JP2925589B2 - Alkaline manganese battery - Google Patents

Alkaline manganese battery

Info

Publication number
JP2925589B2
JP2925589B2 JP1209057A JP20905789A JP2925589B2 JP 2925589 B2 JP2925589 B2 JP 2925589B2 JP 1209057 A JP1209057 A JP 1209057A JP 20905789 A JP20905789 A JP 20905789A JP 2925589 B2 JP2925589 B2 JP 2925589B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
weight
molecular weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1209057A
Other languages
Japanese (ja)
Other versions
JPH0374055A (en
Inventor
康義 谷口
浩二 小出
二康 岩丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1209057A priority Critical patent/JP2925589B2/en
Priority to KR1019900011905A priority patent/KR0143904B1/en
Priority to DE4025244A priority patent/DE4025244C2/en
Publication of JPH0374055A publication Critical patent/JPH0374055A/en
Priority to US07/845,846 priority patent/US5219685A/en
Application granted granted Critical
Publication of JP2925589B2 publication Critical patent/JP2925589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルカリ・マンガン電池に係わり、さらに詳
しくはその正極合剤のバインダーの改良に関する。
Description: TECHNICAL FIELD The present invention relates to an alkaline manganese battery, and more particularly, to an improvement in a binder of a positive electrode mixture thereof.

〔従来の技術〕[Conventional technology]

従来、アルカリ・マンガン電池の正極合剤は、秤量性
や成形性を良好にするために、正極活物質としての二酸
化マンガンや、導電助剤としての黒鉛粉末、カーボンブ
ラックなどからなる正極材料を湿式混合し、得られた混
合物を直径0.5〜1.0mmの押出孔を有する押出造粒機で押
し出して粒状にし、得られた粒状物を分級して所定の粒
度範囲に揃えることが行われていた。そして、その際、
造粒物が粉化しないように、正極材料配合時にポリアク
リル酸ソーダやカルボキシメチルセルロースなどの糊的
性質を持つ水溶性バインダー(結着剤)を添加して正極
材料間の結着力を高めるようにしていた(例えば、特開
昭61−2266号公報)。
Conventionally, in order to improve the weighing property and moldability, the positive electrode mixture of alkaline manganese batteries has been prepared by wet-forming a positive electrode material consisting of manganese dioxide as a positive electrode active material, graphite powder as a conductive additive, and carbon black. The resulting mixture was extruded with an extrusion granulator having an extrusion hole having a diameter of 0.5 to 1.0 mm into granules, and the obtained granules were classified and adjusted to a predetermined particle size range. And then,
In order to prevent the granulated material from powdering, a water-soluble binder (binder) having a pasty property such as sodium polyacrylate or carboxymethylcellulose is added at the time of compounding the positive electrode material so as to increase the binding force between the positive electrode materials. (For example, JP-A-61-2266).

しかしながら、上記水溶性バインダーは、電池内で電
解液を吸収するので、成形後の正極合剤が電解液を吸収
して膨潤し軟化するため、電池の内部抵抗が増加した
り、放電性能が低下するという問題が発生した。つま
り、正極合剤が電解液の吸収により膨潤して軟らかくな
って正極缶との密着度が低下したり、黒鉛粉末やカーボ
ンブラックなどの導電助剤による正極合材内部での電子
伝導性が低下して内部抵抗が増加し、また、電解液が正
極合剤に吸収されて正極側に移動することにより負極活
物質である亜鉛近傍の電解液が不足して負極側での放電
反応が充分に進行しなくなって、放電持続時間が短くな
るなど、放電性能が低下するのである。このような電池
内での成形正極合剤の湿潤強度の低下は、時間の経過と
ともに進行するため、それに基づく電池性能の低下は特
に貯蔵後において顕著に現れる。
However, since the water-soluble binder absorbs the electrolyte in the battery, the molded positive electrode mixture absorbs the electrolyte and swells and softens, thereby increasing the internal resistance of the battery and deteriorating the discharge performance. A problem occurred. In other words, the positive electrode mixture swells due to the absorption of the electrolytic solution and softens, thereby reducing the degree of adhesion to the positive electrode can and the electron conductivity inside the positive electrode mixture due to a conductive auxiliary agent such as graphite powder or carbon black. The internal resistance increases, and the electrolyte solution is absorbed by the positive electrode mixture and moves to the positive electrode side, so that the electrolyte solution near zinc, which is the negative electrode active material, runs short and the discharge reaction on the negative electrode side is sufficiently performed. It does not progress, and the discharge performance is reduced, for example, the discharge duration is shortened. Such a decrease in the wet strength of the molded positive electrode mixture in the battery proceeds with the passage of time, and the decrease in the battery performance based on the decrease is particularly noticeable after storage.

そのため、本発明者らは、先に、正極合剤のバインダ
ーとして低分子量四フッ化エチレン樹脂粉末を用い、こ
の低分子量四フッ化エチレン樹脂粉末を二酸化マンガン
と導電助剤との総重量に対して0.3〜3重量%添加する
ことによって、正極合剤の電解液吸収に基づく内部抵抗
の増加や正極合剤側への電解液の移動による放電性能の
低下を抑制し、それについて既に特許出願してきた(特
願昭63−44958号)。
Therefore, the present inventors previously used low molecular weight tetrafluoroethylene resin powder as a binder for the positive electrode mixture, and added this low molecular weight tetrafluoroethylene resin powder to the total weight of manganese dioxide and the conductive additive. By adding 0.3 to 3% by weight of the positive electrode mixture, it is possible to suppress an increase in internal resistance due to the absorption of the electrolyte of the positive electrode mixture and a decrease in the discharge performance due to the movement of the electrolyte toward the positive electrode mixture, and a patent application has already been made. (Japanese Patent Application No. 63-44958).

すなわち、正極活物質である二酸化マンガン粉末と黒
鉛粉末、カーボンブラックなどの導電助剤と上記低分子
量四フッ化エチレン樹脂粉末とを少量の苛性カリ(KO
H)水溶液または苛性ソーダ(NaOH)水溶液および水を
添加した状態で混合し(上記の苛性カリ水溶液や苛性ソ
ーダ水溶液は、主として二酸化マンガンに基づく酸性を
中和し、かつ二酸化マンガンによる強い酸化力によって
取敢機械が腐食を受けるのを防止するために添加す
る)、得られた正極合剤を押出造粒機で押し出して造粒
し、水分を乾燥して成形性、秤量性のよい適正水分値に
調整し、成形用金型に充填してリング状などの所望形状
に成形し、それを正極缶内に挿入し、以後、常法にした
がって電池作製をしたときに、上記低分子量四フッ化エ
チレン樹脂粉末は、ポリアクリル酸ソーダやカルボキシ
メチルセルローズなどの従来の水溶液バインダーに比べ
て電解液の吸収性が少なく、したがって成形後の正極合
剤が電池内で電解液を必要以上に吸収し膨潤することに
よって正極缶との密着度が低下したり、正極合剤内での
電子伝導性が低下するようなことがない。したがって、
負極側の電解液が必要以上に正極合剤に吸収されること
がないため、負極活物質である亜鉛の周囲に充分な電解
液が確保され負極側の放電反応が充分に進行するので放
電性能の低下が生じないのである。
That is, a positive electrode active material such as manganese dioxide powder, graphite powder, a conductive auxiliary such as carbon black, and the above low molecular weight ethylene tetrafluoride resin powder are mixed with a small amount of potassium hydroxide (KO).
H) Aqueous solution or caustic soda (NaOH) aqueous solution and water are added and mixed. Is added to prevent corrosion), and the obtained positive electrode mixture is extruded with an extrusion granulator and granulated, and the moisture is dried and adjusted to an appropriate moisture value with good moldability and weighing property. , Filled into a molding die and molded into a desired shape such as a ring shape, inserted into a positive electrode can, and thereafter, when a battery is manufactured according to a conventional method, the low molecular weight ethylene tetrafluoride resin powder Is less absorbent than conventional aqueous binders such as sodium polyacrylate and carboxymethyl cellulose, so that the positive electrode mixture after molding requires electrolyte in the battery. Or reduces the degree of adhesion between the positive electrode can by swelling absorption above, there is no such thing as reduced electron conductivity in the positive electrode mixture. Therefore,
Since the electrolyte on the negative electrode side is not unnecessarily absorbed by the positive electrode mixture, a sufficient electrolyte solution is secured around zinc, which is the negative electrode active material, and the discharge reaction on the negative electrode side proceeds sufficiently, so that the discharge performance is improved. Is not reduced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のように低分子量四フッ化エチレン樹脂粉末を正
極合剤のバインダーとして用いることによって、正極合
剤の構成材料を結着し、造粒物の粉化を防止し、また成
形後の正極合剤の電池内での崩れを防止することができ
るようになるが、この低分子量四フッ化エチレン樹脂粉
末は、放電反応に寄与しないものであって、その添加に
より正極活物質の充填量が減少して放電容量が低下した
り、また導電性を有しないので、正極合剤内部の電子伝
導性を低下させる原因になる。
By using the low molecular weight tetrafluoroethylene resin powder as a binder for the positive electrode mixture as described above, the constituent materials of the positive electrode mixture are bound, powdering of the granulated material is prevented, and the positive electrode mixture after molding is also used. The low molecular weight ethylene tetrafluoride resin powder does not contribute to the discharge reaction, and the addition thereof reduces the filling amount of the positive electrode active material. As a result, the discharge capacity is reduced, and the conductive material has no conductivity, which causes a reduction in electron conductivity inside the positive electrode mixture.

したがって、本発明は、上記低分子量四フッ化エチレ
ン樹脂粉末をより少ない添加量で使用して、正極合剤の
秤量性や成形性の向上に寄与させ、かつ成形後の正極合
剤が電池内で崩れないようにしたアルカリ・マンガン電
池を提供することを目的とする。
Therefore, the present invention uses the low-molecular-weight ethylene tetrafluoride resin powder in a smaller amount to contribute to the improvement of the weighing property and moldability of the positive electrode mixture, and the positive electrode mixture after molding is used in the battery. It is an object of the present invention to provide an alkaline manganese battery that does not collapse.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、正極合剤のバインダーとして低分子量四フ
ッ化エチレン樹脂粉末を用い、この低分子量四フッ化エ
チレン樹脂粉末を二酸化マンガンと導電助剤との総重量
に対して0.1重量%以上で0.3重量%未満添加して粉末状
で混合した正極合剤をロールでフレーク状にし、これを
粉砕することによって粒状化して用いることによって、
上記目的を達成したものである。
The present invention uses a low molecular weight ethylene tetrafluoride resin powder as a binder of the positive electrode mixture, and the low molecular weight tetrafluoroethylene resin powder is used in an amount of 0.3% by weight or more based on the total weight of manganese dioxide and the conductive additive. The positive electrode mixture mixed in powder form with less than 10% by weight is flaked with a roll, and this is crushed and granulated for use.
The above object has been achieved.

すなわち、本出願人が先に出願した特願昭63−44958
号の発明(以下、「先願発明」という)では、正極合剤
の秤量性や成形性向上のための粒状化を押出造粒機によ
る押出造粒により検討していたため、正極合剤の調製に
あたり、正極材料に水を添加した湿式混合物をするの
で、造粒物が崩れないようにするためには、低分子量四
フッ化エチレン樹脂粉末を二酸化マンガンと導電助剤と
の総重量に対して0.3重量%以上添加することを必要と
していたが、粒状化を粉末状で混合した正極合材をロー
ルでフレーク状にし、これを粉砕することによって行う
ときは、低分子量四フッ化エチレン樹脂粉末の添加量を
二酸化マンガンと導電助剤との総重量に対して0.3重量
%未満にしても、粒状物の粉化を防止できるのである。
つまり、正極合剤をフレーク状にして粒状化していく場
合には、正極合材がロール間隙を通過するときに大きな
圧縮力を受けてフレーク状になるので、そのフレーク状
物は押出造粒機で造粒した物に比べて高密度になり、そ
れを粉砕して得た粒状物も高密度であって容易には粉化
せず、また、その正極合剤を用いて成形するときも、正
極合剤を金型内高充填することができ、成形した正極合
剤も高密度に成形されるので、低分子量四フ化エチレン
樹脂粉末の添加量が二酸化マンガンと導電助剤との総重
量に対して0.3重量%未満でも成形後の正極合剤が電池
内で崩壊するのを防止することができるのである。
That is, Japanese Patent Application No. 63-44958 filed earlier by the present applicant.
In the invention of No. (hereinafter referred to as the "prior application invention"), granulation for improving the weighing property and moldability of the positive electrode mixture was examined by extrusion granulation using an extrusion granulator, and thus the preparation of the positive electrode mixture In doing so, a wet mixture in which water is added to the positive electrode material is used, so in order to prevent the granulated material from collapsing, the low molecular weight ethylene tetrafluoride resin powder is added to the total weight of manganese dioxide and the conductive additive. Although it was necessary to add 0.3% by weight or more, granulation was performed by forming the positive electrode mixture mixed in powder form into flakes with a roll, and then pulverizing the flakes. Even if the added amount is less than 0.3% by weight based on the total weight of manganese dioxide and the conductive additive, powdering of the granular material can be prevented.
In other words, when the positive electrode mixture is formed into flakes and granulated, the positive electrode mixture receives a large compressive force when passing through the roll gap, and becomes flakes. It becomes denser than the granulated material, and the granular material obtained by crushing it is also dense and does not easily powder, and also when molding using the positive electrode mixture, Since the positive electrode mixture can be highly filled in the mold, and the molded positive electrode mixture is also molded at a high density, the amount of the low molecular weight ethylene tetrafluoride resin powder is added to the total weight of manganese dioxide and the conductive additive. If the amount is less than 0.3% by weight, it is possible to prevent the molded positive electrode mixture from collapsing in the battery.

本発明において正極合剤のバインダーとして用いる低
分子量四フッ化エチレン樹脂粉末は、先願発明の場合と
同様であるが、分子量が数万から数十万の領域のもので
あるとされており、通常の四フッ化エチレン樹脂、つま
り分子量が数百万オーダの高分子量四フッ化エチレン樹
脂に比べて、分子量が低く、柔軟性があり、かつ圧縮に
よって粒子同士が結着性を持つ性質を有する。また、上
記低分子量四フッ化エチレン樹脂は、二酸化マンガンと
の反応性を有さず、したがって、これまでの水溶性バイ
ンダーのように二酸化マンガンと反応して電圧低下を引
き起こすようなことがない。さらに上記低分子量四フッ
化エチレン樹脂は、摩擦係数が小さく滑性がよいので、
成形時の正極合剤の流動性が良好で成形金型への充填量
のバラツキが少ないため、電池性能のバラツキが少なく
なる。このような低分子量四フッ化エチレン樹脂の製造
方法、詳細な分子量領域などは現在のところ明らかにさ
れていないが、具体的商品としては、例えばダイキン工
業(株)製のルブロンL−2、ルブロンL−5(いずれ
も商品名)などが市販されている。
The low molecular weight tetrafluoroethylene resin powder used as a binder of the positive electrode mixture in the present invention is the same as in the case of the prior application, but the molecular weight is said to be in the range of tens of thousands to hundreds of thousands, Compared with ordinary tetrafluoroethylene resin, that is, high molecular weight tetrafluoroethylene resin having a molecular weight on the order of several millions, it has a lower molecular weight, is more flexible, and has the property that particles are bound by compression. . In addition, the low molecular weight ethylene tetrafluoride resin does not have reactivity with manganese dioxide, and therefore does not react with manganese dioxide to cause a voltage drop unlike a conventional water-soluble binder. Furthermore, since the low molecular weight tetrafluoroethylene resin has a small coefficient of friction and good lubricity,
Since the fluidity of the positive electrode mixture during molding is good and the variation in the filling amount in the molding die is small, the variation in battery performance is reduced. Although the method for producing such a low molecular weight ethylene tetrafluoroethylene resin and the detailed molecular weight range have not been disclosed at present, specific products include, for example, Lubron L-2 and Lubron manufactured by Daikin Industries, Ltd. L-5 (all are trade names) are commercially available.

このような低分子量四フッ化エチレン樹脂粉末に代え
て、例えば有機電解液系のリチウム電池で使われている
ようなディスパージョン系の四フッ化エチレン樹脂をバ
インダーに使用することも考えられるが、ディスパージ
ョン系の四フッ代エチレン樹脂の場合、高濃度アルカリ
液に接触すると、四フッ化エチレン樹脂が凝集して均一
に分散できなくなり、アルカリ電池ではまったく使用で
きない。
Instead of such a low molecular weight ethylene tetrafluoride resin powder, for example, it is conceivable to use a dispersion-based tetrafluoroethylene resin as a binder as used in an organic electrolyte-based lithium battery, In the case of a dispersion-based tetrafluoroethylene resin, when it is brought into contact with a high-concentration alkaline solution, the tetrafluoroethylene resin aggregates and cannot be uniformly dispersed, and cannot be used in an alkaline battery at all.

本発明においては、上記低分子量四フッ代エチレン樹
脂粉末の添加量を二酸化マンガンと導電助剤との総重量
に対して0.1重量%以上で0.3重量%未満にするが、これ
は低分子量四フッ化エチレン樹脂粉末の添加量が0.1重
量%より少ない場合は、たとえフレーク状を経て粒状化
した場合でも、低分子量四フッ化エチレン樹脂粉末によ
る結着効果が少なく、成形した正極合剤が電池内で崩れ
て正極缶との密着性が低下したり、正極合剤内部での電
子伝導性が低下して内部抵抗が増加するおそれがあるか
らである。また、低分子量四フッ化エチレン樹脂粉末の
添加量の上限を二酸化マンガンと導電助剤との総重量に
対して0.3重量%未満にしているが、これは先願発明と
の関係からと、低分子量四フッ化エチレン樹脂粉末の添
加量の増加に応じて放電容量の低下や内部抵抗の増加が
生じるからである。
In the present invention, the addition amount of the low-molecular-weight tetrafluoroethylene resin powder is set to 0.1% by weight or more and less than 0.3% by weight based on the total weight of manganese dioxide and the conductive additive. If the amount of the added ethylene resin powder is less than 0.1% by weight, the binding effect of the low molecular weight tetrafluoroethylene resin powder is small even if the particles are granulated through flakes, and the molded positive electrode mixture is not used in the battery. This is because there is a possibility that the film may be disintegrated and the adhesion to the positive electrode can decrease, or the electron conductivity in the positive electrode mixture may decrease and the internal resistance may increase. Further, the upper limit of the amount of the low molecular weight tetrafluoroethylene resin powder to be added is less than 0.3% by weight based on the total weight of the manganese dioxide and the conductive auxiliary agent. This is because a decrease in discharge capacity and an increase in internal resistance occur in accordance with an increase in the addition amount of the molecular weight tetrafluoroethylene resin powder.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明す
る。
Next, the present invention will be described in more detail with reference to examples.

実施例1 二酸化マンガン粉末80重量部とりん状黒鉛粉末10重量
部と低分子量四フッ化エチレン樹脂粉末0.18重量部と5
分間混合し、ついで濃度35重量%の苛性カリ水溶液2.5
重量部を加え、さらに10分間混合した。低分子量四フッ
化エチレン樹脂粉末はダイキン工業(株)製のルブロン
L−2(商品名)で、この低分子量四フッ化エチレン樹
脂粉末の添加量は二酸化マンガンとりん状黒鉛との総重
量に対して0.2重量%である。
Example 1 80 parts by weight of manganese dioxide powder, 10 parts by weight of phosphorous graphite powder, 0.18 parts by weight of low molecular weight ethylene tetrafluoride resin powder and 5 parts by weight
Mix for 30 minutes, and then add
Parts by weight were added and mixed for another 10 minutes. The low molecular weight tetrafluoroethylene resin powder is Lubron L-2 (trade name) manufactured by Daikin Industries, Ltd., and the amount of the low molecular weight tetrafluoroethylene resin powder is based on the total weight of manganese dioxide and phosphorous graphite. On the other hand, it is 0.2% by weight.

上記のようにして得られた正極合剤を圧縮圧力1.5t/c
mに調製した2本のロール間に対してフレーク状にし、
このフレーク状物を粉砕し、分級して顆粒状の正極合剤
を得た。
The positive electrode mixture obtained as described above is compressed at a compression pressure of 1.5 t / c.
flakes between the two rolls prepared in
This flake was pulverized and classified to obtain a granular positive electrode mixture.

上記正極合材2.1mgを金型に充填し加圧して成形密度
3.2g/cm2で内径8.3mm、外形12.4mmで、高さ10mmのリン
グ状に成形し、このリング状正極合剤を4個正極缶内に
その内周面にそって挿入し、正極合剤の中空部内にコア
ロッドを挿入し、コアロッドの外周に摺動自在に装着し
たパンチを下降させて正極合剤を上方から押圧して正極
缶の内周面に密着させ、パンチを引き上げ、コアロッド
を引き抜いた後、正極缶の開口部を屈曲させてその開口
端近傍に溝を形成し、ついでコップ状のセパレータを正
極合剤の中空部内に挿入し、セパレータの中空部内に電
解液、負極剤を充填し、以後常法にしたがって第1図に
示す構造の単3形(LR6形)のアルカリ・マンガン電池
を作製した。
2.1 mg of the above positive electrode mixture was filled in a mold and pressed to form a molding density.
3.2 g / cm 2 , 8.3 mm in inner diameter, 12.4 mm in outer diameter, 10 mm height, formed into a ring shape, insert four ring-shaped positive electrode mixture into the positive electrode can along its inner peripheral surface, Insert the core rod into the hollow part of the agent, lower the punch slidably mounted on the outer periphery of the core rod, press the positive electrode mixture from above, make it adhere to the inner peripheral surface of the positive electrode can, pull up the punch, and lift the core rod. After being pulled out, the opening of the positive electrode can is bent to form a groove near the opening end, and then a cup-shaped separator is inserted into the hollow portion of the positive electrode mixture, and the electrolytic solution and the negative electrode agent are injected into the hollow portion of the separator. After filling, an AA (LR6) alkaline manganese battery having the structure shown in FIG. 1 was manufactured according to a conventional method.

図1において、(1)は正極合剤であり、この正極合
剤(1)は前記のように二酸化マンガンを正極活物質と
し、低分子量フッ化エチレン樹脂粉末をバインダーとし
て用い、リング状に成形後、それを4個積み重ねるよう
にして正極缶(2)内に挿入し、上方から押圧して正極
缶(2)の内周面に密着させると共に、それらリング状
正極合剤同士の接合面を相互に密着させたものである。
(3)はセパレータで、(4)は負極剤であり、この負
極剤(4)は汞化した亜鉛粉末と、高濃度苛性カリ水溶
液にゲル化剤としてカルボキシメチルセルロースのソー
ダ塩を添加してゲル状にしたアルカリ電解液との混合物
からなるものである。(5)は負極集電体、(6)は環
状支持体で、(7)は封口体である。(8)は負極接続
板、(9)は負極端子板で、(10)は絶縁リング、(1
1)、(12)は熱収縮性の樹脂チューブで、(13)は正
極端子板、(14)は金属外装缶で、(15)は絶縁リング
である。
In FIG. 1, (1) is a positive electrode mixture, and the positive electrode mixture (1) is formed into a ring shape using manganese dioxide as a positive electrode active material and low molecular weight fluorinated ethylene resin powder as a binder as described above. Thereafter, four of the positive electrode cans are inserted into the positive electrode can (2) so as to be stacked, and pressed from above to make close contact with the inner peripheral surface of the positive electrode can (2). These are adhered to each other.
(3) is a separator, (4) is a negative electrode agent, and this negative electrode agent (4) is a gel formed by adding a soda salt of carboxymethylcellulose as a gelling agent to a calcined zinc powder and a high-concentration aqueous solution of potassium hydroxide. It is composed of a mixture with an alkaline electrolyte prepared as described above. (5) is a negative electrode current collector, (6) is an annular support, and (7) is a sealing body. (8) is a negative electrode connecting plate, (9) is a negative electrode terminal plate, (10) is an insulating ring, (1)
1) and (12) are heat-shrinkable resin tubes, (13) is a positive electrode terminal plate, (14) is a metal outer can, and (15) is an insulating ring.

上記リング状に成形した正極合剤を水平に配置し、上
方から荷重をかけてリング状正極合剤の破壊が生じると
きの荷重を調べたところ、破壊時の荷重は560gであり、
この正極合剤は電池組立中に崩れたり、割れることがな
かった。
The ring-shaped positive electrode mixture was placed horizontally, and when a load was applied from above to examine the load when the ring-shaped positive electrode mixture was broken, the load at the time of destruction was 560 g,
This positive electrode mixture did not collapse or break during battery assembly.

比較例1 二酸化マンガン粉末80重量部とリン状黒鉛粉末10重量
部とポリアクリル酸ソーダ粉末0.45重量部とを5分間混
合し、ついで濃度35重量%の苛性カリ水溶液2.5重量部
とイオン交換水13重量部を加え、さらに10分間混合し
た。このポリアクリル酸ソーダの添加量は二酸化マンガ
ンとリン状黒鉛との総重量に対して0.5重量%である。
Comparative Example 1 80 parts by weight of manganese dioxide powder, 10 parts by weight of phosphorous graphite powder and 0.45 parts by weight of sodium polyacrylate powder were mixed for 5 minutes, then 2.5 parts by weight of a 35% by weight aqueous solution of potassium hydroxide and 13 parts by weight of ion-exchanged water Parts were added and mixed for another 10 minutes. The addition amount of this sodium polyacrylate is 0.5% by weight based on the total weight of manganese dioxide and phosphorous graphite.

上記のようにして得られた正極合剤を押出造粒機で押
し出して造粒し、乾燥して水分含量を3重量%に調整し
た。
The positive electrode mixture obtained as described above was extruded by an extrusion granulator, granulated, and dried to adjust the water content to 3% by weight.

上記のようにバインダーとしてポリアクリル酸ソーダ
を用い、湿式混合し、押出造粒機で造粒した正極合剤を
用いたほかは実施例1と同様にして単3形のアルカリ・
マンガン電池を作製した。
AA-size alkali metal was used in the same manner as in Example 1 except that sodium polyacrylate was used as the binder, the wet mixture was performed, and the positive electrode mixture granulated by the extrusion granulator was used.
A manganese battery was manufactured.

上記リング状正極合剤を水平に配置し、上方から荷重
をかけてリング状正極合剤の破壊が生じるときの荷重を
調べたところ、破壊時の荷重は600gであった。
The ring-shaped positive electrode mixture was horizontally arranged, and a load was applied when a load was applied from above to cause breakage of the ring-shaped positive electrode mixture. The load at the time of destruction was 600 g.

比較例2 比較例1におけるポリアクリル酸ソーダに代えて、バ
インダーとしてカルボキシルメチルセルロースを用いた
ほかは比較例1と同様にして単3形のアルカリ・マンガ
ン電池を作製した。
Comparative Example 2 AA-size alkaline manganese batteries were produced in the same manner as in Comparative Example 1, except that carboxymethyl cellulose was used as the binder instead of sodium polyacrylate in Comparative Example 1.

上記リング状正極合剤を水平に配置し、上方から荷重
をかけてリング状正極合剤の破壊が生じるときの荷重を
調べたところ、破壊時の荷重は550gであった。
The ring-shaped positive electrode mixture was placed horizontally, and a load was applied when a load was applied from above to break the ring-shaped positive electrode mixture. The load at the time of destruction was 550 g.

上記実施例1の電池および比較例1〜2の電池の初
度、60℃で20日間貯蔵後および60℃で40日間貯蔵後の20
℃における短絡電流、放電抵抗10Ωで終止電圧0.9Vまで
の連続放電持続時間および−20℃、2Ω間欠(5秒放電
/5秒休止)放電での終止電圧0.9Vまでの放電時間を測定
した結果を第1表に示す。
Initially, the batteries of Example 1 and the batteries of Comparative Examples 1 and 2 were stored at 60 ° C for 20 days and after storage at 60 ° C for 40 days.
Short-circuit current at 10 ° C, continuous discharge duration up to 0.9 V at discharge resistance of 10Ω and intermittent discharge at -20 ° C and 2Ω (5 seconds discharge)
Table 1 shows the measurement results of the discharge time up to a final voltage of 0.9 V in the discharge.

第1表に示すように、低分子量四フッ代エチレン樹脂
粉末をバインダーとして用いた実施例1の電池は、ポリ
アクリル酸ソーダをバインダーとして用いた比較例1の
電池やカルボキシメチルセルロースをバインダーとして
用いた比較例2の電池に比べて、短絡電流が大きく(す
なわち、内部抵抗が小さく)、特に貯蔵による短絡電流
の低下が少なく、また貯蔵による放電持続時間の低下も
少なかった。これは、実施例1の電池では、バインダー
として用いた低分子量四フッ化エチレン樹脂粉末が電解
液の吸収性が少なく、したがって正極合剤が電解液を吸
収して膨潤することがないので、正極合剤と正極缶との
密着性の低下や正極合剤内部での電子伝導性の低下が少
ないことと、正極合剤が電解液を必要以上に吸収しない
ことによって負極活物質である亜鉛近傍に充分な電解液
が確保され、放電反応がスムーズに進行した結果による
ものである。
As shown in Table 1, the battery of Example 1 using low-molecular-weight tetrafluoroethylene resin powder as a binder used the battery of Comparative Example 1 using sodium polyacrylate as a binder and carboxymethyl cellulose as a binder. Compared with the battery of Comparative Example 2, the short-circuit current was large (that is, the internal resistance was small), and particularly, the decrease in short-circuit current due to storage was small, and the decrease in discharge duration due to storage was also small. This is because, in the battery of Example 1, the low molecular weight ethylene tetrafluoride resin powder used as the binder has a low absorbability of the electrolytic solution, and therefore the positive electrode mixture does not absorb the electrolytic solution and swells. The decrease in the adhesion between the mixture and the positive electrode can and the decrease in electron conductivity inside the positive electrode mixture are small, and the positive electrode mixture does not absorb the electrolytic solution more than necessary. This is because a sufficient electrolytic solution was secured and the discharge reaction proceeded smoothly.

また、第1表に示すように、実施例1の電池は、比較
例1〜2の電池に比べて、−20℃、2Ω間欠放電での放
電時間が長い。これはポリアクリル酸ソーダをバインダ
ーとして用いた比較例1の電池やカルボキシメチルセル
ロースをバインダーとして用いた比較例2の電池では、
前述したように正極合剤が電解液を吸収して膨潤し内部
抵抗が増加することや、正極合剤の電解液吸収により亜
鉛近傍の電解液が不足して負極側の放電反応が充分に進
行しなくなることに加えて、バインダーの電解液への溶
出により電解液が粘度上昇を起こして電解液中でのイオ
ン伝導性が低下することによるものと考えられる。
Further, as shown in Table 1, the battery of Example 1 has a longer discharge time in the intermittent discharge at −20 ° C. and 2Ω than the batteries of Comparative Examples 1 and 2. This is because in the battery of Comparative Example 1 using sodium polyacrylate as a binder and the battery of Comparative Example 2 using carboxymethyl cellulose as a binder,
As described above, the positive electrode mixture absorbs the electrolyte and swells to increase the internal resistance, and the electrolyte near the zinc becomes insufficient due to the electrolyte absorption of the positive electrode mixture, and the discharge reaction on the negative electrode side proceeds sufficiently. In addition to this, it is considered that this is due to the fact that the viscosity of the electrolyte increases due to the elution of the binder into the electrolyte, and the ionic conductivity in the electrolyte decreases.

つぎに、低分子量四フッ化エチレン樹脂粉末の添加量
の変化に伴う短絡電流および放電持続時間の変化につい
て示す。
Next, changes in short-circuit current and discharge duration with changes in the amount of low molecular weight ethylene tetrafluoride resin powder added will be described.

実施例2〜3および対照例1 二酸化マンガンとりん状黒鉛の総重量に対する低分子
量四フッ化エチレン樹脂粉末の添加量を0.05重量%、0.
10重量%および0.29重量%に変えたほかは、実施例1と
同様にして、単3形のアルカリ・マンガン電池を作製し
た。
Examples 2-3 and Comparative Example 1 The addition amount of the low molecular weight ethylene tetrafluoride resin powder was 0.05% by weight, based on the total weight of manganese dioxide and phosphorous graphite.
AA-size alkaline manganese batteries were produced in the same manner as in Example 1 except that the amounts were changed to 10% by weight and 0.29% by weight.

これら電池の20℃における短絡電流および放電抵抗10
Ωで終止電圧0.9Vまで連続放電させたときの放電持続時
間を調べた結果を第2表に示す。
Short-circuit current and discharge resistance of these batteries at 20 ° C
Table 2 shows the results of examining the discharge duration when the battery was continuously discharged to a final voltage of 0.9 V with Ω.

第2表に示すように、低分子量四フッ化エチレン樹脂
粉末の添加量が0.10重量%の実施例2の電池および低分
子量四フッ化エチレン樹脂粉末の添加量が0.29重量%の
実施例3の電池は、短絡電流が大きく(つまり、内部抵
抗が小さい)、放電持続時間が長かったが、低分子量四
フッ化エチレン樹脂粉末の添加量が0.05重量%の対照例
1の電池は、短絡電流が小さく、放電持続時間が短くな
った。これは低分子量四フッ化エチレン樹脂粉末の添加
量が少ない対照例1の電池では、低分子量四フッ化エチ
レン樹脂粉末による結着効果が充分でなく、そのため成
形した正極合剤が電池内で崩れて正極缶との密着性が低
下したり、正極合材内部での電子伝導性が低下して、内
部抵抗が高くなったためであると考えられる。
As shown in Table 2, the battery of Example 2 in which the addition amount of the low molecular weight tetrafluoroethylene resin powder was 0.10% by weight and the battery of Example 3 in which the addition amount of the low molecular weight tetrafluoroethylene resin powder was 0.29% by weight were used. The battery had a large short-circuit current (that is, a low internal resistance) and a long discharge duration, but the battery of Comparative Example 1 in which the amount of the low molecular weight tetrafluoroethylene resin powder added was 0.05% by weight had a short-circuit current of Smaller, shorter discharge duration. This is because in the battery of Comparative Example 1 in which the amount of the low molecular weight tetrafluoroethylene resin powder added was small, the binding effect of the low molecular weight tetrafluoroethylene resin powder was not sufficient, and the molded positive electrode mixture collapsed in the battery. This is considered to be because the adhesion to the positive electrode can was reduced, the electron conductivity inside the positive electrode mixture was reduced, and the internal resistance was increased.

また、上記実施例2〜3および対照例1の電池のリン
グ状正極合剤を水平に配置し、上方から荷重をかけてリ
ング状正極合剤の破壊が生じるときの荷重を調べ、その
結果を第3表に示した。
Further, the ring-shaped positive electrode mixture of the batteries of Examples 2 to 3 and Comparative Example 1 was horizontally arranged, and a load was applied when a load was applied from above to break the ring-shaped positive electrode mixture. The results are shown in Table 3.

第3表に示すように、低分子量四フッ化エチレン樹脂
粉末の添加量が0.10重量%の実施例2の電池のリング状
正極合剤や低分子量四フッ化エチレン樹脂粉末の添加量
が0.29重量%の実施例3の電池のリング状正極合剤は、
破壊が生じるときの荷重が500gを超えていたが、低分子
量四フッ化エチレン樹脂粉末の添加量が0.05重量%の対
照例1の電池のリング状正極合剤では、破壊が生じると
きの荷重が420gであり、正極合剤の強度が低く、電池内
で正極合剤が崩れて、放電性能の低下が生じやすいこと
を示していた。
As shown in Table 3, the addition amount of the low molecular weight tetrafluoroethylene resin powder of the battery of Example 2 in which the addition amount of the low molecular weight tetrafluoroethylene resin powder was 0.10% by weight was 0.29% by weight. % Of the ring-shaped positive electrode mixture of the battery of Example 3 is:
Although the load at the time of breakage exceeded 500 g, the load at the time of breakage occurred in the ring-shaped positive electrode mixture of the battery of Comparative Example 1 in which the addition amount of the low molecular weight tetrafluoroethylene resin powder was 0.05% by weight. It was 420 g, indicating that the strength of the positive electrode mixture was low, and the positive electrode mixture collapsed in the battery, and the discharge performance was likely to be reduced.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、正極合剤のバイン
ダーとして低分子量四フッ化エチレン樹脂粉末を用い、
上記低分子量四フッ化エチレン樹脂粉末を二酸化マンガ
ンと導電助剤との総重量に対して0.1重量%以上で0.3重
量%未満添加することによって、電池内での正極合剤の
膨潤や崩れを防止し、内部抵抗が小さく、放電性能の良
好なアルカリ・マンガン電池を提供することができた。
As described above, in the present invention, using a low molecular weight ethylene tetrafluoride resin powder as a binder of the positive electrode mixture,
By adding the above low molecular weight ethylene tetrafluoride resin powder to the total weight of manganese dioxide and the conductive additive in an amount of 0.1% by weight or more and less than 0.3% by weight, the swelling or collapse of the positive electrode mixture in the battery is prevented. As a result, an alkaline manganese battery having low internal resistance and good discharge performance could be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のアルカリ・マンガン電池の一実施例を
示す部分断面図である。 1……正極合剤、3……セパレータ、4……負極剤
FIG. 1 is a partial sectional view showing an embodiment of the alkaline manganese battery of the present invention. 1 ... Positive electrode mixture, 3 ... Separator, 4 ... Negative electrode agent

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/08 H01M 4/62 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/08 H01M 4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極活物質として亜鉛を用い、正極活物質
として二酸化マンガンを用いるアルカリ・マンガン電池
において、二酸化マンガンを正極活物質とする正極合剤
のバインダーとして低分子量四フッ化エチレン樹脂粉末
を用い、上記低分子量四フッ化エチレン樹脂粉末を二酸
化マンガンと導電助剤との総重量に対して0.1重量%以
上で0.3重量%未満添加して粉末状で混合した正極合剤
をロールでフレーク状にし、これを粉砕することによっ
て粒状化して用いたことを特徴とするアルカリ・マンガ
ン電池。
In an alkaline manganese battery using zinc as a negative electrode active material and manganese dioxide as a positive electrode active material, low molecular weight ethylene tetrafluoride resin powder is used as a binder for a positive electrode mixture using manganese dioxide as a positive electrode active material. Using the above low molecular weight ethylene tetrafluoride resin powder, add 0.1% by weight or more and less than 0.3% by weight with respect to the total weight of manganese dioxide and the conductive additive and mix the powdered positive electrode mixture into flakes with a roll. An alkaline manganese battery characterized in that it is granulated and used by grinding.
JP1209057A 1989-08-11 1989-08-11 Alkaline manganese battery Expired - Fee Related JP2925589B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1209057A JP2925589B2 (en) 1989-08-11 1989-08-11 Alkaline manganese battery
KR1019900011905A KR0143904B1 (en) 1989-08-11 1990-08-03 Alkaline manganese cell
DE4025244A DE4025244C2 (en) 1989-08-11 1990-08-09 Alkaline manganese cell
US07/845,846 US5219685A (en) 1989-08-11 1992-03-06 Alkaline manganese cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209057A JP2925589B2 (en) 1989-08-11 1989-08-11 Alkaline manganese battery

Publications (2)

Publication Number Publication Date
JPH0374055A JPH0374055A (en) 1991-03-28
JP2925589B2 true JP2925589B2 (en) 1999-07-28

Family

ID=16566542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209057A Expired - Fee Related JP2925589B2 (en) 1989-08-11 1989-08-11 Alkaline manganese battery

Country Status (3)

Country Link
JP (1) JP2925589B2 (en)
KR (1) KR0143904B1 (en)
DE (1) DE4025244C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69520426T2 (en) * 1994-10-19 2001-10-18 Daikin Ind Ltd CELL BINDERS AND ELECTRODES COMPOSITION AND CELL MADE THEREOF
DE19850474A1 (en) * 1998-11-02 2000-05-04 Varta Geraetebatterie Gmbh Process for producing a positive electrode for an alkaline primary element
US6171726B1 (en) * 1998-12-24 2001-01-09 Energy Conversion Devices, Inc. Active electrode composition with nonfilbrillating binder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342325A (en) * 1976-09-29 1978-04-17 Sanyo Electric Co Method of making cathode of nonnaqueous battery
CA1186373A (en) * 1982-03-29 1985-04-30 Duracell International Inc. Electrochemical cell with compacted cathode containing polyolefin powder additive

Also Published As

Publication number Publication date
KR0143904B1 (en) 1998-08-17
KR910005509A (en) 1991-03-30
JPH0374055A (en) 1991-03-28
DE4025244A1 (en) 1991-02-14
DE4025244C2 (en) 1999-04-01

Similar Documents

Publication Publication Date Title
US7179310B2 (en) Zinc/air cell with improved anode
US20050031959A1 (en) Positive electrode material mixture and alkaline battery using the same
US5219685A (en) Alkaline manganese cell
US7147678B2 (en) Alkaline cell with improved anode
US8182941B2 (en) Alkaline dry battery and method for producing the same
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JPH0750603B2 (en) Battery
JP2925589B2 (en) Alkaline manganese battery
JP3192105B2 (en) Positive electrode mixture for alkaline batteries
JPH07107852B2 (en) Alkaline / manganese battery
JPH09180736A (en) Alkaline manganese battery
JPS6166366A (en) Hydrogen-occlusion electrode
US6358447B1 (en) Process for the production of a positive electrode for an alkaline primary element
JP4517313B2 (en) Positive electrode mix for alkaline batteries
JP5612284B2 (en) Alkaline battery and positive electrode molded body
JP4739493B2 (en) Positive electrode mixture molded body and battery
JP3714734B2 (en) Method for producing positive electrode mixture for alkaline manganese battery
WO2011001603A1 (en) Alkali dry cell
JP4394328B2 (en) Zinc alkaline battery
WO2006001302A1 (en) Alkaline cell
JP2003197206A (en) Sealed alkaline zinc primary battery
JP4357191B2 (en) Sealed nickel zinc primary battery and manufacturing method thereof
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it
JP2002008641A (en) Alkaline cell
JPS5928025B2 (en) Alkaline battery manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees