JP4517313B2 - Positive electrode mix for alkaline batteries - Google Patents

Positive electrode mix for alkaline batteries Download PDF

Info

Publication number
JP4517313B2
JP4517313B2 JP13186098A JP13186098A JP4517313B2 JP 4517313 B2 JP4517313 B2 JP 4517313B2 JP 13186098 A JP13186098 A JP 13186098A JP 13186098 A JP13186098 A JP 13186098A JP 4517313 B2 JP4517313 B2 JP 4517313B2
Authority
JP
Japan
Prior art keywords
positive electrode
powder
particle size
electrode mixture
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13186098A
Other languages
Japanese (ja)
Other versions
JPH11329419A (en
Inventor
定司 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP13186098A priority Critical patent/JP4517313B2/en
Publication of JPH11329419A publication Critical patent/JPH11329419A/en
Application granted granted Critical
Publication of JP4517313B2 publication Critical patent/JP4517313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ電池の正極合剤に関するものである。
【0002】
【従来の技術】
一般にアルカリ電池用の正極合剤活物質としては二酸化マンガンが用いられている。通常アルカリ電池用正極合剤は、この二酸化マンガン粉末に導電性向上のための黒鉛粉末を添加し、更に電解液として水酸化カリウム水溶液を適量添加し、これらを混合撹拌してできた混合物をロール状プレス等を用いて適当な圧力にて煎餅状に圧縮し、次にこの煎餅状の被圧縮物をグラニュレータにて破砕して顆粒状とすることによって得ている。
【0003】
このようにして得られた顆粒状正極合剤を所定の圧力で中空円筒状に加圧成形する。または、正極端子を兼ねる電池缶内で、中空円筒状に加圧成形する形で高密度充填する方法もある。
使用する二酸化マンガンの粒径は、通常300μm以下で、且つ平均粒径(MV)が50〜100μm程度のものが一般的である。
【0004】
【発明が解決しようとする課題】
近年、高容量化を目的として、正極合剤中の黒鉛添加率を低減し、活物質である二酸化マンガン含有量を増加させる傾向にある。
しかし、正極合剤中に添加された黒鉛粉末は、導電剤としての機能だけではなく、中空円筒状に加圧成形する際に成形金型内において顆粒状合剤の流動性をよくして均一な密度の成形を助ける成形補助剤としての機能があり、更に金型から成形体を取り出す際の離型剤としての機能もある。このため、一般に黒鉛添加率を低くすると成形性及び離型性が悪くなる。
【0005】
また、高容量化を目的として、正極合剤充填密度を高くする傾向にあるが、合剤を高密度充填した場合、正極合剤中へと吸液される電解液量が少なくなり、電池の放電反応における活物質の反応利用率が低下する傾向がある。すなわち、通常、電解液(例えば水酸化カリウム水溶液)は正極合剤の中空部に装着された有底円筒状のセパレータに適量注液され、この電解液はしばらく放置するとセパレータを介して正極合剤中へと吸液される。ところが、合剤を高密度充填した場合には、正極合剤中へと吸液される電解液量が少なくなる。その結果、期待通りの高容量化が実現できない。
本発明は上記問題点に対処してなされたもので、成形性及び電解液吸液性の優れたアルカリ電池用正極合剤を提供することを目的としたものである。
【0006】
【課題を解決するための手段】
本発明は、正極合剤活物質としての二酸化マンガン粉末及び導電剤としての黒鉛粉末を含有するアルカリ電池用正極合剤において、二酸化マンガン粉末の粒径が200μm以下で且つ平均粒径(MV)が25〜55μmであり、黒鉛粉末の添加率([黒鉛粉末重量]/[二酸化マンガン粉末重量+黒鉛粉末重量])が3〜7%であると共に、500〜3000ppmのステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末を添加したことを特徴とする
【0008】
本発明では二酸化マンガン粉末の粒径を上記の範囲に特定化したことによって、正極合剤成形体の強度が高まり、また電解液の吸液性が向上する。さらに黒鉛粉末の添加率を上記範囲にしたことによって、正極合剤の成形性を損なわない範囲で電池性能を向上させることができる。
【0009】
また、上記正極合剤を顆粒状に造粒した後で、顆粒状合剤に対し500〜3000ppmのステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末を添加することによって、より成形性の優れる高性能アルカリ電池用正極合剤を得ることができる。
【0010】
【発明の実施の形態】
