ
ル状にしたアルカリ電解液とで調製され、この亜鉛ペー
ストからなる負極4中に負極集電体5の先端部側が挿入
され、正極缶2の開口部は上記負極集電体5の頭部、封
口体6、金属ワッシャ7、樹脂ワッシャ8、絶縁キャッ
プ9、負極端子板10などで封口され、正極缶2の外周
部は樹脂外装体11で外装されている。
The separator 3 is disposed between the positive electrode 1 and the negative electrode 4 made of zinc paste. The zinc paste is made of a zinc powder and a potassium hydroxide aqueous solution to which a gelling agent is added to form a gelled alkaline electrolyte. The tip end side of the negative electrode current collector 5 is inserted into the negative electrode 4 made of this zinc paste, and the opening of the positive electrode can 2 has the head of the negative electrode current collector 5, a sealing body 6, a metal washer 7, The positive electrode can 2 is sealed with a resin washer 8, an insulating cap 9, a negative electrode terminal plate 10, and the like.

【0019】上記のようにして作製した電池の一部を8
0℃で5日間および8日間保存し、後記の放電持続時間
の測定に供した。
A part of the battery prepared as described above was replaced with 8
It was stored at 0 ° C. for 5 days and 8 days, and used for the measurement of the discharge duration described below.

【0020】実施例2 実施例1と同様の電解二酸化マンガンと黒鉛と電解液と
を含む主正極材料99重量部に、バインダーとして実施
例1と同様の軟化点が96℃で平均粒径が18μmのポ
リエチレン粉末を1重量部添加し、攪拌・混合した。得
られた混合物を50メッシュパスの大きさに造粒した
後、プレス機で筒形に成形し、得られた筒形成形体を4
個積み重ねるようにして正極缶に挿入し、加圧して上記
正極材料の成形体を正極缶に圧着して正極とした。
Example 2 As in Example 1, 99 parts by weight of a main positive electrode material containing electrolytic manganese dioxide, graphite and an electrolytic solution were used as a binder, and the same softening point as in Example 1 was 96 ° C. and the average particle size was 18 μm. Of polyethylene powder was added, and the mixture was stirred and mixed. After granulating the obtained mixture to a size of 50 mesh pass, the mixture is formed into a cylindrical shape by a press machine, and the obtained cylindrical body is formed into a cylindrical shape.
The positive electrode can was inserted into the positive electrode can in a stacked manner, and the molded body of the positive electrode material was press-bonded to the positive electrode can under pressure to obtain a positive electrode.

【0021】この正極を80℃、100℃、120℃、
140℃、160℃の各温度でそれぞれ5分間加熱し、
これらの正極を用いた以外は、実施例1と同様にして単
3形アルカリ乾電池を作製した。このようにして作製し
た電池の一部を80℃で5日間および8日間保存して、
後記の放電持続時間の測定に供した。
The positive electrode was heated at 80 ° C, 100 ° C, 120 ° C,
Heated at 140 ° C. and 160 ° C. for 5 minutes each,
Except that these positive electrodes were used, AA alkaline batteries were prepared in the same manner as in Example 1. A part of the battery thus prepared was stored at 80 ° C. for 5 days and 8 days,
It was used for measurement of the discharge duration described later.

【0022】比較例1 従来技術に従い、実施例1におけるような加熱を行わな
かった以外は、実施例1と同様にして単3形アルカリ乾
電池を作製した。作製した電池の一部を80℃で5日間
および8日間保存して、放電持続時間の測定に供した。
Comparative Example 1 An AA alkaline battery was prepared in the same manner as in Example 1 except that heating was not performed as in Example 1 according to the prior art. A part of the produced battery was stored at 80 ° C. for 5 days and 8 days, and was subjected to measurement of a discharge duration time.

