JPH01220373A - Alkali-manganese cell - Google Patents

Alkali-manganese cell

Info

Publication number
JPH01220373A
JPH01220373A JP4495888A JP4495888A JPH01220373A JP H01220373 A JPH01220373 A JP H01220373A JP 4495888 A JP4495888 A JP 4495888A JP 4495888 A JP4495888 A JP 4495888A JP H01220373 A JPH01220373 A JP H01220373A
Authority
JP
Japan
Prior art keywords
positive electrode
molecular weight
resin powder
electrolyte
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4495888A
Other languages
Japanese (ja)
Other versions
JPH07107852B2 (en
Inventor
Yasuyoshi Taniguchi
谷口 康義
Koji Koide
小出 浩二
Futayasu Iwamaru
岩丸 二康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4495888A priority Critical patent/JPH07107852B2/en
Publication of JPH01220373A publication Critical patent/JPH01220373A/en
Publication of JPH07107852B2 publication Critical patent/JPH07107852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the increase of the internal resistance and the reduction of the discharge performance by using low-molecular weight ethylene tetrafluoride resin powder for the binder of a positive electrode black mix and adding it at the specific ratio. CONSTITUTION:Low-molecular weight ethylene tetrafluoride resin powder is used for the binder of a positive electrode black mix 1 using MnO2 as a positive electrode active material, the low-molecular weight ethylene tetrafluoride resin powder 0.3-3wt.% is added to the whole weight of MnO2 and a conductive auxiliary. The above low-molecular weight ethylene tetrafluoride resin powder has little absorptivity of an electrolyte, the positive electrode black mix after molding is prevented from absorbing the electrolyte more than necessary and being swollen and softened to reduce the adherence with a positive electrode can, and the electron conductivity is not lowered in the positive electrode black mix. The sufficient electrolyte is secured around a negative electrode black mix 4, thereby the discharge performance is not reduced. When the addition of the low-molecular weight ethylene tetrafluoride resin powder is larger or smaller than the above ratio, the internal resistance is increased, and it is not desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルカリ・マンガン電池に係わり、さらに詳し
くはその正極合剤のバインダーの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to alkaline manganese batteries, and more particularly to improving the binder of the positive electrode mixture.

〔従来の技術〕[Conventional technology]

アルカリ・マンガン電池の正極合剤は、秤量性や成形性
を良好にするために、正極活物質としての二酸化マンガ
ンや、導電助剤としての黒鉛粉末、カーボンブラックな
どからなる正極材料を湿式混合し、得られた混合物を直
径0.5〜1.0 m餉の押出孔を有する押出造粒機で
押し出して粒状にしたり、あるいは粉末状混合物を2本
のロール間に通してプレスし、フレーク状の圧縮物を作
り、これを粉砕、分級して所定の粒度範囲に揃えること
などが行われている。そして、その際、造粒物が粉化し
ないように、正極材料配合時にポリアクリル酸ソーダや
カルボキシメチルセルロースなどの糊的性質を持つ水溶
性バインダー(結着剤)を添加して正極材料間の結着力
を高めるようにしていた(例えば、特開昭61−226
6号公報)。
The positive electrode mixture for alkaline manganese batteries is made by wet-mixing positive electrode materials consisting of manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, carbon black, etc. in order to improve weighability and moldability. The resulting mixture is extruded into granules using an extrusion granulator having extrusion holes with a diameter of 0.5 to 1.0 m, or the powdered mixture is passed between two rolls and pressed to form flakes. A compressed product is made, which is then crushed and classified to have a predetermined particle size range. At that time, in order to prevent the granules from turning into powder, a water-soluble binder (binder) with glue-like properties such as sodium polyacrylate or carboxymethyl cellulose is added to the mixture of the positive electrode materials to form bonds between the positive electrode materials. They tried to increase the adhesion force (for example, Japanese Patent Application Laid-Open No. 61-226
Publication No. 6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記水溶性バインダーは、電池内で電解
液を吸収するので、成形後の正極合剤が電解液を吸収し
て膨潤し軟化するため、電池の内部抵抗が増加したり、
放電性能が低下するという問題が発生した。つまり、正
極合剤が電解液の吸収により膨潤して軟らか(なって正
極缶との密着度が低下したり、黒鉛粉末やカーボンブラ
ックなどのsit助剤による正極合剤内部での電子伝導
性が低下して内部抵抗が増加し、また、電解液が正極合
剤に吸収されて正極側に移動することにより負極活物質
である亜鉛近傍の電解液が不足して負極側での放電反応
が充分に進行しなくなって、放電持続時間が短くなるな
ど、放電性能が低下するのである。このような電池内で
の成形正極合剤の湿潤強度の低下は、時間の経過ととも
に進行するため、それに基づく電池性能の低下は特に貯
蔵後において顕著に現れることとなった。
However, since the water-soluble binder absorbs the electrolyte within the battery, the positive electrode mixture after molding absorbs the electrolyte and swells and softens, increasing the internal resistance of the battery.
A problem occurred in which the discharge performance deteriorated. In other words, the positive electrode mixture may swell and become soft due to absorption of the electrolyte, reducing its adhesion with the positive electrode can, or the electronic conductivity inside the positive electrode mixture may be reduced due to sit aids such as graphite powder or carbon black. As the internal resistance decreases and the internal resistance increases, the electrolyte is absorbed by the positive electrode mixture and moves to the positive electrode side, resulting in a shortage of electrolyte near zinc, which is the negative electrode active material, and the discharge reaction on the negative electrode side is insufficient. As a result, the discharge performance deteriorates, such as the discharge duration becoming shorter and the discharge duration becoming shorter.This decrease in the wet strength of the formed positive electrode mixture within the battery progresses over time, so the The deterioration in battery performance was particularly noticeable after storage.

本発明は、上記のように従来のアルカリ・マンガン電池
が持っていた正極合剤の電解液吸収に基づく内部抵抗増
加や正極合剤側への電解液の移動による放電性能の低下
を抑制し、電池性能の優れたアルカリ・マンガン電池を
従供することを目的とする。
As mentioned above, the present invention suppresses the internal resistance increase due to electrolyte absorption of the positive electrode mixture and the decrease in discharge performance due to movement of the electrolyte toward the positive electrode mixture, which conventional alkaline manganese batteries had, The aim is to provide alkaline manganese batteries with excellent battery performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、正極合剤のバインダーとして低分子量四フッ
化エチレン樹脂粉末を用い、この低分子量四フッ化エチ
レン樹脂粉末を二酸化マンガンと導電助剤との総1i!
に対して0.3〜3重景%添加することによって上記目
的を達成したものである。
In the present invention, a low molecular weight tetrafluoroethylene resin powder is used as a binder for the positive electrode mixture, and this low molecular weight tetrafluoroethylene resin powder is combined with manganese dioxide and a conductive additive to a total of 1i!
The above objective was achieved by adding 0.3 to 3% of the total weight.

すなわち、正極活物質である二酸化マンガン粉末と黒鉛
粉末、カーボンブラックなどの導電助剤と低分子量四フ
ッ化エチレン樹脂粉末とを少鼠の苛性カリ (K OH
)水溶液または苛性ソーダ(NaOH)水溶液を添加し
た状態で混合しく上記の苛性カリ水溶液や苛性ソーダ水
溶液は、主として二酸化マンガンに基づ(酸性を中和し
、かっ二酸化マンガンによる強い酸化力によって取扱機
械が腐食を受けるのを防止するために添加する)、得ら
れた正極合剤を押出造粒機で押し出して造粒し、水分を
乾燥して成形性、秤量性のよい適正水分値に調整し、成
形用金型に充填してリング状などの所望形状に成形し、
それを正極缶内に挿入し、押圧して正極缶の内周面に密
着させ、以後、常法にしたがって電池作製をしたときに
、上記低分子量四フフ化エチレン樹脂粉末は、ポリアク
リル酸ソーダやカルボキシメチルセルローズなどの従来
の水溶性バインダーに比べて電解液の吸収性が少なく、
したがって成形後の正極合剤が電池内で電解液を必要以
上に吸収して膨潤し吠らかくなって正極缶出の密着度が
低下したり、正極合剤内での電子伝導性が低下するよう
なことがない、したがって、負極側の電解液が必要以上
に正極合剤に吸収サレルことがないため、負極活物質で
ある亜鉛の周囲に充分な電解液が確保され負極側の放電
反応が充分に進行するので放電性能の低下が生じない。
That is, manganese dioxide powder, which is a positive electrode active material, conductive additives such as graphite powder and carbon black, and low molecular weight tetrafluoroethylene resin powder are mixed with a small amount of caustic potassium (KOH).
) aqueous solution or caustic soda (NaOH) aqueous solution. The resulting positive electrode mixture is extruded and granulated using an extrusion granulator, and the water is dried to adjust the moisture content to an appropriate level for good moldability and weighability. Fill it into a mold and form it into a desired shape such as a ring.
It is inserted into the positive electrode can and pressed to make it adhere tightly to the inner circumferential surface of the positive electrode can. Thereafter, when a battery is manufactured according to a conventional method, the low molecular weight tetrafluoroethylene resin powder is Compared to conventional water-soluble binders such as or carboxymethyl cellulose, it absorbs less electrolyte.
Therefore, the positive electrode mixture after molding absorbs more electrolyte in the battery, swells and becomes loose, reducing the adhesion of the positive electrode can and reducing the electronic conductivity within the positive electrode mixture. Therefore, the electrolytic solution on the negative electrode side is not absorbed into the positive electrode mixture more than necessary, so a sufficient amount of electrolytic solution is ensured around the negative electrode active material zinc, and the discharge reaction on the negative electrode side is prevented. Since the discharge progresses sufficiently, no deterioration in discharge performance occurs.

上記低分子量四フッ化エチレン樹脂は、分子量が飲方か
ら数十万の開城のものであるとされており、通常の四フ
ッ化エチレン樹脂、つまり分子量が数百万オーダの高分
子量四フッ化エチレン樹脂に比べて、分子量が低く、柔
軟性があり、かつ圧縮によって粒子同士が結着性を持つ
性質を有する。
The above-mentioned low molecular weight tetrafluoroethylene resin is said to be made by Kaesong, which has a molecular weight of several hundred thousand, and is different from ordinary tetrafluoroethylene resin, that is, a high molecular weight tetrafluoroethylene resin whose molecular weight is on the order of several million. Compared to ethylene resin, it has a lower molecular weight, is more flexible, and has the property of binding particles together when compressed.

また、上記低分子量四フッ化エチレン樹脂は、二酸化マ
ンガンとの反応性を有さす、したがって、これまでの水
溶性バインダーのように二酸化マンガンと反応して電圧
低下を引き起こすようなことがない、さらに上記低分子
量四フッ化エチレン樹脂は、摩擦係数が小さく滑性がよ
いので、成形時の正極合剤の流動性が良好で成形金型へ
の充填量のバラツキが少ないため、電池性能のバラツキ
が少なくなる。このような低分子量四フ7化エチレン樹
脂の製造方法、詳細な分子量領域などは現在のところ明
らかにされていないが、具体的商品としては、例えばダ
イキン工業(株)製のルブロンL−2、ルブロンし−5
(いずれも商品名)などが市販されている。
In addition, the low molecular weight tetrafluoroethylene resin has reactivity with manganese dioxide, so unlike conventional water-soluble binders, it does not react with manganese dioxide and cause a voltage drop. The above-mentioned low molecular weight tetrafluoroethylene resin has a small friction coefficient and good lubricity, so the positive electrode mixture has good fluidity during molding, and there is little variation in the amount filled into the mold, which reduces variations in battery performance. It becomes less. Although the manufacturing method and detailed molecular weight range of such low-molecular-weight 7-tetrafluoroethylene resins have not been disclosed at present, specific products include, for example, Lublon L-2 manufactured by Daikin Industries, Ltd. LeBron Shi-5
(all product names) are commercially available.

このような低分子量四フフ化エチレン樹脂粉末に代えて
、例えば有機電解液系のリチウム電池で使われているよ
うなディスパージラン系の四フフ化エチレン樹脂をバイ
ンダーに使用することも考えられるが、ディスパージラ
ン系の四フッ化エチレン樹脂の場合、高濃度アルカリ液
に接触すると、四フフ化エチレン樹脂が凝集して均一に
分散できな(なり、アルカリ電池ではまったく使用でき
ない。
Instead of such a low molecular weight tetrafluoroethylene resin powder, it is also possible to use a dispergylan-based tetrafluoroethylene resin, which is used in organic electrolyte-based lithium batteries, as a binder. In the case of dispergylan-based tetrafluoroethylene resin, when it comes into contact with a highly concentrated alkaline solution, the tetrafluoroethylene resin aggregates and cannot be uniformly dispersed (and cannot be used in alkaline batteries at all).

本発明においては、上記低分子量四フッ化エチレン樹脂
粉末の添加量を二酸化マンガンと導電助剤との総重量に
対して0.3〜3重量%にするが、これは低分子量四フ
ッ化エチレン樹脂粉末の添加量が0.3重量%より少な
い場合は低分子置四フッ化エチレン樹脂粉末による結着
効果が少なく、成形した正極合剤が電池内で崩れて正極
缶との密着性が低下したり正極合剤内部での電子伝導性
が低下して内部抵抗が増加し、また低分子量四フッ化エ
チレン樹脂の添加量が3重量%より多くなると、低分子
量四フッ化エチレン樹脂が導電性を有しないので、正極
合剤内部の電子伝導性が低下して、内部抵抗が増加し、
放電持続時間が短くなるなど放電性能が低下するからで
ある。
In the present invention, the amount of the low molecular weight tetrafluoroethylene resin powder added is 0.3 to 3% by weight based on the total weight of manganese dioxide and the conductive additive, but this is less than the low molecular weight tetrafluoroethylene resin powder. If the amount of resin powder added is less than 0.3% by weight, the binding effect of the low molecular weight polytetrafluoroethylene resin powder will be small, and the molded positive electrode mixture will crumble inside the battery, reducing its adhesion to the positive electrode can. If the amount of low molecular weight tetrafluoroethylene resin added exceeds 3% by weight, the electronic conductivity inside the positive electrode mixture will decrease and the internal resistance will increase. Since it does not have , the electronic conductivity inside the positive electrode mixture decreases and internal resistance increases.
This is because the discharge performance deteriorates, such as the discharge duration becoming shorter.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例に 酸化マンガン粉末80重量部とりん成馬鉛粉末lO重量
部と低分子量四フフ化エチレン樹脂粉末0゜45重量部
tを5分間混合し、ついで濃度35重量%の苛性カリ水
溶液2.5重量部とイオン交換水13!1量部を加え、
さらにlO0分間混した。低分子量四フッ化エチレン樹
脂粉末はダイキン工業(株)製のルブロンし−2(商品
名)で、この低分子蓋四フッ化エチレン樹脂粉末の添加
量は二酸化マンガンとりん状黒鉛との総重量に対して0
.5重量%である。
In an example, 80 parts by weight of manganese oxide powder, 10 parts by weight of adult lead powder, and 0.45 parts by weight of low molecular weight tetrafluorinated ethylene resin powder were mixed for 5 minutes, and then 2.5 parts by weight of a caustic potassium aqueous solution having a concentration of 35% by weight was mixed. Add 13.1 parts by weight and 13.1 parts by weight of ion-exchanged water,
Mixed for an additional 100 minutes. The low molecular weight tetrafluoroethylene resin powder is Lublon Shi-2 (trade name) manufactured by Daikin Industries, Ltd., and the amount of the low molecular weight tetrafluoroethylene resin powder added is the total weight of manganese dioxide and phosphorous graphite. 0 for
.. It is 5% by weight.

上記のようにして得られた正極合剤を押出造粒機で押し
出して造粒し、乾燥して水分含率を2重量%に調整した
The positive electrode mixture obtained as described above was extruded and granulated using an extrusion granulator, and dried to adjust the water content to 2% by weight.

上記正極合剤を金型に充填し加圧して内径8.3−一、
外径12.4m−で、高さlO曽請のリング状に成形し
、このリング状正極合剤を4個正極缶内にその内周面に
そって挿入し、正極合剤の中空部内にコアロッドを挿入
し、コアロッドの外周に摺動自在に装着したパンチを下
降させて正極合剤を上方から押圧して正極缶の内周面に
密着させ、パンチを引き上げ、コアロッドを引き抜いた
後、正極缶の開口部を屈曲させてその開口端近傍に溝を
形成し、ついでコツプ状のセパレータを正極合剤の中空
部内に挿入し、セパレータの中空部内に電解液、負極剤
を充填し、以後常法にしたがって第1図に示す構造の単
3形(LR6形)のアルカリ・マンガン電池を作製した
The above positive electrode mixture was filled into a mold and pressurized to create an inner diameter of 8.3-1.
Formed into a ring shape with an outer diameter of 12.4 m and a height of 10 mm, four of the ring-shaped positive electrode mixtures were inserted into the positive electrode can along the inner circumferential surface of the positive electrode can, and placed inside the hollow part of the positive electrode mixture. Insert the core rod, lower the punch slidably attached to the outer periphery of the core rod, press the positive electrode mixture from above and make it adhere to the inner circumferential surface of the positive electrode can, pull up the punch, pull out the core rod, and remove the positive electrode mixture. The opening of the can is bent to form a groove in the vicinity of the opening end, then a pot-shaped separator is inserted into the hollow part of the positive electrode mixture, and the hollow part of the separator is filled with electrolyte and negative electrode material. An AA size (LR6 type) alkaline manganese battery having the structure shown in FIG. 1 was prepared according to the method.

第1図において、lは正極合剤であり、この正極合剤l
は前記のように二酸化マンガンを正極活物質とし、低分
子量四フフ化エチレン樹脂粉末をバインダーとして用い
、リング状に成形後、それを4個積み重ねるようにして
正極缶2内に挿入し、上方から押圧して正極缶2の内周
面に密着させると共に、それらリング状正極合剤同士の
接合面を相互に密着させたものである。3はセパレータ
で、4は負極剤であり、この負極剤4は氷化した亜鉛粉
末と、高濃度苛性カリ水溶液にゲル化剤としてカルボキ
シメチルセルロースのソーダ塩を添加してゲル状にした
アルカリ電解液との混合物からなるものである。5は負
極集電体、6は環状支持体で、7は封口体である。8は
負極接続板、9は負極端子板で、lOは絶縁リング、1
1.12は熱収縮性の樹脂チューブで、13は正極端子
板、!4は金属外装缶で、15は絶縁リングである。
In FIG. 1, l is a positive electrode mixture, and this positive electrode mixture l
As described above, manganese dioxide is used as the positive electrode active material, low molecular weight tetrafluoroethylene resin powder is used as the binder, and after molding into a ring shape, four pieces are stacked and inserted into the positive electrode can 2, and the rings are inserted into the positive electrode can 2 from above. The ring-shaped positive electrode mixtures are pressed and brought into close contact with the inner circumferential surface of the positive electrode can 2, and the joint surfaces of the ring-shaped positive electrode mixtures are brought into close contact with each other. 3 is a separator, 4 is a negative electrode material, and this negative electrode material 4 is made of frozen zinc powder and an alkaline electrolyte solution made into a gel by adding carboxymethylcellulose soda salt as a gelling agent to a highly concentrated caustic potassium aqueous solution. It consists of a mixture of 5 is a negative electrode current collector, 6 is an annular support, and 7 is a sealing body. 8 is a negative electrode connection plate, 9 is a negative electrode terminal plate, IO is an insulating ring, 1
1.12 is a heat-shrinkable resin tube, 13 is a positive terminal plate,! 4 is a metal exterior can, and 15 is an insulating ring.

比較例1 バインダーとしてポリアクリル酸ソーダを用いたほかは
実施例1と同様にして単3形のアルカリ・マンガン電池
を作製した。
Comparative Example 1 An AA alkaline manganese battery was produced in the same manner as in Example 1 except that sodium polyacrylate was used as the binder.

比較例2 バインダーとしてカルボキシメチルセルロースを用いた
ほかは実施例1と同様にして単3形のアルカリ・マンガ
ン電池を作製した。
Comparative Example 2 An AA alkaline manganese battery was produced in the same manner as in Example 1 except that carboxymethyl cellulose was used as the binder.

上記実施例1の電池および比較例1〜2の電池の初度、
60℃で20日間貯蔵後および60℃で40日間貯蔵後
の20℃における短絡電流、放電抵抗lOΩで終止電圧
0.9vまでの連続放電持続時間および一20’C12
Ω間欠(5秒放電15秒休止)放電での終止電圧0.9
vまでの放電時間を測定した結果を第1表に示す。
The initial state of the battery of Example 1 and the batteries of Comparative Examples 1 and 2,
Short-circuit current at 20°C after storage for 20 days at 60°C and after storage for 40 days at 60°C, continuous discharge duration to end voltage 0.9v at discharge resistance lOΩ and -20'C12
Final voltage at Ω intermittent discharge (5 seconds discharge, 15 seconds pause) 0.9
Table 1 shows the results of measuring the discharge time to v.

第1表に示すように、低分子量四フフ化エチレン樹脂粉
末をバインダーとして用いた実施例1の電池は、ポリア
クリル酸ソーダをバインダーとして用いた比較例1の電
池やカルボキシメチルセルロースをバインダーとして用
いた比較例2の電池に比べて、短絡電流が大きく (す
なわち、内部抵抗が小さく)、特に貯蔵による短絡電流
の低下が少なく、また貯蔵による放電持続時間の低下も
少なかった。これは、実施例1の電池ではバインダーと
して用いた低分子量目フッ化エチレン樹脂粉末が電解液
の吸収性が少なく、したがって正極合剤が電解液を吸収
して膨潤することがないので、正極合剤と正極缶との密
着性の低下や正極合剤内部での電子伝導性の低下が少な
いことと、正極合剤が電解液を必要以上に吸収しないこ
とによって負極活物質である亜鉛近傍に充分な電解液が
確保され、放電反応がスムーズに進行した結果によるも
のである。
As shown in Table 1, the battery of Example 1 using low molecular weight tetrafluoroethylene resin powder as a binder was different from the battery of Comparative Example 1 using sodium polyacrylate as a binder and the battery using carboxymethyl cellulose as a binder. Compared to the battery of Comparative Example 2, the short-circuit current was large (that is, the internal resistance was small), the short-circuit current particularly decreased less due to storage, and the discharge duration decreased less due to storage. This is because in the battery of Example 1, the low molecular weight fluorinated ethylene resin powder used as the binder has low electrolyte absorbency, and therefore the positive electrode mixture does not absorb the electrolyte and swell. Because there is little decrease in adhesion between the agent and the positive electrode can, there is little decrease in electronic conductivity inside the positive electrode mixture, and the positive electrode mixture does not absorb more electrolyte than necessary, it is sufficient to absorb the electrolyte near zinc, which is the negative electrode active material. This is due to the fact that a suitable electrolyte was secured and the discharge reaction proceeded smoothly.

また、第1表に示すように、実施例1の電池は、比較例
1〜2の電池に比べて、−20°C12Ω間欠放電での
放電時間が長い、これはポリアクリル酸ソーダをバイン
ダーとして用いた比較例1の電池やカルボキシメチルセ
ルロースをバインダーとして用いた比較例2の電池では
、前述したように正極合剤が電解液を吸収して膨潤し内
部抵抗が増加することや、正極合剤の電解液吸収により
亜鉛近傍の電解液が不足して負極側の放電反応が充分に
進行しな(なることに加えて、バインダーの電解液への
溶出により電解液が粘度上昇を起こして電解液中でのイ
オン伝導性が低下することによるものと考えられる。
In addition, as shown in Table 1, the battery of Example 1 has a longer discharge time at -20°C and 12Ω intermittent discharge than the batteries of Comparative Examples 1 and 2. In the battery of Comparative Example 1 used and the battery of Comparative Example 2 using carboxymethylcellulose as a binder, as mentioned above, the positive electrode mixture absorbs the electrolyte and swells, increasing the internal resistance. Due to the electrolyte absorption, there is a shortage of electrolyte near the zinc, and the discharge reaction on the negative electrode side does not proceed sufficiently (in addition to this, the viscosity of the electrolyte increases due to the elution of the binder into the electrolyte, causing a drop in the electrolyte. This is thought to be due to a decrease in ionic conductivity at

つぎに、低分子量目フッ化エチレン樹脂粉末の添加量の
変化に伴う短絡電流および放電持続時間の変化について
示す。
Next, changes in short circuit current and discharge duration due to changes in the amount of low molecular weight fluorinated ethylene resin powder added will be shown.

実施例2〜6および対照例1〜3 二酸化マンガンとりん状黒鉛の総重量に対する低分子量
目フッ化エチレン樹脂粉末の添加量を0.1重量%、0
.3重量%、0.6重量%、1.0重量%、2.0重量
%、3.0重量%、3.5重量%および4.0重量%と
変えたほかは実施例1と同様にして単3形のアルカリ・
マンガン電池を作製した。
Examples 2 to 6 and Control Examples 1 to 3 The amount of low molecular weight fluorinated ethylene resin powder added to the total weight of manganese dioxide and phosphorous graphite was 0.1% by weight, 0.
.. Same as Example 1 except that 3% by weight, 0.6% by weight, 1.0% by weight, 2.0% by weight, 3.0% by weight, 3.5% by weight and 4.0% by weight were changed. AA alkaline
A manganese battery was created.

これらの電池の20°Cにおける短絡電流および放電抵
抗lOΩで終止電圧0.9vまで連続放電させたときの
放電持続時間を調べた結果を第2表に示す。
Table 2 shows the results of examining the discharge duration of these batteries when they were continuously discharged to a final voltage of 0.9 V at a short circuit current of 20° C. and a discharge resistance of 10Ω.

第   2   表 第2表に示すように、低分子量口フッ化エチレン樹脂粉
末の添加量が0.3〜3.0重量%の範囲にある実施例
2〜6の電池は短絡電流が大きく (つまり、内部抵抗
が小さ()、放電持続時間が長かったが、低分子量口フ
ッ化エチレン樹脂粉末の添加量が0.1重量%の対照例
1の電池や、低分子量口フッ化エチレン樹脂粉末の添加
量が3.5重量%の対照例2の電池、低分子量口フッ化
エチレン樹脂粉末の添加量が4.0重量%の対照例3の
電池は、短絡電流が小さく、放電持続時間が短くなった
Table 2 As shown in Table 2, the batteries of Examples 2 to 6 in which the amount of low molecular weight fluoroethylene resin powder added was in the range of 0.3 to 3.0% by weight had a large short circuit current (i.e. , the internal resistance was small () and the discharge duration was long; The battery of Control Example 2 with an additive amount of 3.5% by weight and the battery of Comparative Example 3 with an additive amount of 4.0% by weight of low molecular weight fluorinated ethylene resin powder had a small short circuit current and a short discharge duration. became.

これは低分子量口フッ化エチレン樹脂粉末の添加量が少
ない対照例1の電池では、低分子量口フッ化エチレン樹
脂粉末による結着効果が充分でなく、そのため成形した
正極合剤が電池内で崩れて正極缶との密着性が低下した
り、正極合剤内部での電子伝導性が低下し、内部抵抗が
高くなったり、正極合剤の電解液吸収に基づいて負極側
の放電反応が充分に進行しなくなったためであると考え
られる。また、低分子量口フッ化エチレン樹脂粉末の添
加量が多い対照例2〜3の電池では、低分子型口フッ化
エチレン樹脂が導電性を有しないために正極合剤内部の
電子伝導性が低下して、内部抵抗が高くなり、それに伴
って放電反応が充分に進行しなくなったことによるもの
と考えられる。
This is because in the battery of Control Example 1, in which the amount of low molecular weight fluorinated ethylene resin powder added was small, the binding effect of the low molecular weight fluorinated ethylene resin powder was not sufficient, and as a result, the molded positive electrode mixture collapsed inside the battery. The adhesion with the positive electrode can may decrease, the electronic conductivity inside the positive electrode mixture may decrease, internal resistance may increase, or the discharge reaction on the negative electrode side may be insufficient due to the electrolyte absorption of the positive electrode mixture. This is thought to be because the disease has stopped progressing. In addition, in the batteries of Control Examples 2 and 3 in which a large amount of low molecular weight fluorinated ethylene resin powder was added, the electronic conductivity inside the positive electrode mixture decreased because the low molecular weight fluorinated ethylene resin did not have electrical conductivity. This is thought to be due to the fact that the internal resistance increased and the discharge reaction did not proceed sufficiently accordingly.

以上のように、本発明では、正極合剤の膨潤が防止され
、高い電子伝導性が確保できるので、現在、二酸化マン
ガンに対して重量比でlO:1程度に配合しているりん
状黒鉛などの導電助剤の配合比を少なくすることができ
、それに伴って二酸化マンガンの増量が可能となり、高
容量化が期待できる。
As described above, in the present invention, swelling of the positive electrode mixture can be prevented and high electronic conductivity can be ensured. The blending ratio of the conductive aid can be reduced, and accordingly, the amount of manganese dioxide can be increased, and a higher capacity can be expected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、正極合剤のバインダ
ーとして低分子量口フッ化エチレン樹脂粉末を用い、上
記低分子量口フッ化エチレン樹脂粉末を二酸化マンガン
と導電助剤との総重量に対して0.3〜3重世%添加す
ることにより、電池内での正極合剤の膨潤を防止し、内
部抵抗が小さく、放電性能の良好なアルカリ・マンガン
電池を提供することができた。
As explained above, in the present invention, low molecular weight fluorinated ethylene resin powder is used as a binder for the positive electrode mixture, and the low molecular weight fluorinated ethylene resin powder is added to the total weight of manganese dioxide and conductive additive. By adding 0.3 to 3 times %, it was possible to prevent the positive electrode mixture from swelling within the battery, and provide an alkaline manganese battery with low internal resistance and good discharge performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアルカリ・マンガン電池の一実施例を
示す部分断面図である。 l・・・正極合剤、 3・・・セパレータ、  4・・
・負極剤 l・・・正極合剤 3・・・セノぐレータ 4・・・負極剤 第  1  図
FIG. 1 is a partial sectional view showing an embodiment of the alkaline manganese battery of the present invention. 1... Positive electrode mixture, 3... Separator, 4...
・Negative electrode material 1...Positive electrode mixture 3...Cenogrator 4...Negative electrode material Fig. 1

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化マンガンを正極活物質とする正極合剤のバ
インダーとして低分子量四フッ化エチレン樹脂粉末を用
い、上記低分子量四フッ化エチレン樹脂粉末を二酸化マ
ンガンおよび導電助剤の総重量に対し0.3〜3重量%
添加した正極合剤を用いたことを特徴とするアルカリ・
マンガン電池。
(1) Low molecular weight tetrafluoroethylene resin powder is used as a binder for a positive electrode mixture that uses manganese dioxide as a positive electrode active material, and the low molecular weight tetrafluoroethylene resin powder is added at 0% relative to the total weight of manganese dioxide and conductive additive. .3-3% by weight
An alkaline product characterized by using an added positive electrode mixture.
manganese battery.
JP4495888A 1988-02-26 1988-02-26 Alkaline / manganese battery Expired - Lifetime JPH07107852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4495888A JPH07107852B2 (en) 1988-02-26 1988-02-26 Alkaline / manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4495888A JPH07107852B2 (en) 1988-02-26 1988-02-26 Alkaline / manganese battery

Publications (2)

Publication Number Publication Date
JPH01220373A true JPH01220373A (en) 1989-09-04
JPH07107852B2 JPH07107852B2 (en) 1995-11-15

Family

ID=12705993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4495888A Expired - Lifetime JPH07107852B2 (en) 1988-02-26 1988-02-26 Alkaline / manganese battery

Country Status (1)

Country Link
JP (1) JPH07107852B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056714A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Positive electrode mixture and alkaline dry cell using the same
JP2020047541A (en) * 2018-09-21 2020-03-26 Fdk株式会社 Positive electrode mixture for alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056714A (en) * 2003-08-05 2005-03-03 Matsushita Electric Ind Co Ltd Positive electrode mixture and alkaline dry cell using the same
JP2020047541A (en) * 2018-09-21 2020-03-26 Fdk株式会社 Positive electrode mixture for alkaline battery

Also Published As

Publication number Publication date
JPH07107852B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US6869724B2 (en) Non-aqueous electrolyte secondary battery and positive electrode for the same
US7713661B2 (en) Negative electrodes for zinc nickel secondary batteries and their fabrication methods
CN1171336C (en) Alkaline cell with improved anode
JP2004006092A (en) Sealed type nickel zinc primary cell
JPH0982314A (en) Battery electrode and manufacture thereof
US8182941B2 (en) Alkaline dry battery and method for producing the same
JPS6241381B2 (en)
JPH01220373A (en) Alkali-manganese cell
JP3022758B2 (en) Alkaline manganese battery
JP2925589B2 (en) Alkaline manganese battery
JPH10144304A (en) Alkali battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH0997611A (en) Electrode for battery, and secondary battery
US6358447B1 (en) Process for the production of a positive electrode for an alkaline primary element
JP7146545B2 (en) Cathode mixture for alkaline batteries
CN1577940A (en) Coin-shaped all solid battery
JPH01151158A (en) Manufacture of positive electrode for nonaqueous solvent cell
JPS6211462B2 (en)
JPH10340719A (en) Alkaline dry battery and its manufacture
JP4357191B2 (en) Sealed nickel zinc primary battery and manufacturing method thereof
JP2000149955A (en) Alkaline dry battery
JPS6329796B2 (en)
JP2011028895A (en) Alkaline dry battery and positive electrode molded body
JP2002015748A (en) Manufacturing method of cylindrical alkaline battery
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13