JPS6166366A - Hydrogen-occlusion electrode - Google Patents

Hydrogen-occlusion electrode

Info

Publication number
JPS6166366A
JPS6166366A JP59186878A JP18687884A JPS6166366A JP S6166366 A JPS6166366 A JP S6166366A JP 59186878 A JP59186878 A JP 59186878A JP 18687884 A JP18687884 A JP 18687884A JP S6166366 A JPS6166366 A JP S6166366A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
occlusion
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59186878A
Other languages
Japanese (ja)
Other versions
JP2692786B2 (en
Inventor
Masaru Yamano
山野 大
Takashi Sakai
貴史 酒井
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59186878A priority Critical patent/JP2692786B2/en
Priority to FR848418698A priority patent/FR2569059B1/en
Priority to DE19843444998 priority patent/DE3444998A1/en
Priority to GB08431142A priority patent/GB2162994B/en
Priority to US06/841,058 priority patent/US4636445A/en
Publication of JPS6166366A publication Critical patent/JPS6166366A/en
Application granted granted Critical
Publication of JP2692786B2 publication Critical patent/JP2692786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the separation of a hydrogen-occlusion alloy from the hydrogen-occlusion negative electrode of an alkaline storage battery, which results from pulverization of the alloy, by making the electrode by binding an alkali-proof synthetic resin binder and viscous agent to the surfaces of particles of the alloy. CONSTITUTION:After LaNi5 having hydrogen-occlusion ability is pulverized, the thus prepared powder is combined with a polytetrafluoroethylene powder which is easily made fibrous and easily undergoes plastic deformation and is used as a binder. Next, polyethylene oxide used as a viscous agent is kneaded into the thus prepared mixture and the polytetrafluoroethylene powder is made fibrous. After that, the thus prepared mixture is rolled and then fixed to the surfaces of a current collector by pressure, thereby making a hydrogen-occlusion electrode for a nickel-hydrogen battery. Therefore, the hydrogen-occlusion alloy powder is firmly held on the current collector and the separation of the hydrogen-occlusion alloy is prevented even when it is pulverized after repeated charge and discharge. Accordingly, it is possible to increase the cycle life of the battery by suppressing the deterioration of battery capacity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は負極活物質として水素を利用するアルカリ蓄電
池の負極、特に水素を可逆的に吸蔵及び放出することの
できるL a N isやCaNi、などの水素吸蔵合
金粉末を備えた水素吸蔵電極に関する。
Detailed Description of the Invention (a) Industrial Field of Application The present invention is directed to negative electrodes of alkaline storage batteries that use hydrogen as negative electrode active materials, particularly L a Ni is or CaNi which can reversibly absorb and release hydrogen. The present invention relates to a hydrogen storage electrode comprising a hydrogen storage alloy powder such as .

(ロ)従来技術 従来からよく用いられる蓄電池としては鉛電池及びニッ
ケルーカドミウム電池があるが、近年これら電池より軽
量で且つ高容量となる可能性があるということで、特に
低圧に於いて負極活物質である水素を可逆的に吸蔵及び
放出することのできる水素吸蔵合金を備えた電極を負極
に用い、水酸化ニッケル等の金属酸化物を正極活物質と
する電極を正極に用いた金属−水素アルカリ蓄電池が注
目されている。
(b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years, they have been found to be lighter than these batteries and have the potential to have higher capacities, so negative electrode activation has been developed, especially at low pressures. Metal-hydrogen, in which an electrode equipped with a hydrogen storage alloy that can reversibly absorb and release hydrogen, which is a substance, is used as the negative electrode, and an electrode with a metal oxide such as nickel hydroxide as the positive electrode active material is used as the positive electrode. Alkaline storage batteries are attracting attention.

この水素吸蔵合金である金属水素化物を備えた水素吸蔵
電極は、一般に特公昭58−46827号公報に於いて
提案されるように、水素吸蔵合金粉末を導電材粉末と共
に焼結して多孔体を作製し、これを水素吸蔵電極とする
方法、あるいはI#開昭53−33332号公報に於い
て示されるように、水素吸蔵合金粉末を発泡メタル内に
充填し加圧成型した後、充填された金属の融点以下の温
度で真空焼結して水素吸蔵′rt極とする方法によって
作製されている。
Hydrogen storage electrodes equipped with metal hydrides, which are hydrogen storage alloys, are generally produced by sintering hydrogen storage alloy powder together with conductive material powder to form a porous body, as proposed in Japanese Patent Publication No. 58-46827. Alternatively, as shown in I# Publication No. 53-33332, hydrogen-absorbing alloy powder is filled into a foamed metal, pressure-molded, and then filled. It is manufactured by vacuum sintering at a temperature below the melting point of the metal to form a hydrogen storage 'rt' electrode.

しかしながら、これら電極に用いられる水素吸蔵合金は
、従来から負極に活物質として用いられるカドミウム、
亜鉛、鉄などとは異なりアルカリ電解液中で充放電を行
なうと活物質である水素を吸蔵放出するものであり、こ
の水素の吸蔵及び放出によって合金格子が変形し水素吸
蔵合金は微粉化を起こすため、微粉化した合金が電極か
ら脱落して容量低下を招くと共に電極の機械的強度及び
導電性の低下が著しく長期にわたって極板容量を維持す
ることが困難であるという問題点があった。
However, the hydrogen storage alloys used in these electrodes contain cadmium, which has traditionally been used as an active material in negative electrodes.
Unlike zinc, iron, etc., when charged and discharged in an alkaline electrolyte, it absorbs and releases the active material hydrogen, and the hydrogen storage and release deforms the alloy lattice, causing the hydrogen storage alloy to become pulverized. Therefore, there is a problem in that the finely powdered alloy falls off from the electrode, resulting in a decrease in capacity, and the mechanical strength and conductivity of the electrode are significantly decreased, making it difficult to maintain the electrode plate capacity over a long period of time.

(ハ)発明が解決しようとする問題点 本発明は充放電を繰り返し行なうことで生じる水素吸蔵
合金の微粉化による脱落を抑制するこ 、とで、極板容
量の劣化を抑えると共に電極の機械的強度及び導電性の
低下を抑え、長期の充放電サイクルにわたり高容量を維
持する水素吸蔵電極を得ようとするものである。
(c) Problems to be Solved by the Invention The present invention suppresses the falling off of the hydrogen storage alloy due to pulverization caused by repeated charging and discharging, thereby suppressing the deterioration of the electrode plate capacity and improving the mechanical strength of the electrode. The aim is to obtain a hydrogen storage electrode that suppresses deterioration in strength and conductivity and maintains high capacity over long charge/discharge cycles.

に)問題点を解決するための手段 本発明はかかる問題点を解決するため罠、耐アルカリ性
の合成樹脂結着剤と粘性剤とで水素吸蔵合金粉末を保持
した電極を水素吸蔵電極とするものである。該電極に使
用される結着剤及び粘性剤は電池性能に悪影響を与えな
いものであればよく、例えば結着剤としてはポリテトラ
フルオロエチレン・(PTFE、)、テトラフルオロエ
チレン−ヘキサフルオロプロピレン共重合体(FEP)
、4フツ化エチレン及び67フ化プロピレン等のフッ素
樹脂、クロロプレン系、ニトリルゴム系及びスチレンゴ
ム系の樹脂、ポリスチレン、ナイロン系ポリアミドなど
が使用でき、また粘性剤としてはヒドロキシプロピルセ
ルロース(HPC)、ポリエチレンオキサイド(PEO
)、不飽和ポリエステル樹脂(エアロジル)、メチルセ
ルロース(MCLカルボキシメチルセルロース(CMC
) 、ポリビニルアルコール(P VA )、 ポリビ
ニルビクリトン、ポリアクリル酸、ポリアクリルアミド
、架橋でんぷん、アクリル酸ソーダ、アルギン酸ソーダ
、ケイ酸ソーダなどが使用できる。
B) Means for Solving the Problems The present invention aims to solve these problems by providing an electrode in which a hydrogen-absorbing alloy powder is held with an alkali-resistant synthetic resin binder and a viscosity agent as a hydrogen-absorbing electrode. It is. The binder and viscous agent used in the electrode may be any material as long as it does not adversely affect battery performance. Examples of the binder include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene, etc. Polymer (FEP)
, fluororesins such as ethylene tetrafluoride and propylene 67 fluoride, chloroprene-based, nitrile rubber-based and styrene rubber-based resins, polystyrene, nylon-based polyamide, etc., and as the viscosity agent, hydroxypropyl cellulose (HPC), Polyethylene oxide (PEO)
), unsaturated polyester resin (Aerosil), methylcellulose (MCL), carboxymethylcellulose (CMC
), polyvinyl alcohol (PVA), polyvinyl vicritone, polyacrylic acid, polyacrylamide, crosslinked starch, sodium acrylate, sodium alginate, sodium silicate, etc. can be used.

(ホ)作  用 上記手段により、水素吸蔵合金粉末は結着剤と粘性剤の
両者によって電極に保持されるため、充放電によって微
粉化を起こしても、粘性剤の粘着力によって微粉化した
水素吸蔵合金が相互に結看され且つ結着剤に強固に支持
されるので水素吸蔵合金の脱落を抑制することができる
(E) Effect By the above means, the hydrogen storage alloy powder is held on the electrode by both the binder and the viscous agent. Since the hydrogen storage alloys are bound together and firmly supported by the binder, it is possible to suppress the hydrogen storage alloys from falling off.

(へ)実施例 負極に水素吸蔵電極を用い、正極に金属酸化物電極を用
いる代表的な二次電池としてニッケルー水素電池があり
、かかる電池を用りて本発明の一実施例を説明する。
(F) Example A nickel-hydrogen battery is a typical secondary battery that uses a hydrogen storage electrode as a negative electrode and a metal oxide electrode as a positive electrode, and an example of the present invention will be described using such a battery.

水素吸蔵能力を有するLaNi、を機械的に微粉化し、
このLaNi、粉末に小さなせん断力で粒子が簡単に繊
維化し塑性変形するポリテトラフルオロエチレン(PT
F’E)粉末を結着剤としてLaNi。
Mechanically pulverize LaNi, which has hydrogen storage ability,
This LaNi powder is made of polytetrafluoroethylene (PT), which easily fiberizes and plastically deforms when a small shear force is applied to the powder.
F'E) LaNi powder as a binder.

粉末の重量に対して596及びポリエチレンオキサイド
(PEI:O)を粘性剤として1%添加し、均一に混練
すると共にポリテトラフルオロエチレンt−m維化させ
る。このポリテトラフルオロエチレンを繊維化させた混
合物を圧延した後集電体の両面に配して圧着を行ない水
素吸蔵電極を得る。
596 and polyethylene oxide (PEI:O) are added in an amount of 1% based on the weight of the powder as a viscosity agent, and the mixture is uniformly kneaded and turned into polytetrafluoroethylene t-m fibers. This polytetrafluoroethylene fiber mixture is rolled, placed on both sides of a current collector, and crimped to obtain a hydrogen storage electrode.

次いでこうして得られた水素吸蔵電極を、放電容量2.
 OAHの公知の焼結式ニッケル正極と組み合わせアル
カリ電解液を注液して公称容量2.OAHのニッケルー
水素電池(A)を作製した。また比較のため水素吸蔵電
極に粘性剤としてのポリエチレンオキサイドを添加せず
、その他は実施例と同一の比較電池(B)を同時に作製
した。
Next, the hydrogen storage electrode obtained in this way was used for a discharge capacity of 2.
Combined with OAH's known sintered nickel positive electrode and injected with alkaline electrolyte, the nominal capacity was 2. An OAH nickel-metal hydride battery (A) was produced. For comparison, a comparative battery (B) was also produced which was the same as the example except that polyethylene oxide as a viscous agent was not added to the hydrogen storage electrode.

図面はこれら電池(A)及び(B)の充放電サイクル特
性図であり、10時間率電流にて150%充電した後終
止罵圧を1.Ovとして5時間率電流にて放電するサイ
クル条件で充放電を行なったときの結果を各電池の初期
容量を10096として表わしている。この図面から明
らかなように本発明の水素吸蔵電極を負極に用いた電池
(A)は、比較電池(B)に比し充放電サイクルの経過
に伴う電池容量の劣化が小さく抑えられており優れてい
ることがわかる。サイクル試験を終了後の電池を分解し
てみると、特に比較電池(B)の水素吸蔵電極の変形が
著しく、充放電の繰り返しによって水素吸蔵合金の微粉
化が進行すると細かく繊維化されたポリテトラフルオロ
エチレンからなる結着剤のみでは微粉化した水素吸蔵合
金の脱落を充分に抑制することができないことがわかる
。これに対して電池(A)を前記′を池(B)と同じサ
イクル経過時点に於いて分解してみると、電池(A)の
水素吸蔵電極の変形は電池(B)の水素吸蔵電極に比べ
て小さく抑えられていた。これは電池(A)の水素吸蔵
電極にはポリテトラフルオロエチレンからなる結着剤に
加えてポリエチレンオキサイドからなる粘性剤が添加さ
れており、結着剤による抱束力と粘性剤による粘着力に
よって水素吸蔵合金粉末を強固に保持しているため、充
放電の際に水素吸蔵合金粉末が水素を吸蔵、放出して微
粉化を起こしても、粘性剤によって微粉化した水素吸蔵
合金相互及び水素吸蔵合金と集電体との間に良好な結着
性が得られ水素吸蔵合金の脱落が抑制されて充放電サイ
クルの経過に伴う電池容量の劣化が抑えられたものと考
えられる。
The figure shows the charge/discharge cycle characteristics of these batteries (A) and (B), in which the batteries were charged to 150% at a rate of 10 hours and then subjected to a final cycle of 1. The results are shown when charging and discharging were performed under cycle conditions of discharging at a 5-hour rate current as Ov, with the initial capacity of each battery being 10096. As is clear from this drawing, the battery (A) using the hydrogen storage electrode of the present invention as a negative electrode is superior to the comparative battery (B) in that the deterioration of battery capacity over the course of charge/discharge cycles is suppressed to a small extent. You can see that When the battery was disassembled after the cycle test, it was found that the hydrogen storage electrode of the comparison battery (B) was significantly deformed, and as the hydrogen storage alloy was pulverized by repeated charging and discharging, finely fibrous polytetra It can be seen that the binder made of fluoroethylene alone cannot sufficiently suppress the falling off of the pulverized hydrogen storage alloy. On the other hand, when battery (A) is disassembled at the same cycle as battery (B), the deformation of the hydrogen storage electrode of battery (A) is the same as that of battery (B). It was kept small in comparison. This is because a viscous agent made of polyethylene oxide is added to the hydrogen storage electrode of battery (A) in addition to a binder made of polytetrafluoroethylene, and the binding force of the binder and the adhesive force of the viscous agent Because the hydrogen-absorbing alloy powder is held firmly, even if the hydrogen-absorbing alloy powder absorbs and releases hydrogen during charging and discharging and becomes pulverized, the pulverized hydrogen-absorbing alloy powder and the hydrogen-absorbing alloy powder are pulverized by the viscous agent. It is considered that good binding properties were obtained between the alloy and the current collector, suppressing the drop-off of the hydrogen storage alloy and suppressing the deterioration of the battery capacity as the charge/discharge cycle progressed.

(ト)発明の効果 本発明の水素吸蔵電極は耐アルカリ性の合成樹脂結着剤
と粘性剤とによって水素吸蔵合金粉末を保持してなるも
のであるから、充放電の繰り返しによって水素吸蔵合金
が微粉化を起こしても、微粉化した水素吸蔵合金が粘性
剤で相互に結着し長期にわたって電極内に保持されるの
で、サイクル寿命が向上する。
(G) Effects of the Invention Since the hydrogen storage electrode of the present invention is made by holding hydrogen storage alloy powder with an alkali-resistant synthetic resin binder and a viscous agent, the hydrogen storage alloy becomes fine powder by repeated charging and discharging. Even if oxidation occurs, the pulverized hydrogen storage alloy is bonded to each other by the viscous agent and retained within the electrode for a long period of time, improving cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

図面は充放電サイクル特性図である。 (A)・・・本発明の水素吸蔵電極を用いた電池、(B
)・・・比較電池。
The drawing is a charge/discharge cycle characteristic diagram. (A)...Battery using the hydrogen storage electrode of the present invention, (B
)...Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] (1)耐アルカリ性の合成樹脂着剤と粘性剤とによって
水素吸蔵合金粉末を保持してなる水素吸蔵電極。
(1) A hydrogen storage electrode formed by holding hydrogen storage alloy powder with an alkali-resistant synthetic resin adhesive and a viscous agent.
JP59186878A 1984-08-10 1984-09-06 Hydrogen storage electrode Expired - Lifetime JP2692786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59186878A JP2692786B2 (en) 1984-09-06 1984-09-06 Hydrogen storage electrode
FR848418698A FR2569059B1 (en) 1984-08-10 1984-12-07 ALKALINE METAL / HYDROGEN ACCUMULATOR
DE19843444998 DE3444998A1 (en) 1984-08-10 1984-12-10 METAL / HYDROGEN ALKALI ACCUMULATOR BATTERY
GB08431142A GB2162994B (en) 1984-08-10 1984-12-10 Metal/hydrogen alkaline storage battery
US06/841,058 US4636445A (en) 1984-08-10 1986-03-17 Metal/hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186878A JP2692786B2 (en) 1984-09-06 1984-09-06 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS6166366A true JPS6166366A (en) 1986-04-05
JP2692786B2 JP2692786B2 (en) 1997-12-17

Family

ID=16196259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186878A Expired - Lifetime JP2692786B2 (en) 1984-08-10 1984-09-06 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2692786B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290066A (en) * 1986-06-09 1987-12-16 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS64649A (en) * 1987-03-25 1989-01-05 Toshiba Battery Co Ltd Hydrogen storage alloy electrode and its manufacture
JPH01253159A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Hydrogen absorbing alloy electrode
JPH01267960A (en) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption alloy electrode and its manufacture
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
US6242133B1 (en) 1998-06-17 2001-06-05 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP2014089879A (en) * 2012-10-30 2014-05-15 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189133A (en) * 1975-02-03 1976-08-04
JPS5372138A (en) * 1976-12-08 1978-06-27 Matsushita Electric Ind Co Ltd Method of manufacturing zinc electrode for alkaline storage battery
JPS60109174A (en) * 1983-11-18 1985-06-14 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorption electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189133A (en) * 1975-02-03 1976-08-04
JPS5372138A (en) * 1976-12-08 1978-06-27 Matsushita Electric Ind Co Ltd Method of manufacturing zinc electrode for alkaline storage battery
JPS60109174A (en) * 1983-11-18 1985-06-14 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorption electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290066A (en) * 1986-06-09 1987-12-16 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS64649A (en) * 1987-03-25 1989-01-05 Toshiba Battery Co Ltd Hydrogen storage alloy electrode and its manufacture
JPH01253159A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Hydrogen absorbing alloy electrode
JPH07105237B2 (en) * 1988-03-31 1995-11-13 松下電器産業株式会社 Hydrogen storage alloy electrode
JPH01267960A (en) * 1988-04-20 1989-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption alloy electrode and its manufacture
JP2689473B2 (en) * 1988-04-20 1997-12-10 松下電器産業株式会社 Hydrogen storage alloy electrode and its manufacturing method
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
US6242133B1 (en) 1998-06-17 2001-06-05 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP2014089879A (en) * 2012-10-30 2014-05-15 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Also Published As

Publication number Publication date
JP2692786B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JPS6166366A (en) Hydrogen-occlusion electrode
JPH11162468A (en) Alkaline secondary battery
JP3349646B2 (en) Manufacturing method of alkaline secondary battery
JP3558727B2 (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP3349619B2 (en) Alkaline secondary battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JPH09115519A (en) Alkaline secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3567018B2 (en) Alkaline secondary battery
JP2000268825A (en) Alkaline secondary battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH1040950A (en) Alkaline secondary battery
JP2983135B2 (en) Alkaline secondary battery
JP2000113902A (en) Alkaline secondary battery
JP2000113901A (en) Alkaline secondary battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JPH08264175A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPS6147076A (en) Metal-hydrogen alkaline storage battery
JP2000149957A (en) Paste-type positive electrode for alkaline secondary battery, alkaline secondary battery and its manufacture
JPH09129222A (en) Manufacture of alkaline secondary battery
JPH04206346A (en) Battery having metal hydride electrode
JPH01112663A (en) Alkaline secondary battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term