【0023】上記実施例1のように正極材料を造粒後、
140℃で5分間加熱してから筒形に成形した成形体、
実施例2のように正極材料を筒形に成形後に80℃、1
00℃、120℃、140℃、160℃の各温度でそれ
ぞれ5分間加熱した成形体、および比較例1のように従
来技術に従い加熱をしていない筒形成形体のそれぞれに
側面から応力を加え、応力を徐々に増加させて、成形体
が破壊されるときの応力値を測定した。その結果を表1
に示す。
After granulating the positive electrode material as in Example 1 above,
A molded body which was heated at 140 ° C. for 5 minutes and then molded into a cylindrical shape,
After forming the positive electrode material into a cylindrical shape as in Example 2,
A stress was applied from the side to each of the molded body heated at each of 00 ° C., 120 ° C., 140 ° C., and 160 ° C. for 5 minutes, and each of the cylindrical forming bodies that were not heated according to the related art as in Comparative Example 1. The stress was gradually increased, and the stress value when the molded body was broken was measured. Table 1 shows the results.
Shown in

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示す結果から明らかなように、10
0℃以上に加熱することにより、正極材料が強固に結着
し、成形体の強度が高くなって、成形体が破壊されるま
での応力値が上昇する。この結果から、製造工程中での
正極の割れや欠けが少なくなり、生産性の向上すること
がわかる。
As apparent from the results shown in Table 1, 10
By heating to 0 ° C. or higher, the positive electrode material is firmly bound, the strength of the molded body is increased, and the stress value before the molded body is broken increases. From this result, it can be seen that cracking and chipping of the positive electrode during the manufacturing process are reduced and productivity is improved.

【0026】つぎに、実施例1〜2の電池および比較例
1の電池を20℃、抵抗2Ωで放電させ、電池の端子電
圧が0.9Vに下がるまでの放電持続時間を測定した。
その結果を表2に示す。放電持続時間の測定は、実施例
1〜2および比較例1の電池において、それぞれ製造直
後の電池、80℃で5日間保存後(表2には「80℃5
日後」で表示)の電池および80℃で8日間保存後(表
2には「80℃8日後」で表示)の電池について行っ
た。上記のように80℃で5日間保存したときの正極の
膨潤の程度は20℃で3年間保存したときと同レベル
で、80℃で8日間保存したときの正極の膨潤の程度は
20℃で5年間保存したときと同レベルであることが経
験的にわかっている。
Next, the batteries of Examples 1 and 2 and the battery of Comparative Example 1 were discharged at 20 ° C. and a resistance of 2 Ω, and the discharge duration time until the terminal voltage of the battery dropped to 0.9 V was measured.
Table 2 shows the results. The measurement of the discharge duration was performed for the batteries of Examples 1 and 2 and Comparative Example 1 after the batteries were manufactured immediately after storage and after storage at 80 ° C. for 5 days (in Table 2, “80 ° C. 5
Days) and after storage at 80 ° C. for 8 days (shown in Table 2 as “80 days after 8 days”). As described above, the degree of swelling of the positive electrode when stored at 80 ° C for 5 days is the same level as when stored at 20 ° C for 3 years, and the degree of swelling of the positive electrode when stored at 80 ° C for 8 days is 20 ° C. Experience shows that it is at the same level as when stored for 5 years.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、100〜140℃で加
熱したものは、比較例1のような加熱をしていないもの
に比べて、放電持続時間が大きく、かつ保存による放電
持続時間の低下が少なかった。
As shown in Table 2, the sample heated at 100 to 140 ° C. had a longer discharge duration and a shorter discharge duration due to storage than the non-heated sample as in Comparative Example 1. Was few.

【0029】上記実施例では、バインダーとしてポリエ
チレンを用いた場合を例示したが、ポリエチレンと同様
に加熱により結着効果が増加するポリテトラフルオロエ
チレン、ポリアクリル酸ソーダ、ポリビニルアルコー
ル、スチレンブタジエンゴムなどをバインダーとして用
いた場合にも、実施例で示したポリエチレンの場合と同
様の効果を奏することができる。
In the above embodiment, the case where polyethylene is used as the binder is exemplified. However, like polyethylene, polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol, styrene butadiene rubber, etc., whose binding effect increases by heating, are used. Even when used as a binder, the same effects as those of the polyethylene shown in the examples can be obtained.

【0030】[0030]

【発明の効果】以上説明したように、本発明では、加熱
によりバインダーの結着効果を増加させることにより、
正極の強度を高め、生産性を向上させるとともに、保存
中の正極の膨潤を抑制して、保存による放電持続時間の
低下を抑制し、かつ電池容量の低下を防止することがで
きた。
As described above, in the present invention, by increasing the binding effect of the binder by heating,
The strength of the positive electrode was increased, the productivity was improved, the swelling of the positive electrode during storage was suppressed, the decrease in the discharge duration due to storage was suppressed, and the reduction in battery capacity was able to be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルカリ乾電池における正極の製造工
程図である。
FIG. 1 is a manufacturing process diagram of a positive electrode in an alkaline dry battery of the present invention.

【図2】本発明のアルカリ乾電池の一例を示す部分断面
図である。
FIG. 2 is a partial cross-sectional view showing an example of the alkaline dry battery of the present invention.

【図3】従来のアルカリ乾電池の正極の製造工程図であ
る。
FIG. 3 is a manufacturing process diagram of a positive electrode of a conventional alkaline dry battery.

【符号の説明】[Explanation of symbols]

1 正極 3 セパレータ 4 負極 1 positive electrode 3 separator 4 negative electrode

フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内Continuation of the front page (72) Inventor Ryu Nagai 1-1-88 Ushitora, Ibaraki-shi, Osaka Inside Hitachi Maxell Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バインダーを含む正極材料をバインダー
の融点または軟化点近くに加熱して、正極の強度を増加
させる工程を経て製造されたことを特徴とするアルカリ
乾電池。
An alkaline dry battery manufactured by heating a cathode material containing a binder to a temperature close to the melting point or softening point of the binder to increase the strength of the cathode.
【請求項2】 バインダーがポリエチレンで、加熱温度
が100〜140℃である請求項1記載のアルカリ乾電
池。
2. The alkaline dry battery according to claim 1, wherein the binder is polyethylene and the heating temperature is 100 to 140 ° C.
【請求項3】 バインダーを含む正極材料をバインダー
の融点または軟化点近くに加熱して、正極の強度を増加
させる工程を経てアルカリ乾電池を製造することを特徴
とするアルカリ乾電池の製造方法。
3. A method for manufacturing an alkaline dry battery, comprising heating a positive electrode material containing a binder to a temperature close to the melting point or softening point of the binder to increase the strength of the positive electrode, and manufacturing the alkaline dry battery.
【請求項4】 バインダーがポリエチレンで、加熱温度
が100〜140℃である請求項2記載のアルカリ乾電
池の製造方法。
4. The method according to claim 2, wherein the binder is polyethylene and the heating temperature is 100 to 140 ° C.
JP16517397A 1997-06-06 1997-06-06 Alkaline dry battery and its manufacture Withdrawn JPH10340719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16517397A JPH10340719A (en) 1997-06-06 1997-06-06 Alkaline dry battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16517397A JPH10340719A (en) 1997-06-06 1997-06-06 Alkaline dry battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10340719A true JPH10340719A (en) 1998-12-22

Family

ID=15807249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16517397A Withdrawn JPH10340719A (en) 1997-06-06 1997-06-06 Alkaline dry battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10340719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114398A (en) * 2017-12-22 2019-07-11 Fdk株式会社 Method for manufacturing positive electrode mixture for alkali battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114398A (en) * 2017-12-22 2019-07-11 Fdk株式会社 Method for manufacturing positive electrode mixture for alkali battery

Similar Documents

Publication Publication Date Title
US3870564A (en) Alkaline cell
JP2000040504A (en) Manufacture of positive mix for organic electrolyte battery
JP2008516410A (en) Alkaline battery with improved anode
CN100511804C (en) Alkaline cell with improved anode
US3427203A (en) Large surface area electrodes and a method for preparing them
EP2109168A2 (en) Alkaline dry battery and method for producing the same
JP3022758B2 (en) Alkaline manganese battery
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
JPH10340719A (en) Alkaline dry battery and its manufacture
JPH10144304A (en) Alkali battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP2000149955A (en) Alkaline dry battery
JP3553819B2 (en) Method for producing positive electrode mixture for alkaline dry battery
JP7146545B2 (en) Cathode mixture for alkaline batteries
KR0143904B1 (en) Alkaline manganese cell
JPH11111256A (en) Zinc alkaline battery
JP2003297343A (en) Positive electrode and alkaline battery using it
JP4721813B2 (en) Manufacturing method of alkaline battery
JPH01151158A (en) Manufacture of positive electrode for nonaqueous solvent cell
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
JPH01220373A (en) Alkali-manganese cell
JPH11288709A (en) Manufacture of cylindrical alkaline battery
JPS6211462B2 (en)
JPH0317346B2 (en)
JPH09129239A (en) Organic electrolytic battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907