以下、その実施例を詳細に説明する。
(実施例1)
まず初めに、粒径180μm以下で且つ平均粒径(MV)が50μmである二酸化マンガン粉末を使用し、これと黒鉛粉末を万能撹拌ミサーにて5分間ドライ撹拌する。このときの黒鉛添加率は5%とした。このようにして得られた混合粉末100重量部に対して、濃度40wt%の水酸化カリウム水溶液を4重量部添加して、万能撹拌ミキサーにて5分間ウェット撹拌する。
【0011】
次に、得られた混合物をロール状プレスにて煎餅状に圧縮する。このときのプレス圧は200〜300kg/cm2 程度が望ましい。続いてこの煎餅状の被圧縮物をグラニュレータにて破砕し、続いて、22〜100メッシュの自動篩分機にて分級して、粒径150〜710μm程度の顆粒状合剤を得た。
【0012】
(実施例2)
実施例1の顆粒状合剤100重量部に対して、0.1重量部のステアリン酸亜鉛粉末を添加してアルカリ電池用正極合剤を得た。
【0013】
(実施例3)
粒径100μm以下で且つ平均粒径(MV)が30μmである二酸化マンガン粉末を使用した以外は実施例2の場合と同様にしてアルカリ電池用正極合剤を得た。
【0014】
(比較例1)
粒径250μm以下で且つ平均粒径(MV)が70μmである二酸化マンガン粉末を使用した以外は実施例1の場合と同様にしてアルカリ電池用正極合剤を得た。
【0015】
(比較例2)
粒径250μm以下で且つ平均粒径(MV)が70μmである二酸化マンガン粉末を使用した以外は実施例2の場合と同様にしてアルカリ電池用正極合剤を得た。
【0016】
(比較例3)
粒径60μm以下で且つ平均粒径(MV)が20μmである二酸化マンガン粉末を使用した以外は実施例2の場合と同様にしてアルカリ電池用正極合剤を得た。
【0017】
(比較例4)
黒鉛添加率を10%としたこと以外は、比較例1の場合と同様にしてアルカリ電池用正極合剤を得た。
【0018】
以上のようにして得られた7種類の顆粒状合剤をそれぞれJIS規格LR6形(単3形)用サイズの中空円筒状に加圧成形した。成形密度は3.20g/cm3 とした。
【0019】
成形性のバロメータとして、これらの成形体の強度を比較するため、(株)サン科学 レオメーターCR−200Dを使用して成形体の圧潰強度を測定した(n=100)。その測定結果を以下に記す(n=100の平均値)。
【0020】
実施例1:660gf
実施例2:683gf
実施例3:702gf
比較例1:563gf
比較例2:591gf
比較例3:747gf
比較例4:687gf
【0021】
上記試験において、実施例1と比較例1を比較すると、黒鉛添加率が同じ5%でも使用した二酸化マンガンの粒径が小さく且つ平均粒径が小さい実施例1の方が成形体の強度が高いことがわかる。
【0022】
実施例2〜3と比較例2〜3を比較すると、黒鉛添加率が5%でステアリン酸亜鉛添加量が1000ppmの同一条件において、使用した二酸化マンガンの粒径が小さく且つ平均粒径が小さいものの方が成形体の強度が高いことがわかる。
【0023】
一般に黒鉛は導電剤としての機能以外にも成形金型内での顆粒状合剤の流動性を良くして均一な密度の成形を助けるための成形補助剤としての機能、更に金型から成形体を取り出す際の離型剤としての機能を兼ね備えており、黒鉛添加率を低くした場合には当然ながら成形性及び離型性が悪くなる。
【0024】
そこで上記実施例では、粒径が小さく且つ平均粒径が小さい二酸化マンガンを使用することに加えて、ステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末を添加して、黒鉛添加率を低くした場合の成形性及び離型性を向上させている。ステアリン酸亜鉛粉末を添加していない実施例1とステアリン酸亜鉛粉末を顆粒合剤に対して1000ppm添加した実施例2を比較すると成形体の強度が向上していることがわかる。過去の種々の実験結果によれば、比較例4のように黒鉛添加率10%程度ではステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末添加の効果は確認できなかったが、黒鉛添加率を8%以下にすると成形性及び離型性が向上することがわかっている。特に黒鉛添加率7%以下ではステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末添加の効果は顕著である。
【0025】
ステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末の添加量は顆粒状合剤に対して500〜3000ppmが好ましく、更に好ましくは1000〜2000ppmが良い。500ppmより少ない添加量では成形性及び離型性の向上はあまりないことがわかっている。また、ステアリン酸亜鉛及びステアリン酸カルシウムはアルカリ乾電池としての放電反応に全く関係がない有機化合物であり、添加量が多すぎると電池特性を妨害することとなるため、またコスト面から考えても、3000ppmより多い添加は好ましくない。
【0026】
また、ステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末の顆粒状合剤への添加は単独でも併用でも良く、併用の場合の添加量は、添加するステアリン酸亜鉛粉末重量とステアリン酸カルシウム粉末重量の合計が、顆粒状合剤に対して500〜3000pmが好ましく、更に好ましくは1000〜2000ppmが良い。
【0027】
次に、上記5種類の顆粒状合剤をそれぞれJIS規格LR6形(単3形)用サイズの中空円筒状に加圧成形して成形密度3.20g/cm3 にした成形体を、正極端子を兼ねる電池缶内に挿入した後、この電池缶内で中空円筒状に再加圧して正極合剤の充填密度を3.40g/cm3 とした。充填された合剤の中空部に有底円筒状にセパレータを装着し、セパレータ内に電解液として濃度40wt%の水酸化カリウム水溶液を約2.5g注液し、30分間放置した後、セパレータ及び正極合剤中へ吸液された以外の余剰の電解液を除去して、セパレータ及び正極合剤中へ吸液された電解液の重量を測定した。その結果を以下に記す(n=100の平均値)。
【0028】
実施例1:1.58g
実施例2:1.57g
実施例3:1.62g
比較例1:1.48g
比較例2:1.48g
比較例3:1.70g
比較例4:1.38g
【0029】
この電解液吸液実験における実施例2〜3と比較例2〜3の測定結果を比較すると、黒鉛添加率が5%でステアリン酸亜鉛添加量が1000ppmという同一条件において、二酸化マンガンの粒径が小さく且つ平均粒径が小さい場合の方が、より多量の電解液を吸液できることがわかる。実際の電池設計上の観点からは、電解液吸液量が多ければ多いほど活物質の反応利用率向上が期待できる。
【0030】
上記電解液吸液実験では、あらかじめ中空円筒状に成形密度3.20g/cm3 で加圧成形した成形体を、正極端子を兼ねる電池缶内に挿入した後、この電池缶内で中空円筒状に再加圧して正極合剤の充填密度を3.40g/cm3 としたものを使用したが、あらかじめの成形を省略して電池缶内ではじめから中空円筒状に充填密度3.40g/cm3 で合剤充填したものでも同等の結果になることを確認済みである。
【0031】
次に、上記電解液吸液実験に使用したセルを用いて、それぞれJIS規格LR6形(単3形)のアルカリマンガン電池を各100個作成した。作成した電池をそれぞれ50個ずつ1.5A定電流放電試験を行った。また、それぞれ50個ずつを60℃DRYに設定された恒温恒湿槽に1ヶ月貯蔵後、取り出してから24時間常温にて放置し(電池温度を常温に戻すため)、1.5A定電流放電試験を行った。いずれの場合も放電試験環境は20℃,65%RHとした。初度及び60℃1ヶ月貯蔵後の、終止電圧0.9Vまでの接続時間測定結果と初度を100%としたときの60℃1ヶ月貯蔵維持率を表1に記す(各n=50の平均値)。
【0032】
【表1】

Figure 0004517313
【0033】
これによれば、初度の接続時間は上記吸液実験結果との相関が見られ、吸液量の多いものほど接続時間が長い。ところが、上記吸液実験で吸液量が一番多かった比較例3は60℃1ヶ月貯蔵すると性能劣化がかなり激しく、貯蔵維持率は65%以下であった。以上の結果から粒径60μm以下で且つ平均粒径(MV)が20μmであるような極端に微細な二酸化マンガンを使用すると高温貯蔵特性が良くないことがわかった。この理由については詳細は定かではないが、極端に微細な二酸化マンガン粉末自体が劣化しやすいと考えられる。1.5A定電流放電というのはLR6形(単3形)サイズのアルカリマンガン電池にとっては、かなり負荷の大きい大電流放電であるが、上記実施例1〜3は、初度及び60℃1ヶ月貯蔵後においても、かなり優秀な性能となった。
【0034】
同じ粒径で且つ同じ平均粒径の二酸化マンガンを使用した比較例2と比較例4を比較すると、黒鉛添加率の違いによって活物質量が多い比較例2は比較例4よりも性能が優れていることが分かる。しかし比較例2でも実施例1〜3に比べると電池性能は十分ではなく、二酸化マンガンの粒径が電池性能に大きく関わっていることが分かる。
【0035】
以上の実験で示したように、二酸化マンガンの粒径を200μm以下で且つ平均粒径(MV)が25〜55μmとなるようにし、黒鉛粉末の添加率を3〜8%とすることによって、高性能で、大電流特性に優れ、且つ、高温貯蔵特性に優れる、高性能な高容量アルカリ電池を得ることができる。
【0036】
以上の例では黒鉛添加率5%の場合を中心に説明をしてきたが、更に低黒鉛添加率の場合でも実用上は問題なく、放電性能を踏まえた電池仕様設計上の観点や、大量生産のための生産設備での機械的な観点から言及すれば、黒鉛添加率3%までが本発明の有効な範囲である。
【0037】
なお、上記においてはアルカリマンガン電池として特に円筒形のアルカリマンガン電池を想定して、中空円筒状の正極合剤成形体について説明したが、本発明の正極合剤はボタン形電池及びコイン形電池についても適用可能であり、したがって成形体の形状としては中空円筒状に限らず、これらの各電池に内填するための円盤ペレット状の成形体等いずれも適用可能である。
【0038】
【発明の効果】
以上説明したように、本発明の正極合剤は、活物質である二酸化マンガン粉末の粒径を規定し、且つ導電剤として添加する黒鉛粉末の添加率を規定したことによって、成形性及び電解液吸液性の優れたものとなり、本合剤を使用することにより優れた性能のアルカリ電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode mixture for an alkaline battery.
[0002]
[Prior art]
In general, manganese dioxide is used as a positive electrode mixture active material for alkaline batteries. Usually, the positive electrode mixture for alkaline batteries is obtained by adding graphite powder for improving conductivity to this manganese dioxide powder, adding an appropriate amount of an aqueous potassium hydroxide solution as an electrolytic solution, and mixing and stirring the mixture. It is obtained by compressing it into a rice cracker shape at a suitable pressure using a glass-like press, etc., and then crushing the rice cracker-like object to be compressed into granules by a granulator.
[0003]
The granular positive electrode mixture thus obtained is pressure-molded into a hollow cylinder at a predetermined pressure. Alternatively, there is a method of high-density filling in the form of pressure forming into a hollow cylinder in a battery can also serving as a positive electrode terminal.
The particle size of manganese dioxide to be used is generally 300 μm or less and the average particle size (MV) is generally about 50 to 100 μm.
[0004]
[Problems to be solved by the invention]
In recent years, for the purpose of increasing the capacity, the graphite addition rate in the positive electrode mixture tends to be reduced and the content of manganese dioxide as an active material tends to be increased.
However, the graphite powder added to the positive electrode mixture not only functions as a conductive agent, but also improves the fluidity of the granular mixture in the molding die when it is pressed into a hollow cylinder. It functions as a molding aid that helps molding with a high density, and also functions as a mold release agent when the molded body is taken out from the mold. For this reason, generally, when the graphite addition rate is lowered, the moldability and the mold release property become worse.
[0005]
In addition, for the purpose of increasing the capacity, the positive electrode mixture filling density tends to be increased. However, when the mixture is filled at a high density, the amount of the electrolyte absorbed into the positive electrode mixture is reduced, and the battery There exists a tendency for the reaction utilization factor of the active material in a discharge reaction to fall. That is, usually, an appropriate amount of electrolyte (for example, potassium hydroxide aqueous solution) is poured into a bottomed cylindrical separator attached to the hollow portion of the positive electrode mixture. It is sucked in. However, when the mixture is filled at a high density, the amount of electrolyte solution absorbed into the positive electrode mixture is reduced. As a result, the expected increase in capacity cannot be realized.
The present invention has been made in response to the above problems, and an object of the present invention is to provide a positive electrode mixture for an alkaline battery excellent in moldability and electrolyte solution absorption.
[0006]
[Means for Solving the Problems]
The present invention provides a positive electrode mixture for an alkaline battery containing manganese dioxide powder as a positive electrode mixture active material and graphite powder as a conductive agent, wherein the manganese dioxide powder has a particle size of 200 μm or less and an average particle size (MV). It is 25 to 55 μm, and the addition rate of graphite powder ([graphite powder weight] / [manganese dioxide powder weight + graphite powder weight]) is 3 to 7%, and 500 to 3000 ppm of zinc stearate powder or calcium stearate powder Is added .
[0008]
In the present invention, by specifying the particle diameter of the manganese dioxide powder in the above range, the strength of the positive electrode mixture molded body is increased, and the liquid absorbency of the electrolytic solution is improved. Furthermore, by making the addition rate of graphite powder into the said range, battery performance can be improved in the range which does not impair the moldability of a positive electrode mixture.
[0009]
In addition, after granulating the positive electrode mixture into granules, by adding 500 to 3000 ppm of zinc stearate powder or calcium stearate powder to the granule mixture, the moldability is further improved for high performance alkaline batteries. A positive electrode mixture can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment will be described in detail.
Example 1
First, manganese dioxide powder having a particle size of 180 μm or less and an average particle size (MV) of 50 μm is used, and this and graphite powder are dry-stirred in a universal stirring mass for 5 minutes. The graphite addition rate at this time was 5%. 4 parts by weight of a 40 wt% potassium hydroxide aqueous solution is added to 100 parts by weight of the mixed powder thus obtained, and wet-stirred for 5 minutes with a universal stirring mixer.
[0011]
Next, the obtained mixture is compressed into a rice cracker shape with a roll-shaped press. The press pressure at this time is preferably about 200 to 300 kg / cm 2 . Subsequently, this rice cracker-like object to be compressed was crushed with a granulator, and then classified with an automatic sieving machine of 22 to 100 mesh to obtain a granular mixture having a particle size of about 150 to 710 μm.
[0012]
(Example 2)
0.1 parts by weight of zinc stearate powder was added to 100 parts by weight of the granular mixture of Example 1 to obtain a positive electrode mixture for an alkaline battery.
[0013]
(Example 3)
A positive electrode mixture for an alkaline battery was obtained in the same manner as in Example 2 except that manganese dioxide powder having a particle size of 100 μm or less and an average particle size (MV) of 30 μm was used.
[0014]
(Comparative Example 1)
A positive electrode mixture for an alkaline battery was obtained in the same manner as in Example 1 except that manganese dioxide powder having a particle size of 250 μm or less and an average particle size (MV) of 70 μm was used.
[0015]
(Comparative Example 2)
A positive electrode mixture for alkaline batteries was obtained in the same manner as in Example 2 except that manganese dioxide powder having a particle size of 250 μm or less and an average particle size (MV) of 70 μm was used.
[0016]
(Comparative Example 3)
A positive electrode mixture for alkaline batteries was obtained in the same manner as in Example 2 except that manganese dioxide powder having a particle size of 60 μm or less and an average particle size (MV) of 20 μm was used.
[0017]
(Comparative Example 4)
A positive electrode material mixture for alkaline batteries was obtained in the same manner as in Comparative Example 1 except that the graphite addition rate was 10%.
[0018]
The seven types of granular mixture obtained as described above were each pressure-molded into a hollow cylindrical shape having a size for JIS standard LR6 type (AA size). The molding density was 3.20 g / cm 3 .
[0019]
In order to compare the strength of these molded bodies as a barometer of moldability, the crushing strength of the molded bodies was measured using Sun Scientific Rheometer CR-200D (n = 100). The measurement results are shown below (average value of n = 100).
[0020]
Example 1: 660 gf
Example 2: 683 gf
Example 3: 702 gf
Comparative Example 1: 563 gf
Comparative Example 2: 591 gf
Comparative Example 3: 747 gf
Comparative Example 4: 687 gf
[0021]
In the above test, when Example 1 and Comparative Example 1 are compared, the strength of the molded body is higher in Example 1 where the particle size of manganese dioxide used is smaller and the average particle size is smaller even when the graphite addition rate is 5%. I understand that.
[0022]
When Examples 2-3 and Comparative Examples 2-3 were compared, under the same conditions where the graphite addition rate was 5% and the zinc stearate addition amount was 1000 ppm, the manganese dioxide used had a small particle size and a small average particle size. It can be seen that the strength of the molded body is higher.
[0023]
In general, graphite functions not only as a conductive agent, but also as a molding aid for improving the fluidity of the granular mixture in the molding die and assisting the molding of uniform density. It also has a function as a mold release agent when taking out the resin. When the graphite addition rate is lowered, the moldability and mold release property are naturally deteriorated.
[0024]
Therefore, in the above embodiment, in addition to using manganese dioxide having a small particle size and a small average particle size, the formability when the graphite addition rate is lowered by adding zinc stearate powder or calcium stearate powder and Improves releasability. Comparing Example 1 in which no zinc stearate powder was added and Example 2 in which 1000 ppm of zinc stearate powder was added to the granule mixture, it was found that the strength of the molded body was improved. According to various past experimental results, the effect of adding zinc stearate powder or calcium stearate powder could not be confirmed at a graphite addition rate of about 10% as in Comparative Example 4, but when the graphite addition rate was made 8% or less. It has been found that moldability and mold release are improved. In particular, when the graphite addition rate is 7% or less, the effect of adding zinc stearate powder or calcium stearate powder is remarkable.
[0025]
The amount of zinc stearate powder or calcium stearate powder added is preferably 500 to 3000 ppm, more preferably 1000 to 2000 ppm based on the granular mixture. It has been found that when the addition amount is less than 500 ppm, there is not much improvement in moldability and releasability. In addition, zinc stearate and calcium stearate are organic compounds that have nothing to do with the discharge reaction as an alkaline battery, and if the amount added is too large, battery characteristics will be hindered. More addition is not preferred.
[0026]
In addition, the addition of zinc stearate powder or calcium stearate powder to the granular mixture may be performed alone or in combination. In the case of combined use, the total amount of zinc stearate powder and calcium stearate powder added is 500 to 3000 pm is preferable with respect to the mixture, and more preferably 1000 to 2000 ppm.
[0027]
Next, the above-mentioned five types of granular mixture were pressure-molded into hollow cylinders each having a size for JIS standard LR6 type (AA type) to form a molded body having a molding density of 3.20 g / cm 3 , as a positive terminal After being inserted into a battery can that also serves as a positive electrode mixture, the packing density of the positive electrode mixture was 3.40 g / cm 3 . A separator with a bottomed cylindrical shape is mounted in the filled hollow portion of the mixture, and about 2.5 g of a 40 wt% potassium hydroxide aqueous solution is injected into the separator as an electrolyte, and left for 30 minutes. Excess electrolyte solution other than that absorbed into the positive electrode mixture was removed, and the weight of the electrolyte solution absorbed into the separator and the positive electrode mixture was measured. The results are described below (average value of n = 100).
[0028]
Example 1: 1.58 g
Example 2: 1.57g
Example 3: 1.62 g
Comparative Example 1: 1.48 g
Comparative Example 2: 1.48 g
Comparative Example 3: 1.70 g
Comparative Example 4: 1.38 g
[0029]
Comparing the measurement results of Examples 2-3 and Comparative Examples 2-3 in this electrolyte solution absorption experiment, the particle size of manganese dioxide is the same under the same conditions that the graphite addition rate is 5% and the zinc stearate addition amount is 1000 ppm. It can be seen that a larger amount of electrolyte can be absorbed when the average particle size is smaller. From the viewpoint of actual battery design, the larger the amount of electrolyte solution absorbed, the better the reaction utilization rate of the active material can be expected.
[0030]
In the above electrolyte solution absorption experiment, a molded body that was previously press-formed into a hollow cylindrical shape at a molding density of 3.20 g / cm 3 was inserted into a battery can that also serves as a positive electrode terminal, and then the hollow cylindrical shape was formed in the battery can. The positive electrode mixture was packed at a packing density of 3.40 g / cm 3 , but the pre-molding was omitted and the packing density was 3.40 g / cm in the form of a hollow cylinder from the beginning in the battery can. It has been confirmed that even when the mixture is filled in step 3 , the same result is obtained.
[0031]
Next, 100 JIS standard LR6 type (AA type) alkaline manganese batteries were prepared for each of the cells used in the electrolyte solution absorption experiment. A 1.5 A constant current discharge test was performed for each of the prepared batteries by 50 pieces. In addition, 50 pieces each were stored in a constant temperature and humidity chamber set at 60 ° C. DRY for 1 month, then taken out and left at room temperature for 24 hours (to return the battery temperature to room temperature), and 1.5 A constant current discharge. A test was conducted. In either case, the discharge test environment was 20 ° C. and 65% RH. Table 1 shows the connection time measurement results up to a final voltage of 0.9V after storage for the first time and 60 ° C for one month, and the storage retention rate for 60 ° C for one month when the initial value is 100% (each n = 50 average value) ).
[0032]
[Table 1]
Figure 0004517313
[0033]
According to this, the initial connection time is correlated with the liquid absorption experiment result, and the connection time is longer as the liquid absorption amount is larger. However, Comparative Example 3, which had the largest amount of liquid absorption in the above liquid absorption experiment, had a considerably severe performance deterioration when stored at 60 ° C. for one month, and the storage maintenance rate was 65% or less. From the above results, it was found that when extremely fine manganese dioxide having a particle size of 60 μm or less and an average particle size (MV) of 20 μm is used, the high-temperature storage characteristics are not good. Although the details are not clear for this reason, it is considered that the extremely fine manganese dioxide powder itself tends to deteriorate. The 1.5 A constant current discharge is a large current discharge with a considerably large load for the LR6 type (AA type) size alkaline manganese battery, but the above Examples 1 to 3 are the first time and stored at 60 ° C. for one month. Even later, the performance was quite excellent.
[0034]
Comparing Comparative Example 2 and Comparative Example 4 using manganese dioxide having the same particle diameter and the same average particle diameter, Comparative Example 2 having a larger amount of active material is superior to Comparative Example 4 due to the difference in the graphite addition rate. I understand that. However, it can be seen that the battery performance in Comparative Example 2 is not sufficient as compared with Examples 1 to 3, and the particle size of manganese dioxide is greatly related to the battery performance.
[0035]
As shown in the above experiment, the particle size of manganese dioxide is 200 μm or less, the average particle size (MV) is 25 to 55 μm, and the addition rate of graphite powder is 3 to 8%. It is possible to obtain a high-performance high-capacity alkaline battery that is superior in performance, large current characteristics and high-temperature storage characteristics.
[0036]
In the above example, the explanation has been made mainly on the case where the graphite addition rate is 5%. However, even in the case where the graphite addition rate is lower, there is no practical problem. From the viewpoint of the battery specification design based on the discharge performance and the mass production. From the mechanical point of view in the production equipment, the effective range of the present invention is a graphite addition rate of up to 3%.
[0037]
In the above description, a hollow cylindrical positive electrode mixture molded body has been described assuming an especially cylindrical alkaline manganese battery as the alkaline manganese battery. Therefore, the shape of the molded body is not limited to a hollow cylindrical shape, and any of a disk pellet-shaped molded body to be embedded in each of these batteries can be applied.
[0038]
【The invention's effect】
As described above, the positive electrode mixture of the present invention defines the particle size of the manganese dioxide powder, which is the active material, and also regulates the addition rate of the graphite powder added as a conductive agent. An alkaline battery having excellent performance can be provided by using this mixture because of excellent liquid absorption.

Claims (1)

正極合剤活物質としての二酸化マンガン粉末及び導電剤としての黒鉛粉末を含有するアルカリ電池用正極合剤において、
二酸化マンガン粉末の粒径が200μm以下で且つ平均粒径(MV)が25〜55μmであり、黒鉛粉末の添加率([黒鉛粉末重量]/[二酸化マンガン粉末重量+黒鉛粉末重量])が3〜7%であると共に、500〜3000ppmのステアリン酸亜鉛粉末またはステアリン酸カルシウム粉末を添加したことを特徴とするアルカリ電池用正極合剤。
In the positive electrode mixture for alkaline batteries containing manganese dioxide powder as a positive electrode mixture active material and graphite powder as a conductive agent,
The particle size of the manganese dioxide powder is 200 μm or less and the average particle size (MV) is 25 to 55 μm, and the addition rate of graphite powder ([graphite powder weight] / [manganese dioxide powder weight + graphite powder weight]) is 3 to 3. A positive electrode mixture for an alkaline battery , which is 7% and has 500 to 3000 ppm of zinc stearate powder or calcium stearate powder added thereto.
JP13186098A 1998-05-14 1998-05-14 Positive electrode mix for alkaline batteries Expired - Fee Related JP4517313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186098A JP4517313B2 (en) 1998-05-14 1998-05-14 Positive electrode mix for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186098A JP4517313B2 (en) 1998-05-14 1998-05-14 Positive electrode mix for alkaline batteries

Publications (2)

Publication Number Publication Date
JPH11329419A JPH11329419A (en) 1999-11-30
JP4517313B2 true JP4517313B2 (en) 2010-08-04

Family

ID=15067823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186098A Expired - Fee Related JP4517313B2 (en) 1998-05-14 1998-05-14 Positive electrode mix for alkaline batteries

Country Status (1)

Country Link
JP (1) JP4517313B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739493B2 (en) * 2000-08-31 2011-08-03 Fdk株式会社 Positive electrode mixture molded body and battery
US7754386B2 (en) * 2005-11-28 2010-07-13 Pure Energy Visions Corporation Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185674A (en) * 1981-05-11 1982-11-15 Matsushita Electric Ind Co Ltd Alkaline manganess battery
JPH0736332B2 (en) * 1987-01-28 1995-04-19 松下電器産業株式会社 Battery
JPH1083810A (en) * 1996-09-11 1998-03-31 Toshiba Battery Co Ltd Positive cathode mix for zinc alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185674A (en) * 1981-05-11 1982-11-15 Matsushita Electric Ind Co Ltd Alkaline manganess battery
JPH0736332B2 (en) * 1987-01-28 1995-04-19 松下電器産業株式会社 Battery
JPH1083810A (en) * 1996-09-11 1998-03-31 Toshiba Battery Co Ltd Positive cathode mix for zinc alkaline battery

Also Published As

Publication number Publication date
JPH11329419A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP4206269B2 (en) Sealed nickel-zinc primary battery, positive electrode thereof and manufacturing method thereof
JP2005056714A (en) Positive electrode mixture and alkaline dry cell using the same
EP1807887A2 (en) Alkaline cell with improved anode
JP2007521617A (en) Alkaline battery with improved negative electrode
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
US8182941B2 (en) Alkaline dry battery and method for producing the same
JP4517313B2 (en) Positive electrode mix for alkaline batteries
JP2000106176A (en) Manufacture of positive electrode mix for battery, and the positive electrode mix for battery and alkali- manganese battery
JP2925589B2 (en) Alkaline manganese battery
JP4428909B2 (en) Positive electrode mixture for sealed alkaline zinc primary battery, method for producing the same, and sealed alkaline zinc primary battery
WO2011001603A1 (en) Alkali dry cell
JP4739493B2 (en) Positive electrode mixture molded body and battery
JP5612284B2 (en) Alkaline battery and positive electrode molded body
JP4267258B2 (en) Positive electrode mixture for alkaline dry battery, its production method and alkaline dry battery
JPH1027618A (en) Flat battery
TW552734B (en) Sealed type nickel-zinc primary cell, positive terminal thereof and their manufacturing methods
CN1204637C (en) Mixture comprising metal and/or alloy particles and liquid medium and method for producing the same
JPS5928025B2 (en) Alkaline battery manufacturing method
JP3714734B2 (en) Method for producing positive electrode mixture for alkaline manganese battery
JP2003017043A (en) Alkali battery and manufacturing method thereof
JPS5932868B2 (en) Alkaline battery manufacturing method
JP4357191B2 (en) Sealed nickel zinc primary battery and manufacturing method thereof
JP3931588B2 (en) Positive electrode mixture for alkaline battery, method for producing the same, and alkaline battery
JP4265738B2 (en) Alkaline battery
JPS6324304B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees